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Abstract

In this paper we prove that there is no concealed non-Kekuléan coronoid

systems with |H| ≤ 14 benzenoid rings. Moreover, we construct all the concealed

non-Kekuléan coronoid systems with |H| = 15 benzenoid rings.
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1. Introduction

A systematic search for concealed non-Kekuléan polyhexes [15] appears to have started

in 1974 with Gutman [1], who stated that no concealed non-Kekuléan benzenoid systems

with less than eleven hexagons can be constructed. Later, Hosoya [2], Cyvin and Gutman

[3] depicted a set of eight concealed non-Kekuléan benzenoid systems, each of which has

eleven hexagons (cf. Fig.5). In fact, the eight constructed concealed non-Kekuléan ben-

zenoid systems are the only smallest concealed non-Kekuléan benzenoid systems. This was

done by computer-generations and classifications of polyhexes conducted independently

in the P.R.China and Norway, using entirely different principles in the programming [4].

Later, the same conclusion was reached by Zhang and Guo [5], who employed a graph-

theoretical analysis. With the aid of computer programming W.C.He et al. [7] found that

there are exactly 98 concealed non-Kekuléan benzenoid systems with 12 hexagons. The

construction methods for concealed non-Kekuléan benzenoid systems with |H| = 12 and

13, respectively, were given by Guo and Zhang [8].

In this paper we confine ourselves to coronoid systems. we claim explicitly that there

is no concealed non-Kekuléan coronoid systems with |H| ≤ 14 benzenoid rings. Moreover,

we construct all the concealed non-Kekuléan coronoid systems with |H| = 15 benzenoid

rings.

2. Some definitions

A benzenoid system is a finite 2-connected plane graph with no cut vertices in which

every interior face is a regular hexagon. A benzenoid system whose vertices are all on

the perimeter is called a catacondensed benzenoid system; otherwise, pericondensed ben-

zenoid system. let G be a benzenoid system and let P be a nonempty set of pairwise

disjoint cycles in G which satisfies (i) each cycle in P contains no vertex on the boundary

of G, (ii) no cycle in P contains another cycle in P in its interior, and (iii) the length of

each cycle in P is greater than six. By deleting all the vertices and the edges of G in the

interior of each cycle in P , a coronoid system is obtained. Let P = C1 ∪ C2∪ · · · ∪Cm
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(m ≥ 1). These cycles are called the inner boundaries of H. If H has exactly one inner

boundary, H is called a single coronoid system; otherwise, a multiple coronoid system.

A polyhex is either a benzenoid system or a coronoid system. A polyhex H is a bi-

partite graph, so it has a bipartition (V1, V2) of its vertex set, where each of V1 and V2 is

an independent vertex set. We usually color the vertices of V1 and V2 white and black,

respectively. At this time, the bipartition is denoted by (W (H), B(H)).

A perfect matching of a graph H is a set of disjoint edges covering all vertices of H.

Perfect matchings in polyhex graphs which are called Kekulé structures by chemists play

a significant role in numerous chemical theories and the graphs with Kekulé structures

are said to be Kekuléan.

It is known that each Kekuléan polyhex H has the same number of black and white

vertices, i.e., |W (H)| = |B(H)|. However, this is not a sufficient condition for a polyhex

to be Kekuléan. A polyhex H is called a concealed non-Kekuléan polyhex if it satisfies

|B(H)| = |W (H)| but has no perfect matching. In the following we use |H| to designate

the number of hexagons of H.

Let H be a polyhex. Denote by C0 the outer boundary of H and by C1, C2, . . . , Cm

the inner boundaries of H (if any).

Definition 1[9] A straight line segment P1P2 is called an elementary cut segment

from Ci to Cj if

1. P1 is the center of an edge e1 on Ci and P2 is the center of an edge e2 on Cj;

2. P1P2 is orthogonal to both e1 and e2;

3. any point of P1P2 is either an interior or a boundary point of some hexagon of H.

Definition 2[9] A broken line segment P1QP2 is called a generalized cut segment

from Ci to Cj if

1. P1 is the center of an edge e1 on Ci and P2 is the center of an edge e2 on Cj;

2. P1Q and P2Q are orthogonal to e1 and e2, respectively;

3. Q is the center of a hexagon of H, P1Q and P2Q form an angle of π
3

or 5π
3

;

4. any point of P1QP2 is either an interior or a boundary point of some hexagon of H.

A special cut segment is either an elementary cut segment or a generalized cut seg-

ment. A special edge-cut Eij from Ci to Cj is the set of edges of H intersected by a special
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cut segment from Ci to Cj. Eij is said to be of type I if i = j, otherwise it is said to be of

type II. Two special edge-cuts are said to be disjoint if their corresponding special cut

segments are disjoint.

Definition 3[10] Let E = Ei1i2 ∪ Ei2i3∪ · · · ∪Eiri1 , where Ei1i2 , Ei2i3 , · · ·, Eiri1 are

r disjoint special edge-cuts of type II, Eijikcorresponds to a special cut segment from Cij

to Cik and is �= it if s �= t. E is said to be a standard combination if the end vertices of

the edges of E have the same color when they lie in the same component of H − E.

