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Abstract

The concept of markaracter tables of finite groups was introduced first by a 
Japanese chemist Shinsaku Fujita. He applied this notion in the context of 
stereochemistry and enumeration of molecules. In this paper, a simple 
computational method is described, by means of which it is possible to calculate 
the markaracter tables of finite groups. Using this method, the markaracter table 
of a dihedral group of order 2n and some abelian groups are computed. A GAP 
program is also included which is efficient for computing markaracter table of 
groups of order  10000. Using this program, the markaracter table of Ih point 
group symmetry is computed. This group appears as the point group symmetry 
of a Buckminster fullerene.  

1.  Introduction 

The concept of the table of marks of a finite group was introduced by one of the 

pioneers of finite groups, William Burnside, in the second edition of his classical 

book [4]. This table describes a characterization of the permutation representations 

of a group G by certain numbers of fixed points and in some detail the partially 

ordered set of all conjugacy classes of subgroups of G. Hence it provides a very 

compact description of the subgroup lattice of G, see [21] for details.  
 Let the finite group G act on a finite set X = {x1, x2, …, xk}. The 

permutation representation PR (PG) is a set of permutations (Pg) on X, each of 

which is associated with an element g  G so that PG and G are homomorphic, pgpg'

= pgg' for any g,g'  G. Let H be a subgroup of G. It is well-known fact that the set 

of cosets of H in G provides a partition of G as ,HgHgHgG m21 where

g1 = I, the identity element of G, and gi G. The set of {g1, g2, …, gm } is called a 

transversal. Consider the set of cosets {Hg1,Hg2, …, Hgm}. Following Shinsaku 

Fujita [6], for any g  G, the set of permutations,  
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G(/H)g = 
gHg...gHggHg

Hg...HgHg

m21

m21 ,

constructs a permutation representation of G, which is called a coset representation 

(CR) of G by H and notified as G(/H). The degree of G(/H) is m = |G|/|H|, where |G| 

is the number of elements in G. Obviously, the coset representation G(/H) is 

transitive, i.e. has one orbit.  

The Burnside’s theorem states that any permutation representation PG of a 

finite group G acting on X can be reduced into transitive CRs in accord with 

equation PG = s

1i ii ),G(/G wherein the multiplicity i is a non- negative integer 

obtained by solving equations j = s

1i iji ,M  (1  j  s). Here j is the number of 

fixed points of Gj in PG named mark of Gj, and the symbol Mij denotes the mark of 

Gj in G(/Gi). Following Burnside [4], the matrix M(G) = [Mij] is called the table of 

marks or mark table of G. The matrix MC(G) obtained from M(G) in which we 

select rows and columns corresponding to cyclic subgroups of G is called the 

markaracter table of G. Shinsaku Fujita in some of his leading papers [6-16] 

introduced the term “markaracter” to discuss marks for permutation representations 

and characters for linear representations in a common basis.  

For any two arbitrary matrices A and B, we have the direct product or 

Kronecker product A  B defined as 

Note that if A is m-by-n and B is p-by-r then A  B is an mp-by-nr matrix. 

This multiplication is not usually commutative. 

Throughout this paper our notation is standard and taken mainly from [17-

19]. We encourage the reader to consult also papers by Balasubramanian [2,3], 

Kerber [20] and Pfeiffer [21], and references therein for background material as 

well as basic computational techniques. 
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2. Main Results and Discussion 

If K is any subset in a group G, we designate by <K> the subgroup consisting of all 
finite products x1x2…xn, where each xi is an element of K or the inverse of an 
element of K. We say that <K> is generated by K. It is easy to see that <K> is 
contained in any subgroup of G which contains K. The dihedral group Dn is the 
symmetry group of an n-sided regular polygon for n > 1. These groups are one of 
the most important classes of finite groups currently applicable in chemistry. For 
example D3, D4, D5 and D6 point groups are dihedral groups. One group 
presentation for Dn is <x,y | xn = y2 = e, yxy = x-1>. This means that Dn is generated 
by a two elements set {x,y} with the condition xn = y2 = 1 and yxy = x-1. The aim of 
this section is to calculate generally the markaracter tables of dihedral groups. We 
also prepare a GAP program for computing markaracters of finite groups. We apply 
our program to the Ih point group symmetry, which is the symmetry of a buckyball. 
This presents a new method for solving such problems.  

