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Abstract

Resistance distance was introduced by Klein and Randić (J. Math. Chem. 12

(1993) 81–95). The Kirchhoff index Kf(G) of a graph G is the sum of resistance

distances between all pairs of vertices. Let Sl
n denote the graph obtained from cycle

Cl by adding n− l pendant edges to a vertex of Cl. Let P l
n denote the graph obtained

by identifying one endvertex of path Pn−l+1 with any vertex of Cl. In this paper, we

show that among n-vertex unicyclic graphs, (i) if n < 8, Cn has minimal Kirchhoff

index; if 8 ≤ n < 12, S4
n has minimal Kirchhoff index; if n = 12, both S3

n and S4
n

have minimal Kirchhoff index; otherwise, S3
n has minimal Kirchhoff index; (ii)P 3

n has

maximal Kirchhoff index. Sharp bounds for Kirchhoff index of unicyclic graphs are

also obtained.
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1 Introduction

Let G be a connected graph with vertices labeled as v1, v2, · · · , vn. The distance between

vertices vi and vj, denoted by d(vi, vj), is the length of a shortest path between them. The

famous Wiener index W (G) [1] is the sum of distances between all pairs of vertices, that is,

W (G) =
∑
i<j

d(vi, vj).

In 1993, Klein and Randić [2] introduced a new distance function named resistance

distance basing on electrical network theory. They view G as an electrical network N such

that each edge of G is assumed to be a unit resistor. The resistance distance between

vertices vi and vj, denoted by r(vi, vj) (if more than one graphs are considered, we use

rG(vi, vj) to avoid confusion), is defined to be the effective resistance between nodes vi and

vj in N . Analogue to Wiener index, the Kirchhoff index Kf(G) [3] is defined as:

Kf(G) =
∑
i<j

r(vi, vj).

As an intrinsic graph metric and a relevant tool to characterize wave- or fluid-like com-

munication between two vertices [4], resistance distance is well studied both in mathemat-

ical and chemical literatures [5, 6, 7, 8, 9, 10, 11, 12]. It is computed in various ways: in

algebra using generalized inverse of Laplacian matrix [2], Laplacian eigenvalues and eigen-

vectors [13] and normalized Laplacian eigenvalues and eigenvectors [16]; in combinatorics

using spanning trees and spanning bi-trees [14]; in probability using random walks [15].

As a new useful structure-descriptor [17], Kirchhoff index attracts more and more atten-

tion. Much work has been done to compute Kirchhoff index of some classes of graphs

[20, 21, 22, 23, 24, 25, 26].

Though it is usually difficult to compute Kirchhoff index of graphs, we can give some

bounds for Kirchhoff index of graphs and characterize extremal graphs as well. Let Pn

(resp. Cn) denote the path (resp. cycle) on n vertices. For a general graph G, Lukovits et

al. [18] showed that Kf(G) ≥ n − 1 with equality if and only if G is complete graph Kn
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and Pn has maximal Kirchhoff index. Palacios [19] proved that Kf(G) ≤ 1
6
(n3 − n) with

equality if and only if G is a path. For a circulant graph G, Ref. [25] showed that

n − 1 ≤ Kf(G) ≤ n3 − n

12
.

The first equality holds if and only if G is Kn and the second does if and only if G is Cn.

In this paper, we concentrate on unicyclic graphs. A graph G is called a unicyclic graph

if it contains exactly one cycle. We may use the following notation to represent a unicyclic

graph:

G = U(Cl; T1, T2, · · · , Tl),

where Cl is the unique cycle in G with V (Cl) = {v1, v2, · · · , vl} such that vi is adjacent to

vi+1 (subscript module l) for 1 ≤ i ≤ l. For each i, let Ti be the component of G−(V (Cl)−vi)

containing vi. Obviously Ti is a tree. We say Ti trivial if it is an isolated vertex. For example,

see Fig. 1.