Suppose that S is a subset of the vertex set of H. The neighbor set N(S) of S

is the set of vertices which are not in S but adjacent to at least one vertex in S. By

< S ∪ N(S) > we denote the induced subgraph of H, i.e., the subgraph of H whose

vertex set is S ∪ N(S) and whose edge set is the set of those edges of H that have both

end vertices in S ∪ N(S). Let H be a polyhex with |W (H)| = |B(H)|. Assume that

E is a special edge-cut or a standard combination of H. Then the two components of

H − E, say H1 and H2, satisfy: H1 =< B(H1) ∪ W (H1) >,H2 =< B(H2) ∪ W (H2) >,

where B(H) = B(H1) ∪ B(H2), W (H) = W (H1) ∪ W (H2). Without loss of general-

ity, we may assume that B(H1) = N(W (H1)), W (H2) = N(B(H2)). We set d(E) =

|B(H1)| − |W (H1)| = |W (H2)| − |B(H2)|.

A coronoid system is primitive if its dualist graph is a cycle. Then the coronoid system

is called a primitive coronoid system. If a primitive coronoid system can be obtained from

H by deleting all the hexagons except those which have at least one vertex lying on the

inner boundary of H, then we denote the primitive coronoid system by H∗. Denote by

K the subgraph of H induced by the hexagons adjacent to the hexagons in H∗.

Definition 4 A single coronoid system H (see Fig.1) is said to be of type I if it

satisfies:

1. a primitive coronoid system H∗ can be obtained from H by deleting all the hexagons

except those which have at least one vertex lying on the inner boundary of H;

2. K is a catacondensed benzenoid system whose dual graph is a straight line segment;

3. the hexagons in K incident with neither e1 nor en.
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Fig.1 A single coronoid system of type I

Definition 5 A single coronoid system H (see Fig.2) is said to be of type II if it

satisfies:

1. a primitive coronoid system H∗ can be obtained from H by deleting all the hexagons

except those which have at least one vertex lying on the inner boundary of H;

2. K is a catacondensed benzenoid system whose dual graph is a straight line segment;

3. e1 is incident with some hexagon in K, but en is incident with no hexagon in K.
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Fig.2 A single coronoid system of type II

Definition 6 A single coronoid system H (see Fig.3) is said to be of type III if it

satisfies:

1. a primitive coronoid system H∗ can be obtained from H by deleting all the hexagons

except those which have at least one vertex lying on the inner boundary of H;

2. K is a catacondensed benzenoid system whose dual graph is a straight line segment;
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3. there exist two hexagons in K incident with e1 and en, respectively.

Definition 7 A single coronoid system H which is not of type I, type II or type

III is said to be of type IV if a primitive coronoid system could be obtained from H by

deleting all the hexagons except those which have at least one vertex lying on the inner

boundary of H. A non-primitive single coronoid system which is not of type I, II, III

or IV is said to be of type V .
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Fig.3 A single coronoid system of type III

If H is of type IV and on the outer perimeter of H∗ there are some hexagons adjacent

to some hexagons in H∗, then the dual graph of K isn’t a straight line segment. If H is

of type V , denote by H∗∗ the coronoid system obtained by deleting all hexagons except

those which have at least one vertex lying on the inner boundary of H, then H∗∗ isn’t a

primitive coronoid system. The smallest single coronoid system of type V has 12 hexagons

(see Fig.4).

)1( )2(

Fig.4 (1) A single coronoid system of type IV (2) A single coronoid system of type V
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3. Some lemmas

Lemma 1[10] Let H be a single coronoid system. Then H is Kekuléan if and only if:

1. |W (H)| = |B(H)|;

2. d(E) ≥ 0 for every special edge-cut E of type I and for every standard combination E

of type II.

Lemma 2[5] For a concealed non-Kekuléan benzenoid system, it has at least 11

hexagons. There are exactly eight concealed non-Kekuléan benzenoid systems each of

which has 11 hexagons (see Fig.5).

Fig.5 Eight smallest concealed non-Kekuléan benzenoids

Lemma 3[11] Let H be a bipartite graph with bipartition (X, Y ). Then H contains

a matching that saturates every vertex in X if and only if |N(S)| ≥ |S| for all S ⊆ X.

Lemma 4 Let H be a single coronoid system of type I. Then H is Kekuléan if and

only if G is Kekuléan, where G is the subgraph of H induced by the hexagons which

belong to neither H∗ nor K (cf. Fig.1).

This lemma is obvious. In fact, if H is Kekuléan, it must be an essentially discon-

nected polyhex [10].

Lemma 5 Let H be a single coronoid system of type II. Then H is Kekuléan if

and only if G is Kekuléan, where G is the subgraph of H induced by the hexagons of H

which are not in H∗ (cf. Fig.2).
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Proof. Sufficiency is obvious.

Necessity: Assume that G is a non-Kekuléan benzenoid system. It is not difficult to

see that |W (G)| = |B(G)| (cf. Fig2). Then G is a concealed non-Kekuléan benzenoid

system. By lemma 1 there exists a special edge-cut E of G such that d(E) < 0. By G1

and G2 denote the two components of G − E, where G1 =< B(G1) ∪ W (G1) >, G2 =<

B(G2)∪W (G2) >. Without loss of generality, we may assume that B(G1) = N(W (G1)),

W (G2) = N(B(G2)). Then d(E) = |B(G1)|−|W (G1)| = |W (G2)|−|B(G2)|. E can not be

a special edge-cut of H since H is Kekuléan. Then there exists i such that e
′
i or e