Theorem 1. Let G and H be groups acting on sets X and Y, respectively. Then 

|FixX Y(U  V)| = |FixX(U)|  |FixY(V)|, where U  G, V  H and FixX(U) = {x  X 

| xg = x; g  U}.

Proof. We have: 

|FixX Y(U  V)| = |{(x,y) | (x,y)(g,h) = (x,y);  (g,h)  U  V}| 

  = |{(x,y) | (xg,yh) = (x,y);  (g,h)  U  V}| 

  = |{(x,y) | xg = x & yh = y; g  U & h V}|

  = |{(x,y) | x  FixX(U) & y  FixY(V)}|

  = |FixX(U)|  |FixY(V)|.                                             

Corollary. Let G and H be groups of co-prime orders acting on sets X and Y, 

respectively. If M(G) = [aij] and M(H) = [bij] then  M(G  H) = [crs], where 

srsr jjiirs bac  and ,HG
rr ji G(/

ss ji HG ) are the rth column and sth row of M(G 

H), respectively.  

Proof. The proof is straightforward.                                                                          

It is an easy task to show that in the last Corollary, M(G  H) is the 

Kronecker product M(G)  M(H). In [6] Fujita obtained the form of the mark table 
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of a cyclic group. We now apply Theorem 1 to find another method for computing 
this table. To simplify our argument, in the following example we only compute the 
mark table of a cyclic group of order pnqm.

Example 1. Let G be a cyclic group of order pnqm. It is a well-known fact that G is 

isomorphic to H  K in which H and K are subgroups of G of order pn and qm,
respectively. Suppose H1, H2, …, Hn+1 and K1, K2, …, Km+1 are all subgroups of H 
and K, respectively. One can see that M(H) = [aij] and M(K) = [bij], where  

otherwise0
ijp

a
1jn

ij and .
otherwise0

ijq
b

1jm

ij

Then M(H  K) = [crs], in which 

.
otherwise0

ij,ijqp
c ssrr

1jm1jn

rs

sr

In the following theorem, we calculate the markaracter tables of dihedral 

groups. 

Theorem 2. Suppose G = Dn is the dihedral group of order 2n. Then 1 = G1, <b> = 

G2, <ab> = G3, < n / 2a > = G4, 5v
5a   G , 6v

6a   G , …, and 

t 1v
t 2a   a   G  are all cyclic non-conjugate subgroups of Dn such that 

vi divides n (i = 5, 6, ..., t+1), where t is the number of divisors of n. Moreover the 

markaracter table of G is as follows  

The Markaracter Table of Dn, When n is Even. 

Cyclic

Subgroups
G1 G2 G3 G4 Gi = < iva >(5  i  t+2) 

G/<> 2n 0 0 0 0 

G/G2 n 2 0 0 0 

G/G3 n 0 2 0 0 

G/G4 n 0 0 n 0 

G/Gj(5 j t+2) 2j 0 0 
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The Markaracter Table of Dn, When n is Odd. 

Cyclic 

Subgroups 
G1 G2 Gi = <xi>(3  j  t+2) 

G/<> 2n 0 0 

G/G2 n 1 0 

G/Gj(3 j t+2) 2j 0 

where, 
j

n2j v |
2

0 Otherwise
 and j i2 j v | v

.
0 Otherwise

Proof. Suppose MC(G) = [aij]. We first assume n is even. Then the conjugacy 

classes of Dn are {1}, {an/2}, {ar,a-r} (1  r  n/2), {asb | 0  s  n-1 & s is even} and 

