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Abstract. A new methodology for understanding the construction of Extended Goldberg 

polyhedra has been developed on the basis of Goldberg polyhedra by using our methods of 

the ‘spherical rotating’ and the ‘spherical stretching’. The spherical rotating describes the 

deformation of rotating polygons on a sphere; the spherical stretching depicts the deformation 

of stretching spaces between polygons on a sphere. Our results show that these Extended 

Goldberg polyhedra are a kind of novel geometrical objects of icosahedral symmetry and are 

considered to explain some viral capsids. 

1. Introduction 

Goldberg polyhedra [1-3] are a kind of ‘multi-symmetric’ Fullerene polyhedra, having 12 

pentagonal faces and all other hexagonal faces. Since, the discovery of the famous fullerene 

C60
[4], a new field has been opened for research of different potentially possible fullerene 

structures from the geometry, graph theory or topology point of view. Fulleroids, the most 

important fullerene-like structures have been proposed and defined [5, 6], and their symmetry 
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has been discussed by Stanislav Jendrol'[7] and František Kardoš [8, 9]. It clears that polyhedra 

in the world of science are mysterious and there are more novel polyhedral solids waiting for 

us to explore. 

 Goldberg polyhedra are also good models of icosahedral viral capsids which abide by 

Caspar-Klug (CK) ‘‘quasi-equivalence’’ theory [10, 11], that is, their pentagonal and hexagonal 

faces simulate pentagonal and hexagonal capsomeres, respectively. However, some spherical 

viral capsids which are not covered by Goldberg polyhedra have been obtained. The surface 

of herpes virus capsid [12] contains not only 12 pentamers and 150 hexamers, but also 320 

triplexes at quasi 3-fold axis. Furthermore, the capsomeres of semliki forest virus [13] at 2-fold 

axis are not connected closely, they separate from each other, 120 quadrangular holes at 

2-fold axis and 80 triangular holes at quasi 3-fold axis have been formed. It means that 

Goldberg polyhedra failed to encode the locations of these triplexes and holes, so the new 

models of viral capsids [14, 15] should be developed.  

    A three-dimensional spherical space is the simplest compact 3-manifold [16], a 

polyhedron can be deformed into a topological rubber sphere, and it would preserve single 

connectivity through twisting, bending, stretching and pulling. According to this idea, we 

propose two topological approaches of ‘spherical rotating’ and ‘spherical stretching’. These 

methods applied to Goldberg polyhedra generate two infinite series of Extended Goldberg 

polyhedra of icosahedral symmetry. These Extended Goldberg polyhedra with  symmetry 

group having a-gonal and b-gonal faces added are defined as (a, b)–Goldberg polyhedra. 

Particularly, they are used to explain some viral capsids whose capsomeres are rotated and 

separated from each other. 

2. Rotate-Extended Goldberg polyhedra 

Topologically, Goldberg polyhedra are homeomorphic to spheres, for this reason, a 

Rotate-Extended Goldberg polyhedron can be obtained by the spherical rotating in the 

following processes:  

(i) Project points of a polyhedron P upon its circumscribed sphere S form the center of S.
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As a result, all projection of faces of P will pack on a sphere surface without overlapping. It 

appears that F faces, E edges and V vertices are transformed into F spherical polygons, E arcs 

and V vertices.  

(ii) Gradually increase the radius of the circumscribed ball, but keep the centers of 

spherical polygons and arc length unchanged, in this way, there are gaps gradually increased 

between original polygons. Let polygons rotate around the own centers in the same direction 

(clockwise or anticlockwise). Obviously, at a certain moment of expansion, every vertex 

would be connected to vertices of other polygons. Then we stop expansion and there are 

spherical triangles occurred among vertices, in this step the change of curvature of spherical 

polygons is allowed. 

(iii) Project points of the expanded spherical surface S' back to its inscribed polyhedron

P', it is said that the topological sphere has been assigned a geometric configuration of 

Rotate-Extended Goldberg polyhedron added with 3-gons. 

For instance, Figure 1 describes the topological deformation processes of spherical 

rotating, the obtained Rotate-Extended 12-hedron defined as Ih (3, 0)-32-hedron corresponds 

to the icosidodecahedron belonging to Archimedean solids [17].

Figure 1. Processes of the spherical rotating for the Rotate-Extended 12-hedron 

Here, we construct two classes of Rotate-Extended Goldberg polyhedra named as  (3, 0) 

-Goldberg polyhedra. The type  Rotate-Extended Goldberg polyhedra is based on 42-hedron, 

92-hedron, 162-hedron  , the total number of faces Fn can be calculated by the following 

formula: 

 F n =f5+f6+f3=12+10 (n2+2n) +20(n+1)2
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Where f5, f6, f3 denote the number of 5-gons, 6-gons, and 3-gons, n=1, 2, 3,

For n=1, as shown in Figure 2a, f5=12, f6=10(12+2 1) =30, f3=20 (1+1)2=80, F1=

f5+f6+f3=12+30+80=122, the point group is Ih.