′′
i belongs

to E (cf. Fig.6). Suppose that e
′
i belongs to E. Let E

′
= E∪e1∪e2∪· · ·∪ei. Note that E

′

is an edge-cut of H which is not necessarily a special edge-cut of H. But H−E
′
consists of

two components and one of them is just G1. By lemma 3 we have |N(W (G1))|−|W (G1)| =

|B(G1)| − |W (G1)| ≥ 0 since H is Kekuléan . Then d(E) ≥ 0, a contradiction. Now we

suppose that e
′′
i belongs to E. Let E

′
= (E − e

′′
i ) ∪ e∗i+2 ∪ e∗i+3 ∪ · · · e∗k+1. Similarly,

E
′

is an edge-cut of H which is not necessarily a special edge-cut of H. But H − E
′

consists of two components and one of them is just a subgraph of G1, denoted by H
′

which satisfies B(H
′
) = N(W (H

′
)) and |W (G1) − W (H

′
)| = |B(G1) − B(H

′
)|. Then

|B(H
′
)| − |W (H

′
)| = (|B(G1)| − |B(G1) − B(H

′
)|) − (|W (G1)| − |W (G1) − W (H

′
)|) =

|B(G1)| − |W (G1)| = d(E). Since H is a Kekuléan coronoid system, by lemma 3, we

have |B(H
′
)| − |W (H

′
)| ≥ 0. Then d(E) ≥ 0, again a contradiction. Therefore, G is a

Kekuléan benzenoid system. The necessity is thus proved.
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Fig.6 An illustration for the proof of lemma 5
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Lemma 6 Let H be a single coronoid system of type III. Then H is Kekuléan if

and only if G is Kekuléan, where G is the subgraph induced by the hexagons of H\H∗

together with the hexagons incident with H\H∗ (cf. Fig.3).

Proof. Sufficiency: Let M1 be a Kekulé structure of G. Then v1, v2, v′
1, v′

2 are

matched by the vertices in G. Since the subgraph induced by the hexagons s1, s2,· · · ,

sm−1 is a linear catacondensed benzenoid system, denoted by P , it has a Kekulé structure

M2 (see Fig.3) such that (v1, v2) ∈ M2. As H\(G∪P ∪ sm) is a catacondensed benzenoid

system, it has a Kekulé structure M3 such that (v′
1, v′

2) ∈ M3. Then H\G has a Kekulé

structure M4 = M2∪M3∪ (a, b) satisfying: (v1, v2) ∈ M4 and (v′
1, v′

2) ∈ M4 . If either (v1,

v2) or (v′
1, v′

2) belongs to M1, without loss of generality, we may assume that (v1, v2)∈M1,

then M = M1 ∪M4 − (v′
1, v′

2) is a Kekulé structure of H. If not, then M = M1 ∪M4 is a

Kekulé structure of H.

The sufficiency is thus proved.

The proof of necessity is similar to that of necessity of lemma 5. We omit the details.

Fig.7 The smallest primitive coronoid system

By lemma 4, 5, 6, we know that if concealed non-Kekuléan single coronoid system H is

of type I or type II or type III, then the corresponding subgraph G is a concealed non-

Kekuléan benzenoid system. Since the smallest primitive coronoid system has 8 hexagons

(Fig.7), by lemma 2, we can deduce that |H| ≥ 20 or |H| ≥ 19 or |H| ≥ 16, respectively.

From the above, we find that if a single coronoid system H with |H| ≤ 15 and

|W (H)| = |B(H)| is of type I or type II or type III, it is Kekuléan.

Immediately, we have:

Lemma 7 Let H be a single coronoid system of type I or type II or type III. Then

H is Kekuléan if |H| ≤ 15 and |B(H)| = |W (H)|.

By Lemma 1 any non-Kekuléan coronoid system H possesses a special edge-cut of
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type I or a standard combination E such that d(E) < 0. But it need not possess a special

edge-cut of type I E such that d(E) < 0. Suppose that E is a special edge-cut of type I.

By H1 and H2 denote the two components of H −E. It is evident that one of H1 and H2

contains no hexagon which has at least one vertex lying in the inner perimeter of H.

Lemma 8 Let H be a non-Kekuléan coronoid system of type IV with |H| ≤ 15. If

there exists a special edge-cut E
′
of type I satisfying d(E

′
) < 0, then there must exist a

special edge-cut E of type I satisfying:

1. d(E) < 0;

2. let H1 be the component of H − E that contains no hexagon which has at least one

vertex lying in the inner perimeter of H; X be the set of the hexagons in H1 . Then the

subgraph H[X] induced by the hexagons in X is connected.

Proof. For the special edge-cut E
′

of type I, if it also satisfies condition 2 in the

lemma, then there is nothing to prove. Now suppose that condition 2 is not satisfied.

Denote by H
′
1 and H

′
2 the two components of H − E

′
, where B(H

′
1) = N(W (H

′
1)),

W (H
′
2) = N(B(H

′
2)). Denote by Z, X

′
and Y

′
the sets of the hexagons of H, H

′
1

and H
′
2, respectively; by T

′
the set of the hexagons each of which has two edges be-

long to E
′
. Suppose that H[X

′
] is disconnected. Let the number of the components of

H[X
′
] be m. Denote by R1, R2, · · ·, Rm the sets of the hexagons of the components.

Then (|W (H[R1])| − |B(H[R1])|) + (|W (H[R2])| − |B(H[R2])|) + . . . + (|W (H[Rm])| −

|B(H[Rm])|) ≥ |W (H
′
1)| − |B(H

′
1)| + m − 1 ≥ m (cf. Fig.8). Let S be the set of the ver-

tices belonging to the hexagons in T
′
but not belonging to H

′
2. Then |B(S)|−|W (S)| = 1.