{asb | 0  s  n-1 & s is odd}. Hence up to conjugacy there are three subgroups of 

order 2, G2 = <b>, G3 = <ab>, G4 = < n / 2a > and there are t = d(n) cyclic subgroups 

whose orders divide n, say G5, …, Gt+2 = <a>. By a result of Pfeiffer [21], aij = 

|{Gig | Gj  g-1Gig}| and so G i
ii

i

| N (G ) |
a

| G |
. Clearly, NG(<b>) = {1, b, n / 2a ,

n / 2a b }, NG(< n / 2a >) = G and NG(<ab>) = {1, ab, n / 2a , 1 n / 2a b }. So a22 = a33 = 2 

and a44 = n. Suppose j | n. By an elementary fact in finite groups o(aj) = n/j. Since 

every subgroup of <a> is normal in G, aij = 2n/(n/j) = 2j. If vj | vi then Gj  Gi and 

so aij = 2j, as desired. We now assume that n is odd. Then the conjugacy classes of 

Dn are {1}, {ar,a-r} (1  r  (n-1)/2), {asb | 0  s  n-1} and up to conjugacy there is 

one only subgroup of order 2 and d(n) cyclic subgroups whose orders divide n. Now 

a similar argument as above, complete the proof.                                                      

 In the end of this paper, we compute the markaracter table of the Ih point 

group. This is the symmetry group of the Buckminster fullerene, Figure 1. To do 

this, we notice that this group is isomorphic to the direct product of a cyclic group 

of order 2 and an alternating group on five symbols. In permutation group language 

[23], Ih = <a,b>, where permutations a and b are defined as follows: 

a = (1,10,11)(2,14,19)(4,15,17)(5,50,28)(6,21,27)(8,51,26)(13,20,35)(16,18,33)(22,34,55)(23,36,54) 
(29,38,49)(30,59,45)(31,58,48)(32,39,52)(7,24,25) (37,53,46)(40,56,47)(41,43,60)(42,57,44)(3,12,9), 

b = (1,25,9,33,17)(2,26,10,34,18)(3,27,11,35,19)(4,28,12,36,20)(5,29,13,37,21)(6,30,14,38,22) 
(7,31,15,39,23)(8,32,16,40,24)(41,49,57,45,53)(42,50,58,46,54)(43,51,59,47,55)(44,52,60,48,56). 
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In the end of this paper, a GAP program is prepared by which it is possible 

to compute markaracter tables of finite groups. We encourage the reader to consult 

[1,22] for computational techniques, as well as basic functions of GAP. We apply 

our GAP function as follows: 

gap> f(DirectProduct(CyclicGroup(2),AlternatingGroup(5)))=Z2 A5=Ih

Figure 1. The Buckminster Fullerene C60.

and output will be the markaracter table of Ih point group symmetry, i.e. 

h

120 0 0 0 0 0 0 0
60 60 0 0 0 0 0 0
60 0 4 0 0 0 0 0
60 0 0 4 0 0 0 0

MC(I )
40 0 0 0 4 0 0 0
24 0 0 0 0 4 0 0
20 20 0 0 2 0 2 0
12 12 0 0 0 2 0 2

.
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A GAP Program For Computing Markaracter Table  
of Finite Groups 

f:=function(G) 

local u,r,s,k,kk,a,l,ll,lll,dd,ddd,dddd,z,h,v,vv,ss,i,j;; 

s:=[];

k:=[];

kk:=[];l:=[];ll:=[];lll:=[];dd:=[];ddd:=[];dddd:=[]; 

a:=List(ConjugacyClassesSubgroups(G),x->Elements(x)); 

z:=Length(a); 

for i in [1..z] do 

if IsCyclic((a[i][1])) then  

Add(s,i); 

fi; 
od; 

h:=TableOfMarks(G); 

v:=MatTom(h); 

vv:=TransposedMat(v); 

ss:=Difference([1..z],s); 

for i in s do 

Add(k,v[i]); 
od;

for j in [1..Length(k)] do 

for i in [1..z] do  

if i in s then  

Add(ll,k[j][i]); 

fi; 
od; 

Add(lll,ll); 

ll:=[]; 

od;

Print("MarkaracterTable is: ","\n"); 

PrintArray(lll); 

return;

end;
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