MATCH

Communications in Mathematical and in Computer Chemistry

A Note on Markaracter Tables of Finite Groups

A. R. Ashrafi and M. Ghorbani

Department of Mathematics, University of Kashan, Kashan 87317-51167, I. R. Iran

(Received August 15, 2007)

Abstract

The concept of markaracter tables of finite groups was introduced first by a Japanese chemist Shinsaku Fujita. He applied this notion in the context of stereochemistry and enumeration of molecules. In this paper, a simple computational method is described, by means of which it is possible to calculate the markaracter tables of finite groups. Using this method, the markaracter table of a dihedral group of order 2n and some abelian groups are computed. A GAP program is also included which is efficient for computing markaracter table of I_h point group symmetry is computed. This group appears as the point group symmetry of a Buckminster fullerene.

1. Introduction

The concept of the table of marks of a finite group was introduced by one of the pioneers of finite groups, William Burnside, in the second edition of his classical book [4]. This table describes a characterization of the permutation representations of a group G by certain numbers of fixed points and in some detail the partially ordered set of all conjugacy classes of subgroups of G. Hence it provides a very compact description of the subgroup lattice of G, see [21] for details.

Let the finite group G act on a finite set $X = \{x_1, x_2, ..., x_k\}$. The permutation representation PR (P_G) is a set of permutations (P_g) on X, each of which is associated with an element $g \in G$ so that P_G and G are homomorphic, $p_g p_{g'}$ = $p_{gg'}$ for any $g,g' \in G$. Let H be a subgroup of G. It is well-known fact that the set of cosets of H in G provides a partition of G as $G = Hg_1 + Hg_2 + ... + Hg_m$, where $g_1 = I$, the identity element of G, and $g_i \in G$. The set of $\{g_1, g_2, ..., g_m\}$ is called a transversal. Consider the set of cosets $\{Hg_1, Hg_2, ..., Hg_m\}$. Following Shinsaku Fujita [6], for any $g \in G$, the set of permutations,

$$G(/H)_{g} = \begin{pmatrix} Hg_{1} & Hg_{2} & \dots & Hg_{m} \\ Hg_{1}g & Hg_{2}g & \dots & Hg_{m}g \end{pmatrix},$$

constructs a permutation representation of G, which is called a coset representation (CR) of G by H and notified as G(/H). The degree of G(/H) is m = |G|/|H|, where |G| is the number of elements in G. Obviously, the coset representation G(/H) is transitive, i.e. has one orbit.

The Burnside's theorem states that any permutation representation P_G of a finite group G acting on X can be reduced into transitive CRs in accord with equation $P_G = \sum_{i=1}^{s} \alpha_i G(/G_i)$, wherein the multiplicity α_i is a non-negative integer obtained by solving equations $\mu_j = \sum_{i=1}^{s} \alpha_i M_{ij}$, $(1 \le j \le s)$. Here μ_j is the number of fixed points of G_j in P_G named mark of G_j, and the symbol M_{ij} denotes the mark of G_j in G(/G_i). Following Burnside [4], the matrix M(G) = [M_{ij}] is called the table of marks or mark table of G. The matrix MC(G) obtained from M(G) in which we select rows and columns corresponding to cyclic subgroups of G is called the markaracter table of G. Shinsaku Fujita in some of his leading papers [6-16] introduced the term "markaracter" to discuss marks for permutation representations and characters for linear representations in a common basis.

For any two arbitrary matrices A and B, we have the direct product or Kronecker product A \otimes B defined as

$$\begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{bmatrix}$$

Note that if A is m-by-n and B is p-by-r then $A \otimes B$ is an mp-by-nr matrix. This multiplication is not usually commutative.

Throughout this paper our notation is standard and taken mainly from [17-19]. We encourage the reader to consult also papers by Balasubramanian [2,3], Kerber [20] and Pfeiffer [21], and references therein for background material as well as basic computational techniques.

2. Main Results and Discussion

If K is any subset in a group G, we designate by $\langle K \rangle$ the subgroup consisting of all finite products $x_1x_2...x_n$, where each x_i is an element of K or the inverse of an element of K. We say that $\langle K \rangle$ is generated by K. It is easy to see that $\langle K \rangle$ is contained in any subgroup of G which contains K. The dihedral group D_n is the symmetry group of an n-sided regular polygon for n > 1. These groups are one of the most important classes of finite groups currently applicable in chemistry. For example D_3 , D_4 , D_5 and D_6 point groups are dihedral groups. One group presentation for D_n is $\langle x, y | x^n = y^2 = e$, $yxy = x^{-1} \rangle$. This means that D_n is generated by a two elements set $\{x, y\}$ with the condition $x^n = y^2 = 1$ and $yxy = x^{-1}$. The aim of this section is to calculate generally the markaracter tables of dihedral groups. We also prepare a GAP program for computing markaracters of finite groups. We apply our program to the I_h point group symmetry, which is the symmetry of a buckyball. This presents a new method for solving such problems.