Since d(E
′
) = |W (H

′
2)|−|B(H

′
2)| < 0, |B(H[Z\(R1∪R2∪· · ·∪Rm)])|−|W (H[Z\(R1∪R2∪

· · ·∪Rm)])| = (|B(H
′
2)|+|B(S)|)−(|W (H

′
2)|+|W (S)|) = |B(H

′
2)|−|W (H

′
2)|+1 ≥ 2. Note

that H[Z\(R1∪R2∪· · ·∪Rm)] is a coronoid system. Then if H[Z\(R1∪R2∪· · ·∪Rm)] could

be obtained by adding one hexagon to a primitive coronoid system, then ||W (H[Z\(R1 ∪

R2 ∪ · · · ∪ Rm)])| − |B(H[Z\(R1 ∪ R2 ∪ · · · ∪ Rm)])|| ≤ 1, a contradiction. Therefore, in

order to obtain the coronoid system H[Z\(R1 ∪ R2 ∪ · · · ∪ Rm)], at least two hexagons

must be added, i.e., |Z\(R1 ∪ R2 ∪ · · · ∪ Rm)| ≥ 10. We claim that m ≤ 2. Otherwise,

if there exists a natural number i (1 ≤ i ≤ m) such that |W (H[Ri])| − |B(H[Ri])| > 1,

then |Ri| ≥ 6 (cf. the proof of Theorem 3 in [5]). Together with |Rj| ≥ 1 (j �= i), we have
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|H| = |Z\(R1∪R2∪· · ·∪Rm)|+|R1∪R2∪· · ·∪Ri−1∪Ri+1∪· · ·∪Rm|+|Ri| ≥ 10+2+6 = 18,

a contradiction. Then all the m benzenoid systems satisfy |W (H[Ri])| − |B(H[Ri])| = 1.

Hence |Ri| ≥ 3. Therefore, |H| = |Z\(R1 ∪ R2 ∪ · · · ∪ Rm)| + 3 × m ≥ 10 + 3 × 3 = 19,

again a contradiction.

Since H[X
′
] is disconnected, there exists v0, v1, v2, · · · , vk belonging to the hexagons

in T (cf. Fig.8). Let H1 =< B(H1) ∪ W (H1) >, H2 =< B(H2) ∪ W (H2) >, where

B(H1) = N(W (H1)), W (H2) = N(B(H2)).
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Fig.8 H[X] consists of two components and E is a special edge-cut.

Suppose that k > 0. Delete v0, v1 together with their incident edges from H
′
1.

Let Ē ′ be the special cut segment corresponding to E
′
. Then Ē ′ is divided into two

segments Ē
′
1 and Ē

′
2. Let E

′
1 and E

′
2 be the edge-cuts corresponding to Ē

′
1 and Ē

′
2, re-

spectively. Note that d(E
′
) = |B(H

′
1)| − |W (H

′
1)| < 0. Then |W (H

′
1)| − |B(H

′
1)| =

(|W (G1)| − |B(G1)|) + (|W (G2)| − |B(G2)|) > 0, where G1, G2 are the two components

of H
′
1 − v0 − v1. It is easy to see that there exists at least one component satisfying

|W (Gi)| − |B(Gi)| > 0 (i = 1, 2) · · · · · · (*).

Suppose that |W (G2)| − |B(G2)| > 0. No matter Ē ′ is an elementary cut segment or

a generalized cut segment, E = E
′
2∪(v1, v2) is a special edge-cut such that d(E) < 0 and

H[X] is connected.

Now suppose that |W (G1)| − |B(G1)| > 0. We distinguish two cases:

Case 1. Ē ′ is a generalized cut segment (cf. Fig.8(1)). Then an elementary cut

segment Ē will be obtained (cf. Fig.8(1)). Denoted by T the set of the hexagons

each of which has two edges belong to E, where E is the elementary edge-cut cor-

responding to Ē. It is obvious that H[Y ] is a coronoid system but not a primitive
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coronoid system. Then H[Y ] is connected and |Y | ≥ 9. It is evident that d(E) =

|B(H1)| − |W (H1)| = |B(G1)| − |W (G1)| < 0. We claim that H[X] is connected. Oth-

erwise, there exists at least one edge in E incident with no hexagon in X and |T ′| ≥ 2.

Then |W (H[X])|− |B(H[X])| ≥ |W (H1)|− |B(H1)|+1 ≥ 2. Thus |X| ≥ 6. On the other

hand, |X| = |H| − |Y | − |T ′| ≤ 15 − 9 − 2 = 4, a contradiction.

Case 2. Ē ′ is an elementary cut segment (cf. Fig.8(2)). If hexagon r doesn’t ex-

ist, the proof is quite similar to the case when Ē
′

is a generalized cut segment. In

the following, we assume that hexagon r belongs to H
′
1. Then all the edges in E

′
1 are

incident with some hexagons in G1. i.e., G1 = H[R1]. Since S is the set of the ver-

tices belonging to the hexagons in T but not belonging to H
′
2, |W (S)| − |B(S)| = −1.