For convenience, we employ the following notation. Let G(n, l) be the set of all unicyclic

graphs on n vertices containing cycle Cl. Let Sl
n denote the graph obtained from cycle Cl

by adding n − l pendant edges to a vertex of Cl. Let P l
n denote the graph obtained by

identifying one endvertex of Pn−l+1 with any vertex of Cl. Sl
n and P l

n are depicted in Fig.

2. It is obvious that Sn
n = P n

n = Cn.

Let Wvi
(G) denote the sum of all distances between vertex vi and the other vertices of

G, that is

Wvi
(G) =

∑
j �=i

d(vi, vj).

Similarly, we define Kfvi
(G) as follows:

Kfvi
(G) =

∑
j �=i

r(vi, vj).

In this paper, first of all, simple explicit formula for Kirchhoff index of unicyclic graphs is

derived in terms of their structure. In the following, we prove that among G(n, l), Sl
n and P l

n
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have minimal and maximal Kirchhoff index, respectively. It enables us to search for n-vertex

unicyclic graphs with minimal and maximal Kirchhoff index only among S3
n, S

4
n, · · · , Sn

n

and P 3
n , P 4

n , · · · , P n
n , respectively. In addition, bounds for Kirchhoff index of G(n, l) are

obtained accordingly. In order to characterize unicyclic graphs with extremal Kirchhoff

index, min
3≤l≤n

{Kf(Sl
n)} (Lemma 4.1) and max

3≤l≤n
{Kf(P l

n)} (Lemma 4.2) are determined by

analytical method. According to the above two Lemmas, we obtain that among n-vertex

unicyclic graphs, (i) if n < 8, Cn has minimal Kirchhoff index; if 8 ≤ n < 12, S4
n has minimal

Kirchhoff index; if n = 12, both S3
n and S4

n have minimal Kirchhoff index; otherwise, S3
n has

minimal Kirchhoff index; (ii) P 3
n has maximal Kirchhoff index. Sharp bounds for Kirchhoff

index of unicyclic graphs are derived as well.
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2 Kirchhoff index of unicyclic graphs

Lemma 2.1. [2] Let x be a cutvertex of a graph, and let a and b be vertices occurring in

different components which arise upon deletion of x. Then

r(a, b) = r(a, x) + r(x, b).

Theorem 2.2. Let G = U(Cl; T1, T2, · · · , Tl). Then

Kf(G) =
l∑

i=1

W (Ti) +
∑
i<j

(
|V (Tj)|Wvi

(Ti) + |V (Ti)||V (Tj)|
(j − i)(l − j + i)

l

+ |V (Ti)|Wvj
(Tj)

)
. (1)

Proof. The Kirchhoff index of G is the sum of two types of resistance distances, namely

between pairs of vertices from Ti (1 ≤ i ≤ l), and between a vertex a from Ti and another

vertex b from Tj (1 ≤ i < j ≤ l). By Lemma 2.1,

r(a, b) = r(a, vi) + r(vi, vj) + r(vj, b) = d(a, vi) + r(vi, vj) + d(vj, b).

Noticing that r(vi, vj) = (j−i)(l−j+i)
l

[27], we have

r(a, b) = d(a, vi) +
(j − i)(l − j + i)

l
+ d(vj, b).

Hence

Kf(G) =
l∑

i=1

W (Ti) +
∑
i<j

∑
a∈V (Ti)

∑
b∈V (Tj)

(
d(a, vi) +

(j − i)(l − j + i)

l
+ d(vj, b)

)

=
l∑

i=1

W (Ti) +
∑
i<j

∑
a∈V (Ti)

(
|V (Tj)|d(a, vi) + |V (Tj)|

(j − i)(l − j + i)

l
+ Wvj

(Tj)
)

=
l∑

i=1

W (Ti) +
∑
i<j

(
|V (Tj)|Wvi

(Ti) + |V (Ti)||V (Tj)|
(j − i)(l − j + i)

l

+ |V (Ti)|Wvj
(Tj)

)
.
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Remark. Eq. (1) can also be written as:

Kf(G) =
l3 − l

12
+

l∑
i=1

W (Ti)

+
∑
i<j

(
|V (Tj)|Wvi

(Ti) + (|V (Ti)||V (Tj)| − 1)
(j − i)(l − j + i)

l
+ |V (Ti)|Wvj

(Tj)
)
.