For n=2 (Figure 2b), f5=12, f6=10(22+2 2) =80, f3=20 (2+1)2=180, F2= f5+f6+f3=12+

80+180=272, the point group is Ih.

For n=3 (Figure 2c), f5=12, f6=10(32+2 3) =150, f3=20 (3+1)2=320, F2= f5+f6+f3=12+

150+320=482, the point group is Ih. It can be simulated the structure of herpes virus, and the 

added triangles may be used to simulate triplexes that on the surfaces of capsids. 

Figure 2. The type  Rotate-Extended Goldberg polyhedra 
a. Ih (3, 0)-122-hedron; b. Ih (3, 0)-272-hedron; c. Ih (3, 0)-482-hedron 

Figure 3. The type  Rotate-Extended Goldberg polyhedra 
a. Ih (3, 0)-92-hedron; b. I (3, 0)-212-hedron; c. I (3, 0)-392-hedron 

The type  Rotate-Extended Goldberg polyhedra is based on 32-hedron, 72-hedron, 

132-hedron, , the total number of faces Fn can be calculated by the following formula: 

F n=f5+f6+f3=12+10 (n2+n) +20(n2+n+1)
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For n=1, 2, 3 (Figure 3), f5 is only 12, f6 is 20, 60, 120 and f3 is 60, 140, 260, respectively, 

the total number faces F1 =92, F2=212, F3=392. If n=1, the point group is Ih, when n=2 and 

n=3, the point group is I.

In particular, Rotate-Extended Goldberg polyhedra can be used to describe the surfaces 

of icosahedral capsids which capsomeres are rotated with each other. We use a pair of positive 

integer (h, k) to characterize these polyhedra: the number of vertices V=30(h2 + h k + k 2); the 

number of faces F=30(h2 + h k + k 2) + 2; 0<h  k 0, T= h2 + h k + k 2, T indicates the 

triangulation number [10].

3.  Stretch-Extended Goldberg polyhedra 

In contrast with a Rotate-Extended Goldberg polyhedron, beginning with a Goldberg 

polyhedron, a Stretch-Extended Goldberg polyhedron can be obtained by the spherical 

stretching in the following processes:  

(i) As the same as the spherical rotating, project the points of a polyhedron P upon its 

circumscribed sphere S centrally.  

(ii) Expand the spherical surface, but keep the positions of spherical polygons and arc 

length unchanged, allowing the change of bend degree of polygons to adapt the change of the 

curvature, so they can cover the sphere closely. Thus, the expanding of sphere stretches spaces 

between arcs and among vertices of original polygons. When the distances between arcs are 

stretched equal to the arc length, we stop expanding and there are spherical quadrangles 

occurred between arcs and spherical triangles formed among vertices. 

(iii) Finally, project the points of the expanded spherical surface S' back to its inscribed 

polyhedron P', it is said that the topological sphere has been assigned a geometric 

configuration of Stretch-Extended Goldberg polyhedron added with 3-gons and 4-gons. 

Take the dodecahedron, for example, Figure 4 depicts the topological deformation 

processes of spherical stretching, the obtained Stretch-Extended 12-hedron defined as 

Ih (3, 4)-62-hedron corresponds to the Rhombicosidodecahedron belonging to Archimedean  

solids [17].
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Figure 4. Processes of the spherical stretching for the Stretch-Extended 12-hedron

We construct two classes of Stretch-Extended Goldberg polyhedra named as (3, 4) - 

Goldberg polyhedra. The type  Stretch-Extended Goldberg polyhedra is based on 42-hedron, 

92-hedron, 162-hedron, , the total number of faces Fn can be calculated by the following 

formula: 

F n =f5+f6+f3+f4=12+10 (n2+2n) +20(n+1)2+30(n+1)2

Where f5, f6, f3, f4 denote the number of 5-gons, 6-gons, 3-gons, and 4-gons, n=1, 2, 

3,

For n=1, as show in Figure 5a, f5=12, f6=10(12+ 1) =30, f3=20 (1+1)2=80,

f4=30(1+1)2 =120, F1= f5+f6+f3=12+30+80+120=242, the point group is Ih. The structure is 

similar to the capsid of semliki forest virus, whose edges between added triangles and 

quadrangles may be used to simulate linking protein strands. 

For n=2 (Figure 5b), f5=12, f6=10(22+2 2) =80, f3=20 (2+1)2=180, f4=30(2+1)2 =270,

F2= f5+f6+f3=12+80+180+270=542, the point group is Ih.