Note that |B(H
′
2)| − |W (H

′
2)| = |W (H

′
1)| − |B(H

′
1)| > 0. Then |B(H[Z\(R1 ∪ R2)])| −

|W (H[Z\(R1∪R2)])| = (|B(S)|+|B(H
′
2)|)−(|W (S)|+|W (H

′
2)|) = (|B(H

′
2)|−|W (H

′
2)|)+

1 ≥ 2. Note that H[Z\(R1 ∪ R2)] is a coronoid system. If H[Z\(R1 ∪ R2)] is a

coronoid system obtained by adding one hexagon to a primitive coronoid system, then

||W (H[Z\(R1 ∪ R2)])| − |B(H[Z\(R1 ∪ R2)])|| ≤ 1, a contradiction. Therefore, in order

to obtain the coronoid system H[Z\(R1 ∪R2)], at least two hexagons must be added, i.e.,

|Z\(R1 ∪ R2)| ≥ 10. If |W (G1)| − |B(G1)| = 1, then |R1| ≥ 3 and |W (H
′
1)| − |B(H

′
1)| =

(|W (G1)|− |B(G1)|)+ (|W (G2)|− |B(G2)|) = 1+(|W (G2)|− |B(G2)|) > 0. Bear in mind

that |W (G2)| − |B(G2)| ≤ 0. Then |W (G2)| − |B(G2)| = 0. Thus |R2| ≥ 3. Therefore,

|H| = |Z\(R1∪R2)|+|R1|+|R2| ≥ 10+3+3 = 16, a contradiction. If |W (G1)|−|B(G1)| ≥

2, then |R1| ≥ 6. Together with |R2| ≥ 1, we have |H| ≥ 10 + 6 + 1 = 17, again a con-

tradiction. In other words, if G1 satisfies |W (G1)| − |B(G1)| > 0, then |H| ≥ 16 , a

contradiction.

Now suppose that k = 0. Delete v0 together with their incident edges from H
′
1. Then

Ē ′ is divided into two segments Ē
′
1 and Ē

′
2. |W (H

′
1)| − |B(H

′
1)| = (|W (G1)| − |B(G1)|) +

(|W (G2)|−|B(G2)|)−1 > 0, where G1 and G2 are the two components of H
′
1−v0. We have

(|W (G1)|− |B(G1)|)+(|W (G2)|− |B(G2)|) > 1. It is easy to see that there exists at least

one component satisfying |W (Gi)| − |B(Gi)| > 1 (i = 1, 2). Otherwise both of the two

components have: |W (Gi)|− |B(Gi)| = 1. Then |R1| ≥ 3, |R2| ≥ 3. |B(H
′
2)|− |W (H

′
2)| =

|W (H
′
1)| − |B(H

′
1)| = (|W (G1)| − |B(G1)|) + (|W (G2)| − |B(G2)|) − 1 = 1. By a similar
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reasoning as above, we have |W (H[Z\(R1

⋃
R2)])| − |B(H[Z\(R1

⋃
R2)])| = |B(H

′
2)| −

|W (H
′
2)| + 1 = 2. Then |Z\(R1

⋃
R2)| ≥ 10. Thus |H| = |Z\(R1

⋃
R2)| + |R1| + |R2| ≥

10 + 3 + 3 = 16, a contradiction. Suppose that |W (G2)| − |B(G2)| > 1. The proof is

quite similar to that for the case k > 0 and |W (G2)| − |B(G2)| > 0. Now suppose that

|W (G1)| − |B(G1)| > 1. If E
′
is a generalized edge-cut, then by a similar reasoning as in

the proof for k > 0 and |W (G1)| − |B(G1)| > 0, an elementary edge-cut E is obtained

which satisfies conditions 1 and 2. If E
′
is an elementary edge-cut, then let E = E

′
1 ∪ (v0,

u) ∪ (v0, v1). It is obvious that E is a generalized edge-cut satisfying conditions 1 and 2.

This Lemma is thus proved.

4. Main results

Theorem 1 Let H be a coronoid system with |H| ≤ 14. Then H is a Kekuléan

coronoid system if and only if |B(H)| = |W (H)|.

Proof. Necessity is obvious.

Sufficiency: Since the smallest concealed non-Kekuléan multiple coronoid system has

17 hexagons [13], concealed non-Kekuléan coronoid systems with |H| ≤ 14 must be single

coronoid systems. If H is a coronoid system of type I or type II or type III satisfying

|W (H)| = |B(H)| and |H| ≤ 14, then H is Kekuléan (Lemma 7). So in the following we

need only to consider single coronoid systems of type IV and type V .

Assume that H is a concealed non-Kekuléan coronoid system. By Lemma 1 there exists

a special edge-cut of type I or a standard combination E such that d(E) < 0. Denote the

two components of H −E by H1 and H2, respectively; where H1 =< W (H1) ∪B(H1) >,

H2 =< W (H2) ∪ B(H2) >. Without loss of generality, we may assume that B(H1) =

N(W (H1)), W (H2) = N(B(H2)). Then d(E) = |B(H1)| − |W (H1)| < 0. Let X, Y , Z be

the sets of the hexagons in H1, H2 and H, respectively. Then T = Z\(X ∪ Y ) is the set

of the hexagons each of which has two edges belong to E.

Now we distinguish two cases.

Case 1: E is a standard combination. Let E = E1 ∪E2, where both of E1 and E2 are

special edge-cuts of type II. Then |T | ≥ 2. Thus |X| + |Y | = |H| − |T | ≤ 14 − 2 = 12.
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Without loss of generality, we may assume that |X| ≤ |Y |. Then |X| ≤ 6. Bear in mind

that |W (H1)| − |B(H1)| > 0. If all the edges in E are incident with some hexagons in

H1, then H1 = H[X] and |W (H1)| − |B(H1)| = |W (H[X])| − |B(H[X])| ≥ 1. If at least

one edge in E is not incident with any hexagon in H1, then |W (H[X])| − |B(H[X])| ≥

|W (H1)| − |B(H1)| + 1 ≥ 2. Thus we conclude that |W (H[X])| − |B(H[X])| ≥ 1.