Theorem 1. Let G and H be groups acting on sets X and Y, respectively. Then $|Fix_{X\times Y}(U \times V)| = |Fix_X(U)| \times |Fix_Y(V)|$, where $U \le G$, $V \le H$ and $Fix_X(U) = \{x \in X | xg = x; \forall g \in U\}$.

Proof. We have:

$$\begin{split} |Fix_{X \times Y}(U \times V)| &= |\{(x,y) \mid (x,y)(g,h) = (x,y); \ \forall \ (g,h) \in U \times V\}| \\ &= |\{(x,y) \mid (xg,yh) = (x,y); \ \forall \ (g,h) \in U \times V\}| \\ &= |\{(x,y) \mid xg = x \ \& \ yh = y; \ \forall g \in U \ \& \ \forall h \in V\}| \\ &= |\{(x,y) \mid x \in Fix_X(U) \ \& \ y \in Fix_Y(V)\}| \\ &= |Fix_X(U)| \times |Fix_Y(V)|. \end{split}$$

Corollary. Let G and H be groups of co-prime orders acting on sets X and Y, respectively. If $M(G) = [a_{ij}]$ and $M(H) = [b_{ij}]$ then $M(G \times H) = [c_{rs}]$, where $c_{rs} = a_{i,i_s} b_{j,j_s}$ and $G_{i_r} \times H_{j_r}$, $G(/G_{i_s} \times H_{j_s})$ are the rth column and sth row of $M(G \times H)$, respectively.

Proof. The proof is straightforward.

It is an easy task to show that in the last Corollary, $M(G \times H)$ is the Kronecker product $M(G) \otimes M(H)$. In [6] Fujita obtained the form of the mark table

of a cyclic group. We now apply Theorem 1 to find another method for computing this table. To simplify our argument, in the following example we only compute the mark table of a cyclic group of order p^nq^m .

Example 1. Let G be a cyclic group of order p^nq^m . It is a well-known fact that G is isomorphic to $H \times K$ in which H and K are subgroups of G of order p^n and q^m , respectively. Suppose $H_1, H_2, ..., H_{n+1}$ and $K_1, K_2, ..., K_{m+1}$ are all subgroups of H and K, respectively. One can see that $M(H) = [a_{ij}]$ and $M(K) = [b_{ij}]$, where

$$a_{ij} = \begin{cases} p^{n-j+1} & j \le i \\ 0 & \text{otherwise} \end{cases} \text{ and } b_{ij} = \begin{cases} q^{m-j+1} & j \le i \\ 0 & \text{otherwise} \end{cases}$$

Then $M(H \times K) = [c_{rs}]$, in which

$$\mathbf{c}_{\mathrm{rs}} = \begin{cases} p^{n-j_r+1}q^{m-j_s+1} & j_r \leq i_r, j_s \leq i_s \\ 0 & \text{otherwise} \end{cases}.$$

In the following theorem, we calculate the markaracter tables of dihedral groups.

Theorem 2. Suppose $G = D_n$ is the dihedral group of order 2n. Then $1 = G_1$, $\langle b \rangle = G_2$, $\langle ab \rangle = G_3$, $\langle a^{n/2} \rangle = G_4$, $\langle a^{v_5} \rangle = G_5$, $\langle a^{v_6} \rangle = G_6$, ..., and $\langle a^{v_{t+1}} \rangle = \langle a \rangle = G_{t+2}$ are all cyclic non-conjugate subgroups of D_n such that v_i divides n (i = 5, 6, ..., t+1), where t is the number of divisors of n. Moreover the markaracter table of G is as follows

The Markaracter Table of D _n , When n is Even.									
Cyclic Subgroups	G1	G ₂	G ₃	G4	$G_i = \langle a^{v_i} \rangle (5 \leq i \leq t+2)$				
G/<>	2n	0	0	0	0				
G/G ₂	n	2	0	0	0				
G/G ₃	n	0	2	0	0				
G/G ₄	n	0	0	n	0				
G/G _j (5≤j≤t+2)	2j	0	0	α	γ				

The Markaracter Table of D _n , When n is Odd.							
Cyclic Subgroups	G1	G ₂	$G_i = \langle x^i \rangle (3 \le j \le t+2)$				
G/<>	2n	0	0				
G/G ₂	n	1	0				
$G/G_j(3 \le j \le t+2)$	2j	0	α				

where, $\alpha = \begin{cases} 2j & v_j \mid \frac{n}{2} \\ 0 & \text{Otherwise} \end{cases}$ and $\gamma = \begin{cases} 2j & v_j \mid v_i \\ 0 & \text{Otherwise} \end{cases}$.

