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Abstract

Asymmetric and pseudoasymmetric centers in alkanes (as tree-dimensional trees of de-

gree 4) have been specified by means of newly-defined criteria based on three kinds of

attributes of RS-stereoisomers (chirality, RS-stereogenicity, and sclerality), where the clas-

sification into five RS-stereoisomeric types (Types I to V) according to S. Fujita, J. Org.
Chem., 69, 3158–3165 (2004), S. Fujita, MATCH Commun. Math. Comput. Chem., 54,

39–52 (2005), and S. Fujita, MATCH Commun. Math. Comput. Chem., 58, 611–634 (2007)

plays an important role. Among three types of RS-stereogenic promolecules (Types I, III,

and V), the central atom of each alkane as a promolecule of Types I and III (chiral/RS-

stereogenic) is regarded as an asymmetric center, while the central atom of each alkane as a

promolecule of Types V (achiral/RS-stereogenic) is regarded as a pseudoasymmetric center.

The data of alkyl ligands, which have been recursively calculated by a personal computer

and stored as the coefficients of the term xky�zm of generating functions involving carbon

content (k), the number of asymmetric carbons (�), as well as the number of pseudoasym-

metric carbons (m), have been used to count centroidal and bicentroidal alkanes on the

basis of a tetrahedral skeleton. Each itemized number has been obtained as the coefficient

of the term xky�zm appearing in a respective generating function, which has been derived

by following Fujita’s proligand method. The itemized values up to carbon content 30 have

been listed in tabular forms, which are distinctively concerned with Type I, . . ., or Type V

as well as with achiral stereoisomers and chiral stereoisomers.
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1 Introduction
Enumeration of alkanes (or trees) has been one of long-pending problems which have attracted

various approaches of chemists (e.g., Henze and Blair [1, 2]) as well as of mathematicians (e.g.,

Cayley [3, 4], Pólya [5, 6], Otter [7], and Robinson et al. [8]), as summarized in books [9–

12] and reviews [13–16]. Although Robinson et al. [8] reported the enumeration of achiral

and chiral alkanes by modifying Pólya’s cycle indices (CIs), even their treatment did not fully

take account of problems due to inner structures of ligands, e.g., pseudoasymmetry and meso-

compounds.

We have recently developed the proligand method, which takes inner structures of ligands

into explicit consideration [17–19]. The merit of Fujita’s proligand method for enumerating

three-dimensional (3D) objects (e.g., stereoisomers) was discussed in comparison with Pólya’s

theorem by using simple examples of meso and pseudoasymmetric compounds [20]. As an

application of the proligand method, we have enumerated monosubstituted alkanes (or alkyl

ligands, or mathematically speaking, planted 3D-trees or rooted 3D-trees at the same time)

[21–23] so as to provide fundamental data for enumerating alkanes. Thereby, we have been able

to investigate the enumeration of achiral and chiral alkanes (mathematically speaking, 3D-trees

of degree 4) as further applications of Fujita’s proligand method, which have been conducted:

1. by using the dichotomy of centroidal and bicentroidal alkanes [24],

2. by using another dichotomy of balanced alkanes and unbalanced alkanes, where dual

recognition as uninuclear and binuclear promolecules is emphasized so as to get rid of

abnormal categorization into achiral and chiral alkanes [25],

3. by using the dichotomy of balanced alkanes and unbalanced alkanes, where an alternative

method of compensating the abnormal categorization into achiral and chiral alkanes is

discussed along with an implementation with the Maple programming language [26],

4. by the combination of the two dichotomies [27], and

5. by combining Fujita’s proligand method with Fujita’s PCI (partial-cycle-index) method

in order to obtain numbers of alkanes subdivided with respect to their point-group sym-

metries [28].

In these enumerations, we took asymmetric atoms and pseudoasymmetric ones into considera-

tion, but without distinguishing them, because we had no reliable criterion for such distinction.

It follows that the resulting values did not concerned with the numbers of asymmetric carbon

atoms and those of pseudoasymmetric carbon atoms. For practical purposes of depicting com-

pounds enumerated, it is desirable to enumerate achiral and chiral alkanes with given carbon

numbers, where the numbers of asymmetric and pseudoasymmetric atoms were taken into ex-

plicit consideration.

As another project of ours, on the other hand, we have investigated the classification of pro-

molecules by means of three kinds of attributes of RS-stereoisomers (chirality, RS-stereogenic-

ity, and sclerality), where any promolecules have been concluded to belong to one of five

RS-stereoisomeric types (Types I to V) [29, 30]. This approach has been applied to the enu-

meration of promolecules, the calculated number of which have been itemized into the five

RS-stereoisomeric types (Types I to V) [31].

In the present paper, we first discuss rigorous distinction between asymmetric atoms and

pseudoasymmetric ones after we briefly discuss conventional terminologies on them. Thus,
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the five RS-stereoisomeric types based on chirality, RS-stereogenicity, and sclerality [29, 30]

are applied to produce a criterion for such rigorous discrimination. According to the newly

developed criterion, we next enumerate achiral and chiral alkanes with given carbon numbers

by taking numbers of asymmetric and pseudoasymmetric centers into consideration.

2 Asymmetric and Pseudoasymmetric Centers

2.1 The Conventional Terminology
In his famous book [32, page 11], van’t Hoff has claimed that the number of stereoisomers

of the formula C(R1R2R3)C(R4R5)C(R1R2R3) (1) was equal to three (a pair of enantiomers

and an achiral compound) on the same line as there exist three stereoisomers (a pair of enan-

tiomers and an achiral so-called meso-compound) for the formula C(R1R2R3)C(R1R2R3) (2).