Suppose that all the edges in E are not parallel. Firstly, we consider the case: all

the edges in E are incident with some hexagons in X. We claim that |E1| = 2 and

|E2| = 2. Otherwise, without loss of generality, we may assume that |E1| > 2. Note that

|W (H[X])| − |B(H[X])| ≥ 1 and |X| ≤ 6. We deduce that |E1| = 3 and |E2| = 2 (cf.

Fig.9). Then there exists one edge in E2 incident with no hexagon in X , contradicting

our assumption. Therefore, |E1| = 2. Similarly, |E2| = 2. It is evident that there are

4 white vertices and 2 black vertices of the hexagons in T which are not in H1. Then

|W (H[X∪T ])|−|B(H[X∪T ])| = (|W (H1)|+4)− (|B(H1)|+2) ≥ 3. By our assumption,

all the edges in E are incident with some hexagons in X. Then the smallest H[X ∪ T ]

must be one of the graphs as shown in Fig.10. It is easy to see that |X ∪ T | ≥ 9. Note

that |E1| = |E2| = 2 and |T | = 2. Thus |X| ≥ 9−2 = 7, contradicting that |X| ≤ 6. Now

we consider the case: there exists at least one edge in E incident with no hexagon in X.

Then |W (H[X])| − |B(H[X])| ≥ |W (H1)| − |B(H1)| + 1 ≥ 2. Thus |X| ≥ 6. Combining

with |X| ≤ 6, we have |X| = 6. Then |E1| = |E2| = 2. H[X] must be one of the graphs

as shown in Fig.11. Thus |W (H1)| − |B(H1)| = 0, again a contradiction.

Now suppose that all the edges in E are parallel each other. Note that |E| ≥ 4. Firstly,

we consider the case |E| = 4, which implies that |E1| = |E2| = 2. If all the edges in E are

incident with some hexagons in X, then H[X] = H1. Thus |W (H[X])| − |B(H[X])| ≥ 1.

We have |X| ≥ 5. Bear in mind that |X| ≤ 6. Then 5 ≤ |X| ≤ 6. We deduce that H[X]

must be one of the graphs as shown in Fig.12. It is obvious that there exists no special

edge-cut E2 of H such that all the edges in E2 are parallel to all the edges in E1 and all the

edges in E2 are incident with some hexagons in X, a contradiction. If there exists at least

one edge in E incident with no hexagon in X, then |W (H[X])|− |B(H[X])| ≥ 2. H[Z\Y ]

must be one of the graphs as shown in Fig.13, which implies that |W (H1)|− |B(H1)| = 0,

contradicting that |W (H1)| − |B(H1)| > 0. Now we consider the case |E| ≥ 5. Then
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1
E

2
E

Fig.9 H[X] satisfies: |W (H[X])| − |B(H[X])| ≥ 1, |X| ≤ 6 and |E1| = 3.

Fig.10 The smallest H[X ∪ T ] satisfying: all the edges in E are incident with some hexagons

in X and |W (H[X ∪T ])|− |B(H[X ∪T ])| ≥ 3, where E is a standard combination and |T | = 2.

Fig.11 H[X] satisfies: |W (H[X])| − |B(H[X])| ≥ 2 and |X| = 6.

|T | ≥ 3. Thus |X| + |Y | = |H| − |T | ≤ 14 − 3 = 11. Bear in mind that |X| ≤ |Y |, we

have |X| ≤ 5. All the edges in E must be incident with some hexagons in X. Otherwise,

- 171 -



|W (H[X])| − |B(H[X])| ≥ |W (H1)| − |B(H1)| + 1 ≥ 2. Then |X| ≥ 6, a contradiction.

Thus |X| = 5, |E| = 5. Therefore, |W (H1)| − |B(H1)| = 0, again a contradiction.

Therefore, E can not be a standard combination.

'
E

'
E'

E

'
E

'
E

'
E '

E

'
E'

E
'

E
'

E

'
E '

E
'

E

'
E

'
E

'
E

Fig.12 H[X] satisfies: |W (H[X])| − |B(H[X])| ≥ 1, 5 ≤ |X| ≤ 6 and all the edges in E1 are

incident with some hexagons in X, where |E1| = 2.

1
E

1
E

2
E 2

E

Fig.13 There exists at least one edge in E incident with no hexagon in X and |X| = 6.

Case 2: E is a special edge-cut.

Subcase 2.1: H is of type IV . By lemma 8, we may suppose that H[X] is connected.

Subcase 2.1.1: There are some hexagons in T belonging to H∗, where H∗ is obtained

by deleting all the hexagons except those which has at least one vertex lying on the in-

ner boundary of H. Since H[Z\X] is a coronoid system, |Z\X| ≥ 8. If |Z\X| = 8,
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then H[Z\X] is the smallest primitive coronoid system and H must be of type I or

II or III, contradicting that H is of type IV . Thus |Z\X| ≥ 9. As |H| ≤ 14, then

|X| = |H| − |Z\X| ≤ 14− 9 = 5. Similarly, E must be an elementary edge-cut and there

must exist |E| hexagons in X incident with the edges in E. It is not difficult to see that

|E| ≥ 3. Then |X|−|E| ≤ 5−3 = 2. Thus |W (H1)|−|B(H1)| ≤ 0, again a contradiction.

Subcase 2.1.2: There is no hexagon in T belonging to H∗. Then |Y | ≥ 9. Otherwise

H must be of type I or type II or type III, a contradiction. |X| = |H| − |Y | − |T | ≤

14 − 9 − 1 = 4. Similarly, all the edges in E must be incident with some hexagons in X.