Proof. Suppose MC(G) = $[a_{ij}]$. We first assume n is even. Then the conjugacy classes of D_n are {1}, {a^{n/2}}, {a^r,a^{-r}} (1 ≤ r ≤ n/2), {a^sb | 0 ≤ s ≤ n-1 & s is even} and {a^sb | 0 ≤ s ≤ n-1 & s is odd}. Hence up to conjugacy there are three subgroups of order 2, G₂ = , G₃ = <ab>, G₄ = <a^{n/2}> and there are t = d(n) cyclic subgroups whose orders divide n, say G₅, ..., G_{t+2} = <a>. By a result of Pfeiffer [21], $a_{ij} = |G_{ig}| | G_j ⊆ g^{-1}G_{ig}||$ and so $a_{ii} = \frac{|N_G(G_i)|}{|G_i|}$. Clearly, $N_G() = \{1, b, a^{n/2}, a^{n/2}b\}$, $N_G(<a^{n/2}>) = G$ and $N_G(<ab>) = \{1, ab, a^{n/2}, a^{1+n/2}b\}$. So $a_{22} = a_{33} = 2$ and $a_{44} = n$. Suppose j | n. By an elementary fact in finite groups o(a^j) = n/j. Since every subgroup of <a> is normal in G, $a_{ij} = 2n/(n/j) = 2j$. If $v_j | v_i$ then $G_j ⊆ G_i$ and so $a_{ij} = 2j$, as desired. We now assume that n is odd. Then the conjugacy there is one only subgroup of order 2 and d(n) cyclic subgroups whose orders divide n. Now a similar argument as above, complete the proof.

In the end of this paper, we compute the markaracter table of the I_h point group. This is the symmetry group of the Buckminster fullerene, Figure 1. To do this, we notice that this group is isomorphic to the direct product of a cyclic group of order 2 and an alternating group on five symbols. In permutation group language [23], $I_h = \langle a, b \rangle$, where permutations a and b are defined as follows:

 $a=(1,10,11)(2,14,19)(4,15,17)(5,50,28)(6,21,27)(8,51,26)(13,20,35)(16,18,33)(22,34,55)(23,36,54)\\(29,38,49)(30,59,45)(31,58,48)(32,39,52)(7,24,25)\ (37,53,46)(40,56,47)(41,43,60)(42,57,44)(3,12,9),$

 $b = (1,25,9,33,17)(2,26,10,34,18)(3,27,11,35,19)(4,28,12,36,20)(5,29,13,37,21)(6,30,14,38,22) \\ (7,31,15,39,23)(8,32,16,40,24)(41,49,57,45,53)(42,50,58,46,54)(43,51,59,47,55)(44,52,60,48,56).$

In the end of this paper, a GAP program is prepared by which it is possible to compute markaracter tables of finite groups. We encourage the reader to consult [1,22] for computational techniques, as well as basic functions of GAP. We apply our GAP function as follows:

 $gap > f(DirectProduct(CyclicGroup(2),AlternatingGroup(5))) = Z_2 \times A_5 = I_h$

Figure 1. The Buckminster Fullerene C₆₀.

and output will be the markaracter table of Ih point group symmetry, i.e.

$MC(I_h) =$	[120	0	0	0	0	0	0	0
	60	60	0	0	0	0	0	0
	60	0	4	0	0	0	0	0
	60	0	0	4	0	0	0	0
	40	0	0	0	4	0	0	0
	24	0	0	0	0	4	0	0
	20	20	0	0	2	0	2	0
	12	12	0	0	0	2	0	2

Acknowledgements. – The authors are greatly indebted to the referees whose valuable criticisms and suggestions gratefully leaded us to correct the paper. This research was in part supported by a grant from the Center of Excellence of Algebraic Methods and Applications of Isfahan University of Technology.