For n=3 (Figure 5c), f5=12, f6=10(32+2 3) =150, f3=20 (3+1)2=320, f4=30(3+1)2 =480,

F2= f5+f6+f3=12+150+320+480=962, the point group is Ih.

The type  Stretch-Extended Goldberg polyhedra is based on 32-hedron, 72-hedron, 

132-hedron, , the total number of faces F n can be calculated by the following formula: 

F n=f5+f6+f3+f4=12+10 (n2+n) +20(n2+n+1) +30(n2+n+1)

For n=1, 2, 3 (Figure 6), f5 is only 12, f6 is 20, 60, 120, f3 is 60, 140, 260 and f4 is 90, 

210, 390, respectively, the total number faces F1 =182, F2=422, F3=782. If n=1, the point 

group is Ih, when n=2 and n=3, the point group is I.
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Figure 5. The type  Stretch-Extended Goldberg polyhedra 
a. Ih (3, 4)-242-hedron; b. Ih (3, 4)-542-hedron; c. Ih (3, 4)-962-hedron 

Figure 6. The type  Stretch-Extended Goldberg polyhedra 
a. Ih (3, 4)-182-hedron; b. I (3, 4)-422–hedron; c. I (3, 4)-782-hedron 

Particularly, Stretch-Extended Goldberg polyhedra can be used to describe the surfaces 

of icosahedral capsids whose capsomeres are separated. Use a pair of positive integer (h, k) to 

characterize these polyhedra: the number of vertices V=60(h2 + h k + k 2); the number of faces 

F=60(h2 + h k + k 2) + 2; 0<h  k 0, T= h2 + h k + k 2.

4.  Stability and symmetry  

In graph theory, a polyhedron in three-dimensional space can be deformed into a plane 

graph known as Schlgel graph [18], if this graph has prefect matchings, the more perfect 

matchings the graph has, the more stable of the polyhedron is supposed to be. Schlgel graphs 

of Goldberg polyhedra are 3-regular and 3-connected, Zhang [19] got a lower bound 3(p+2)/4 

of the number of perfect matchings of a fullerene graph with p vertices by finding its 
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2-extendability. Now, graphs of Extended Goldberg polyhedra are 4-regular and 4-connected, 

two of them visible in Figure 7, we find they are 1-extendable because every edge of them 

appears in some perfect matchings, and then, every 1-extendable graph with p vertices and q

edges contains at least (q-p)/2+2 prefect matchings [20]. By calculation, for a Rotate-Extended 

Goldberg polyhedron graph, it contains at least 15T+2 prefect matchings, for a Stretch- 

Extended Goldberg polyhedron graph, it contains at least 30T+2 prefect matchings. 

Figure 7.The schlgel graph of a. Ih (3, 0)-32-hedron; b. Ih (3, 4)-62-hedron 

Goldberg polyhedra possess icosahedral symmetry (I or I h) [21], they have 5, 3, 2-fold 

rotational axes. The symmetry of a polyhedron is decided by its mirror plane, e.g., 72-hedron 

has no mirror plane, it is geometrically chiral with point symmetry group I; 92-hedron has 

planes of symmetry, which is geometrically achiral with point symmetry group Ih. For 

Rotate-Extended Goldberg polyhedra, whose pentagons and hexagons rotate by the same 

angle and preserve C5 and C6 rotational symmetry. Furthermore, the added 3-gons have C3

rotational symmetry, so the symmetry of Goldberg polyhedra is maintained. Similarly, the 

added 4-gons and the added 3-gons in Stretch-Extended Goldberg polyhedra have C4 and C3

rotational symmetry, so the symmetry of Goldberg polyhedra is maintained too. Just like 

Goldberg polyhedra, the type  Extended Goldberg polyhedra have Ih symmetry, the type 

Extended Goldberg polyhedra have Ih symmetry when n=1 and I symmetry when n  2. 
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5.  Conclusions 

Geometrically, a new polyhedron can be obtained by operations such as truncating, 

snubbing, duality [19]. The paper develops two topological methods of the ‘spherical rotating’ 

and the ‘spherical stretching’ based on Goldberg polyhedra, just as doing rotating, stretching, 

bending these topological deformations on a sphere, construct two kinds of Extended 

Goldberg polyhedra which possess only tetrahedral vertices. These polyhedra preserve 

icosahedral symmetry and satisfy the Euler's polyhedral formula f + v = e + 2[20], so these two 

Extended polyhedra are both fully closed and stabilized in structure. From the biological point 

of view, our models are similar to some viral capsids which abide by CK theory [10], but are 

not corresponding to Goldberg polyhedra, which not only encode the locations of the proteins 

but also inter-subunit bonds that connect capsomeres.  

Extended Goldberg polyhedra, the new isosahedral architectures, are of fundamental 

importance in understanding the molecular design of polyhedral links [3]. We shall discuss this 

idea in detail elsewhere. 
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