(2)

We first compute the resistance distances between vertices of Cl and bearing in mind that

Kf(Cl) = l3−l
12

[18], then Eq. (2) is derived from Eq. (1).

3 Bounds for Kirchhoff index of G(n, l)

Lemma 3.1. [28] Let T be a n-vertex tree different from Pn and Sn. Then

W (Sn) < W (T ) < W (Pn).

It is also obtained in [28] that

W (Sn) = (n − 1)2, (3)

W (Pn) =

(
n + 1

3

)
=

n3 − n

6
. (4)

The following two Lemmas show that among G(n, l), Sl
n and P l

n has minimal and max-

imal Kirchhoff index, respectively.

Lemma 3.2. Let G ∈ G(n, l) and G �= Sl
n. Then Kf(G) > Kf(Sl

n).

Proof. Suppose that G0 = U(Cl; T1, T2, · · · , Tl) has minimal Kirchhoff index among G(n, l).

Claim 1. For each i, Ti is a star with vi as its central vertex.

For each i, W (Ti) is minimal if and only if Ti is a star by Lemma 3.1 and it is obvious

that Wvi
(Ti) is minimal if and only if Ti is a star with vi as its central vertex. Hence Claim

1 holds by Eq. (1).

Claim 2. If l < n, all but one of the Ti are trivial.
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Suppose to the contrary that there are two trees Ti and Tj such that they both have

more than one vertices. By Claim 1, Ti and Tj are both stars. We choose a ∈ V (Ti)

and b ∈ V (Tj) such that a �= vi and b �= vj. Without loss of generality, assume that

Kfa(G0) ≤ Kfb(G0). Let G
′
0 = G0 − vjb + vib. We will show that Kf(G

′
0) < Kf(G0).

For any two vertices x, y different from b, rG0(x, y) = rG
′
0
(x, y), hence

Kf(G0) − Kfb(G0) = Kf(G
′
0) − Kfb(G

′
0).

On the other hand,

Kfb(G
′
0) = Kfa(G

′
0) = Kfa(G0) − rG0(a, b) + 2 < Kfa(G0) ≤ Kfb(G0).

Hence

Kf(G
′
0) = Kf(G0) − Kfb(G0) + Kfb(G

′
0) < Kf(G0).

This contradicts the choice of G0, which implies Claim 2.

Claims 1 and 2 yield Lemma 3.2.

Lemma 3.3. Let G ∈ G(n, l) and G �= P l
n. Then Kf(G) < Kf(P l

n).

Proof. Suppose that G0 = U(Cl; T1, T2, · · · , Tl) has maximal Kirchhoff index among G(n, l).

Claim 1. For each i, Ti is a path with vi as one of its end vertices.

For each i, W (Ti) is maximal if and only if Ti is a path by Lemma 3.1 and it is easy to

observe that Wvi
(Ti) is maximal if and only if Ti is a path with vi as one of its end-vertices.

Hence Claim 1 holds by Eq. (1).

Claim 2. If l < n, all but one of the Ti are trivial.

Suppose to the contrary that there exists at least two trees such that they all have more

than one vertices. Let Ti and Tj be two such trees. By Claim 1, Ti and Tj are both paths.

Let a �= vi and b �= vj be endvertices of Ti and Tj, respectively. Without losing generality,

assume that Kfa(G0) ≥ Kfb(G0). Let c be the neighbor of b and G
′
0 = G0 − cb + ab. Now

we show that Kf(G
′
0) > Kf(G0).
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For any two vertices x, y different from b, rG0(x, y) = rG
′
0
(x, y), hence

Kf(G0) − Kfb(G0) = Kf(G
′
0) − Kfb(G

′
0).