It is easy to see that |E| ≥ 2. Then |X| − |E| ≤ 4− 2 = 2. Thus |W (H1)| − |B(H1)| ≤ 0,

again a contradiction. Consequently, H can not be of type IV .

Subcase 2.2: H is of type V . Since the smallest coronoid system of type V has

12 hexagons, i.e., |Z\X| ≥ 12, |X| ≤ |H| − |Z\X| = 14 − 12 = 2. If |E| > 2,

there exists at least one edge in E which is incident with no hexagon in X. Then

|W (H[X])| − |B(H[X])| ≥ 2, |X| ≥ 6, a contradiction. Thus |E| = 2. Combining with

|X| ≤ 2, we have |W (H1)| − |B(H1)| ≤ 0, which contradicts that |W (H1)| − |B(H1)| > 0.

The theorem is thus proved.

Theorem 2 There are exactly 23 concealed non-Kekuléan coronoid systems each of

which has 15 hexagons.

Proof. Suppose that H is a concealed non-Kekuléan coronoid system with |H| = 15.

Then H must be a single coronoid system. By lemma 7 H can not be of type I or

type II or type III. So in the following we need only to consider the coronoid sys-

tems of type IV and type V . By lemma 1 there exists a special edge-cut or a stan-

dard combination E such that d(E) < 0. Let the two components of H − E be H1

and H2, where H1 =< W (H1) ∪ B(H1) >, H2 =< W (H2) ∪ B(H2) >. Without loss

of generality, we may assume that B(H1) = N(W (H1)), W (H2) = N(B(H2)). Then

d(E) = |B(H1)| − |W (H1)| < 0. Let X, Y , Z be the sets of the hexagons in H1, H2 and

H, respectively. Then T = Z\(X ∪ Y ) is the set of the hexagons each of which has two

edges in E.

We distinguish two cases.

Case 1. E is a standard combination. Let E = E1
⋃

E2, where both of E1 and E2
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are special edge-cuts of type II. By a similar reasoning as in the proof of theorem 1, we

have |W (H[X])| − |B(H[X])| ≥ 1, |X| + |Y | ≤ 15 − 2 = 13. Without loss of generality,

we may assume that |X| ≤ |Y |. Then |X| ≤ 6.

Suppose that all the edges in E are not parallel. If all the edges in E are incident

with some hexagons in X, by a similar reasoning as in the proof of theorem 1, we deduce

that H does not exist. If there exists at least one edge in E incident with no hexagon in

X, by a similar reasoning as in the proof of theorem 1, we come to the conclusion that

|X| = 6 and H[X] must be one of the graphs as shown in Fig.12. Then 4 ≤ |E| ≤ 5.

Thus |W (H1)| − |B(H1)| ≤ 0, a contradiction.

Now we suppose that all the edges in E are parallel each other. Note that |E| ≥ 4.

Firstly, we consider the case |E| = 4, which implies that |E1| = |E2| = 2. By a simi-

lar reasoning as in the proof of theorem 1, H doesn’t exist. Now we consider the case

|E| ≥ 5. If all the edges in E are incident with some hexagons in X, then |X| ≥ 5.

Note that |X| ≤ 6. Therefore, |X| = 5 or |X| = 6. We have |W (H1)| − |B(H1)| ≤ 0, a

contradiction. Hence, there exists at least one edge in E incident with no hexagon in X.

Then |W (H[X])|− |B(H[X])| ≥ 2 and |X| ≥ 6. Together with |X| ≤ 6, we have |X| = 6.

H[Z\Y ] must be as shown in Fig.14, which implies that |W (H1)| − |B(H1)| < 0, again a

contradiction.

Fig.14 An illustration for case 1 of the proof of Theorem 2

Therefore, E can not be a standard combination.

Case 2: E is a special edge-cut.

Subcase 2.1: H is of type IV . By lemma 8, we may suppose that H[X] is connected.

Subcase 2.1.1: There are some hexagons in T belonging to H∗. Since H[Z\X] is a

coronoid system, by a similar reasoning as in the proof of theorem 1, we have |Z\X| ≥ 9.

Then |X| = |H| − |Z\X| ≤ 15 − 9 = 6.
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Suppose that there exists at least one edge in E incident with no hexagon in X. Then

|W (H[X])| − |B(H[X])| ≥ |W (H1)| − |B(H1)| + 1 ≥ 2. Thus |X| ≥ 6. Combining with

|X| ≤ 6, we have |X| = 6. Therefore |Z\X| = |H|−|X| = 9 and H[X] must be one of the

graphs as shown in Fig.12. Thus |W (H[X])|− |B(H[X])| = 2. H[Z\X] is not a primitive

coronoid system. Otherwise H is of type I or II or III, a contradiction. Together with

|Z\X| = 9, H∗ must be the smallest primitive coronoid system (as shown in Fig.7).

Then H[Z\X] must be obtained by adding one hexagon to H∗. Thus ||W (H[Z\X])| −

|B(H[Z\X])|| ≤ 1. From Fig.12, we conclude that there are at most two hexagons in

T adjacent to some hexagon in X. If there is only one hexagon in T adjacent to some

hexagon in X, then |W (H)|− |B(H)| = (|W (H[X])|+ |W (H[Z\X])|−1)− (|B(H[X])|+

|B(H[Z\X])| − 1) = (|W (H[X])| − |B(H[X])|) + (|W (H[Z\X])| − |B(H[Z\X])) = 2 +

(W (H[Z\X])−B(H[Z\X])|) �= 0, a contradiction. If there are two hexagons in T adjacent

to some hexagon in X, then there are at least two edges in E incident with no hexagon

in X such that |W (H1)| − |B(H1)| = 0, again a contradiction.