A GAP Program For Computing Markaracter Table of Finite Groups

f:=function(G)

```
local u,r,s,k,kk,a,l,ll,ll,lll,dd,ddd,dddd,z,h,v,vv,ss,i,j;;
s:=[];
k:=[];
kk:=[];l:=[];ll:=[];lll:=[];dd:=[];ddd:=[];
```

a:=List(ConjugacyClassesSubgroups(G),x->Elements(x));

z:=Length(a);

for i in [1..z] do

if IsCyclic((a[i][1])) then

```
Add(s,i);
```

fi;

od;

h:=TableOfMarks(G);

v:=MatTom(h);

vv:=TransposedMat(v);

ss:=Difference([1..z],s);

for i in s do

Add(k,v[i]);

od;

for j in [1..Length(k)] do

for i in [1..z] do

if i in s then

Add(ll,k[j][i]);

```
fi;
```

od;

Add(lll,ll);

ll:=[];

od;

Print("MarkaracterTable is: ","\n"); PrintArray(lll); return; end;

References

- A. R. Ashrafi, On non-rigid group theory for some molecules, *MATCH Commun. Math. Comput. Chem.* 53 (2005) 161-174.
- K. Balasubramanian, Recent applications of group theory to chemical physics in conceptual quantum chemistry - Models and applications, *Croat. Chem. Acta* 57 (1984) 1465-1492.
- K. Balasubramanian, Combinatorics and spectroscopy, in: *Chemical Group* Theory. Techniques and Applications, Gordon and Breach, Amsterdam 1995.
- W. Burnside, *Theory of Groups of Finite Order*, University Press, Cambridge, 1897.
- S. El-Basil, Prolegomenon on theory and applications of tables of marks, MATCH Commun. Math. Comput. Chem. 46 (2002) 7-23.
- S. Fujita, Markaracter tables and Q-conjugacy character tables for cyclic groups. an application to combinatorial enumeration, *Bull. Chem. Soc. Jpn.* 71 (1998) 1587-1596.
- S. Fujita, Maturity of finite groups. An application to combinatorial enumeration of isomers, *Bull. Chem. Soc. Jpn.* 71 (1998) 2071-2080.
- S. Fujita, Inherent automorphism and Q-conjugacy character tables of finite groups, an application to combinatorial enumeration of isomers, *Bull. Chem. Soc. Jpn.* 71 (1998) 2309-2321.
- S. Fujita, Direct subduction of Q-conjugacy representations to give characteristic monomials for combinatorial enumeration, *Theor. Chem. Acc.* 99 (1998) 404-410.
- S. Fujita, Subduction of Q-conjugacy representations and characteristic monomials for combinatorial enumeration, *Theor. Chem. Acc.* **99** (1998) 224-230.
- S. Fujita, A simple method for enumeration of non-rigid isomers. An application of characteristic monomials, *Bull. Chem. Soc. Jpn.* 72 (1999) 2403-2407.
- S. Fujita, Möbius function and characteristic monomials for combinatorial enumeration, *Theor. Chem. Acc.* **101** (1999) 409-420.

- S. Fujita, Characteristic monomials with chirality fittingness for combinatorial enumeration of isomers with chiral and achiral ligands, *J. Chem. Inf. Comput. Sci.* 4 (2000) 1101-1112.
- S. Fujita, S. El-Basil, Graphical models of marks of groups, MATCH Commun. Math. Comput. Chem. 46 (2002) 121-135.
- S. Fujita, S. El-Basil, Graphical models of characters of groups, J. Math. Chem. 33 (2003) 255-277.
- S. Fujita, Orbits among molecules. A novel way of stereochemistry through the concepts of coset representations and sphericities (Part 2), *MATCH Commun. Math. Comput. Chem.* 55 (2006) 5-38.
- S. Fujita, Symmetry and Combinatorial Enumeration in Chemistry, Springer-Verlag, Berlin, 1991.
- S. Fujita, Diagrammatical Approach to Molecular Symmetry and Enumeration of Stereoisomers, Univ. Kragujevac, Kragujevac, 2007.
- G. James and M. Liebeck, *Representations and Characters of Groups*, Cambridge University Press, 1993.
- A. Kerber, Enumeration under finite group action, basic tools, results and methods, MATCH Commun. Math. Comput. Chem. 46 (2002) 151-198.
- G. Pfeiffer, The subgroups of M₂₄, or how to compute the table of marks of a finite group, *Experimental Mathematics* 6 (1997) 247-270.
- M. Schonert et al., *GAP, Groups, Algorithms and Programming*, Lehrstuhl De für Mathematik, RWTH, Aachen, 1992.
- M. Yavari and A. R. Ashrafi, Computing orbits of big fullerenes, *Asian J. Chem.*, **20** (2008) 409-416.