On the other hand,

Kfb(G
′
0) = Kfa(G

′
0) + n − 2 = Kfa(G0) + 1 − rG0(a, b) + n − 2.

Since rG0(a, b) < dG0(a, b) < n − 1, it follows that Kfb(G
′
0) > Kfa(G0) ≥ Kfb(G0). Hence

Kf(G
′
0) = Kf(G0) − Kfb(G0) + Kfb(G

′
0) > Kf(G0).

This contradicts the choice of G0, which implies Claim 2.

Claims 1 and 2 yield Lemma 3.3.

By Eqs. (2), (3) and (4), Kirchhoff index of Sl
n and P l

n are computed as follows:

Kf(Sl
n) =

l3 − l

12
+ (n − l)2 +

(n − l)(l2 − 1)

6
+ (n − l)(l − 1)

= − l3

12
+

nl2

6
+ (

13

12
− n)l + n2 − 7n

6
, (5)

Kf(P l
n) =

l3 − l

12
+

(n − l + 1)3 − (n − l + 1)

6
+

(n − l)(l2 − 1)

6
+

(n − l)(n − l + 1)(l − 1)

2

=
l3

4
− (3 + 2n)l2

6
+

(3 + 6n)l

12
+

n3 − 2n

6
. (6)

Together with Lemmas 1 and 2, the following Theorem is immediate.

Theorem 3.4. For G ∈ G(n, l), we have

− l3

12
+

nl2

6
+ (

13

12
− n)l + n2 − 7n

6
≤ Kf(G) ≤ l3

4
− (3 + 2n)l2

6
+

(3 + 6n)l

12
+

n3 − 2n

6
.

The first equality holds if and only if G = Sl
n and the second does if and only if G = P l

n.
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4 Unicyclic graphs with extremal Kirchhoff index

In this section, we characterize unicyclic graphs with extremal Kirchhoff index and deter-

mine bounds for Kirchhoff index of unicyclic graphs.

By Lemmas 3.2 and 3.3, n-vertex unicyclic graphs with minimal and maximal Kirchhoff

index belong to sets {S3
n, S

4
n, · · · , Sn

n} and {P 3
n , P 4

n , · · · , P n
n }, respectively. In what follows,

we apply ourselves to finding min
3≤l≤n

{Kf(Sl
n)} and max

3≤l≤n
{Kf(P l

n)} by analytical method.

Lemma 4.1.

min
3≤l≤n

{Kf(Sl
n)} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Kf(Cn) if n < 8,

Kf(S4
n) if 8 ≤ n < 12,

Kf(S3
n) = Kf(S4

n) if n = 12,

Kf(S3
n) otherwise.

Proof. Let

f(l) := Kf(Sl
n) = − l3

12
+

nl2

6
+ (

13

12
− n)l + n2 − 7n

6

and I := {3, 4, · · · , n}.

Our aim is to find the minimum value of f(l) on I. To this end, we first find the first

derivative of f(l):

f
′
(l) = − l2

4
+

nl

3
− n +

13

12
.

Solving f
′
(l) = 0 for l we obtain l1,2 =

2n∓
√

(2n−9)2−42

3
. By setting Δ := (2n− 9)2 − 42 = 0,

we have n1,2 = 9∓√
42

2
. It is easy to verify that 1 < n1 < 2 and 7 < n2 < 8. For convenience,

we distinguish the following two cases:

Case 1. 3 ≤ n ≤ 7. In this case, Δ < 0. Hence f
′
(l) < 0 and f(l) is decreasing on

[3, n]. So f(n) is the minimum value of f(l) on I.

Case 2. n ≥ 8. In this case, Δ > 0.