Now suppose that all the edges in E are incident with some hexagons in X. Since

there are some hexagons in T belonging to H∗, |E| ≥ 3. Note that |X| ≤ 6. If |E| > 3,

then |W (H1)| − |B(H1)| ≤ 0, a contradiction. Then |E| = 3 and H[X] must be as

shown in Fig.10. Thus |X| = 6, |W (H[X])| − |B(H[X])| = 1. |Z\X| = |H| − |X| = 9.

By a similar reasoning as above, we have ||W (H[Z\X])| − |B(H[Z\X])|| ≤ 1. Then

|W (H)|−|B(H)| = (|W (H[X])|+ |W (H[Z\X])|−2)− (|B(H[X])|+ |B(H[Z\X])|−3) =

2 + |W (H[Z\X])| − |B(H[Z\X])| �= 0, again a contradiction.

Subcase 2.1.2: There is no hexagon in T belonging to H∗. Then |E| ≥ 2 and |T | ≥ 1.

Similarly, H[Y ] isn’t a primitive coronoid system. |Y | ≥ 9. |X| = |H| − |Y | − |T | ≤

15− 9− 1 = 5. Thus E must be an elementary edge-cut and there are |E| hexagons in X

incident with the edges in E. We claim that |E| = 2. Otherwise |W (H1)|−|B(H1)| ≤ 0, a

contradiction. Bear in mind |W (H1)|−|B(H1)| > 0. Then |W (H[Z\Y ])|−|B(H[Z\Y ])| =

(|W (H1)| + 2) − (|B(H1)| + 1) ≥ 2. Thus |Z\Y | ≥ 6. On the other hand, |Z\Y | =

|H| − |Y | ≤ 15 − 9 = 6. Then |Z\Y | = 6. H[Z\Y ] is one of the graphs as shown in

Fig.12. It is easy to see that all the edges in E are incident with some hexagon in H1

and |W (H[X])| − |B(H[X])| = 1. |Y | = |H| − |Z\Y | = 9. Since H[Y ] is not a primitive
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coronoid system, H[Y ] must be obtained by adding one hexagon to the smallest coronoid

system. Then ||W (H[Y ])|−|B(H[Y ])|| ≤ 1. We claim that all the edges in E are incident

with some hexagons in Y . Otherwise |W (H)| − |B(H)| = (|W (H[X])| − |B(H[X])|) +

(|W (H[Y ])| − |B(H[Y ])|) + 1 = 2 + |W (H[Y ])| − |B(H[Y ])| �= 0, contradicting that

|W (H)| = |B(H)|. Then |W (H)| − |B(H)| = (|W (H[X])| − |B(H[X])|) + (|W (H[Y ])| −

|B(H[Y ])|) = 1 + (|W (H[Y ])| − |B(H[Y ])|) = 0, Thus |W (H[Y ])| − |B(H[Y ])| = −1.

H[Z\X] must be one of the graphs as shown in Fig.15. Since H[Z\Y ] is one of the

graphs as shown in Fig.11, it is easy to see that if H[Z\X] is as shown in Fig.15(1), (2),

(3), there are 5 concealed non-Kekuléan coronoid systems, respectively, if H[Z\X] is as

shown in Fig.16(4) no matter exists s1 or s2, there are 4 concealed non-Kekuléan coronoid

systems, respectively. Then the number of concealed non-Kekuléan coronoid systems with

|H| = 15 is just 3 × 5 + 4 × 2 = 23. All the concealed non-Kekuléan coronoid systems

with |H| = 15 are shown in Fig.16.

Subcase 2.2: H is of type V . |E| ≥ 2. Since H[Z\X] is a non-primitive coronoid

system , |Z\X| ≥ 12 (cf. Fig.4(2)). |X| = |H| − |Z\X| ≤ 15 − 12 = 3. If there exists at

least one edge in E incident with no hexagon in X, then |X| ≥ 6, a contradiction.

If not, then |E| = 2 or |E| = 3. Thus |W (H1)| − |B(H1)| ≤ 0, again a contradiction.

The theorem is thus proved.
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Fig.15 4 coronoid systems satisfying |W (H[Y ])| − |B(H[Y ])| = −1

Remark: Under the assumption that the smallest concealed non-Kekuléan coronoid

systems must be a single coronoid system each of which contains a naphthalenic hole

(consisting of two hexagons), the authors in [13] depicted 23 concealed non-Kekuléan

coronoid systems by computer-generations (cf. Fig.16). They thought all the concealed
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non-Kekuléan coronoid systems with a naphthalenic hole and |H| = 15 are generated by

(1) adding one hexagon at a time to the 22154 systems with a naphthalenic hole satisfying

|H| = 14 and |W (H)| = |B(H)|, using the one-, three- and five-contact additions, and (2)

adding one hexagon at a time to the 26919 systems with a naphthalenic hole satisfying

|H| = 14 and ||W (H)| − |B(H)|| = 1, using the two- and four-contact additions. After

sifting they obtained 23 concealed non-Kekuléan coronoid systems. But no one claimed

explicitly that the constructed 23 systems with a naphthalenic hole are the only smallest

concealed non-Kekuléan coronoid systems.

Fig.16 23 concealed Non-Kekuléan coronoid systems (each has 15 hexagons).
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