Subcase 2.1 n = 8, 9, 10. It is easy to verify that f(4) is the minimum value of f(l) on

I.
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Subcase 2.2 n ≥ 11. In this case, it is easy to obtain that l2 > n. On the other hand,

since (2n− 12)2 < (2n− 9)2 − 42 < (2n− 9)2, it follows that 3 < l1 < 4. Hence f
′
(l) < 0 on

[3, l1) and f
′
(l) > 0 on (l1, n], which implies that f(l) is decreasing on [3, l1) and increasing

on (l1, n]. So min{f(3), f(4)} is the minimum value of f(l) on I. Since

f(3) − f(4) = 2 − n

6
,

min{f(3), f(4)} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f(4) if n < 12,

f(3) = f(4) if n = 12,

f(3) otherwise.

Hence Lemma 4.1 follows.

Lemma 4.2. max
3≤l≤n

{Kf(P l
n)} = Kf(P 3

n).

Proof. Let

g(l) := Kf(P l
n) =

l3

4
− (3 + 2n)l2

6
+

(3 + 6n)l

12
+

n3 − 2n

6
.

In what follows, we will find the maximum value of g(l) on I.

The first derivative of g(l) is

g
′
(l) =

1

12
(9l2 − (12 + 8n)l + 3 + 6n).

The roots of g
′
(l) = 0 are l1,2 = 6+4n∓√

16n2−6n+9
9

. For n ≥ 3, , l1 <
6+4n−

√
(4n−21)2

9
= 3 since

16n2 − 6n + 9 > (4n − 21)2 and it is easy to verify that l2 > 3. In the following, we will

show that g(3) is the maximum value of g(x) on I no matter l2 is more than or less than n.

(i) If l2 ≥ n, then g
′
(l) < 0 and g(l) is decreasing on [3, n]. So g(3) is the maximum

value of g(l) on I.

(ii) If 3 < l2 < n, then g
′
(l) < 0 on [3, l2) and g

′
(l) > 0 on (l2, n], which indicates that

g(l) is decreasing on [3, l2) and increasing on (l2, n]. So max{g(3), g(n)} is the maximum

value of g(l) on I. It is easy to obtain that

g(3) − g(n) =
1

12
(n3 − 21n + 36).
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Let F (x) := 1
12

(x3 − 21x + 36). Then F
′
(x) = 3x2 − 21. It is easy to verify that F

′
(x) > 0

for x ≥ 3. Hence F (x) is increasing on [3, n]. Since F (3) = 0, it follows that F (n) > 0 for

n > 3. So, as in (i), g(3) is also the maximum value of g(l) on I.

Now we arrive at our main result:

Theorem 4.3. Among n-vertex unicyclic graphs,

(i)if n < 8, Cn has minimal Kirchhoff index; if 8 ≤ n < 12, S4
n has minimal Kirchhoff

index; if n = 12, both S3
n and S4

n have minimal Kirchhoff index; otherwise, S3
n has minimal

Kirchhoff index.

(ii)P 3
n has maximal Kirchhoff index.

By Eqs. (5) and (6), it is easy to obtain the following formulae:

(i) Kf(Cn) = n3−n
12

;

(ii) Kf(S3
n) = n2 − 8

3
n + 1;

(iii) Kf(S4
n) = n2 − 5

2
n − 1;

(iv) Kf(P 3
n) = n3−11n+18

6
.

Combining these formulae with Theorem 4.3, sharp bounds for Kirchhoff index of uni-

cyclic graphs are determined:

Theorem 4.4. For n-vertex unicyclic graph G,

(i) if n < 8, n3−n
12

≤ Kf(G) ≤ n3−11n+18
6

,

(ii) if 8 ≤ n ≤ 12, n2 − 5
2
n − 1 ≤ Kf(G) ≤ n3−11n+18

6
,

(iii) if n > 12, n2 − 8
3
n + 1 ≤ Kf(G) ≤ n3−11n+18

6
.
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