If our speculation was right, he apparently recognized that the central carbon atom of 1 was

not “asymmetric” and the number of asymmetric carbon atoms in 1 was equal to two (then

2(2/2−1) × (1 + 22/2) = 3 according to eq. 2 of [32, page 12]), because the two terminals (i.e.,

C(R1R2R3)) were seemingly equivalent. The erroneous conclusion of van’t Hoff on 1 seemed to

provide Fischer with some difficulties in his famous work on sugars [33–35]. After he had devel-

oped Fischer’s projection as a new device for representing configuration [34], Fischer decided

the configuration of pentoses through their relation to trihydroxyglutaric acids (as a special case

of 1), as found in his autobiography [35, page 134]. The case of 1 has been now recognized as

a pseudoasymmetric case, where there exist four stereoisomers (a pair of enantiomers and two

achiral compounds).

Interests on such pseudoasymmetric cases [36] have been revived in connection with the CIP

(Cahn-Ingold-Prelog) system for RS-nomenclature [37], because the revised version of the CIP

system [37] resulted in a significant change of the connotation of the term “pseudoasymmetry”,

as pointed out by Mislow [38]. According to the revised CIP system [37], tetrahedral atoms

are recognized as stereogenic units (more specifically as chirality centers or asymmetric cen-

ters) or pseudoasymmetric stereogenic units (more specifically as pseudoasymmetric centers),

where the algebraic sign (or corresponding descriptor) of a pseudoasymmetric unit is reflection-

invariant in contrast to the algebraic sign of a chirality element (a stereogenic unit). As a result,

two achiral compounds corresponding to C(ABpp) (A = R4, B = R5, p = R-C(R1R2R3) and p =

S-C(R1R2R3), where A and B are achiral ligands) and four chiral compounds (two pairs of enan-

tiomers) corresponding to C(Appq) or C(Appq) (A = R4, q = a chiral ligand, p = R-C(R1R2R3

and p = S-C(R1R2R3) have been claimed to be both pseudoasymmetric. Note that only the

former compound (C(ABpp)) is in agreement of the original definition of pseudoasymmetry

(cf. [36]). Although this change has given some convenience to the descriptive stereochemistry

such as the RS-nomenclature, it causes essential difficulties from the viewpoints of geometry

and combinatorial enumeration. From the geometrical point of view, the central carbon atom

of the pseudoasymmetric case of C(ABpp) is locally achiral (achirotopic according to [39, 40]),

while the central carbon atom of the “pseudoasymmetric” case of C(Appq) (or C(Appq)) is lo-

cally chiral (chirotopic according to [39, 40]). The concept “reflection-invariant” implies that

the non-existence of an enantiomeric pair for the former achiral case is equalized to the exis-

tence of an enantiomeric pair C(Appq) and C(Appq)) for the latter case. This point results in a

drawback from the viewpoint of combinatorial enumeration such that the “pseudoasymmetric”

case of C(Appq) or C(Appq) gives the same number (4) of stereoisomers as the “asymmetric”
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case of C(ABXp) or C(ABXp) does, whereas the pseudoasymmetric case of C(ABpp) gives 2

as the number of achiral compounds.

2.2 New Terminology Based on RS-Stereoisomeric Types
As clarified in the preceding subsection, a more rigorous standpoint is necessary to obtain a

reliable criterion for distinguishing between asymmetric atoms and pseudoasymmetric ones.

Recently, our analysis of the conventional concepts “chirality” and “stereogenicity” [41–44]

has led to the formulation of more specifiable concepts, i.e., chirality, RS-stereogenicity, and

sclerality [29, 45, 46]. We adopt these concepts to derive such a reliable criterion.

According to this formulation [29, 45, 46], a quadruplet of promolecules contained in a

stereoisogram are called RS-stereoisomers, which are characterized by three relationships, i.e.,

enantiomeric, RS-diastereomeric, and holantimeric. These relationships correspond to the at-

tributes of the quadruplet (and those of each RS-stereoisomer of the quadruplet at the same

time), i.e., chirality, RS-stereogenicity, and sclerality. By combining the three attributes, the

quadruplet of promolecules (RS-stereoisomers) is characterized as either one of five RS-stereo-

isomeric types, i.e., Type I (chiral/RS-stereogenic/ascleral), Type II (chiral/RS-astereogenic/-

scleral), Type III (chiral/RS-stereogenic/scleral), Type IV (achiral/RS-astereogenic/ascleral),

and Type V (achiral/RS-stereogenic/scleral). The existence of only five types has been proven

on a more mathematical basis [47, 30]. Pseudoasymmetry [45] and prochirality [48] have been

discussed by using stereoisograms.

By considering Types I–V, we are able to derive a reliable criterion for distinguishing be-

tween asymmetric atoms and pseudoasymmetric ones. Suppose that a quadruplet of entities

(e.g., promolecules, planted promolecules, etc.) contained in a stereoisogram is characterized

as being RS-stereogenic. Then, the center of each entity is characterized as follows:

Criterion 1 (Asymmetric and pseudoasymmetric centers)

1. If the quadruplet of entities contained in a stereoisogram is RS-stereogenic/-

chiral (i.e., Type I or III), the center of each entity is referred to as being

asymmetric.

2. If the quadruplet of entities contained in a stereoisogram is RS-stereogenic/-

achiral (i.e., Type V), the center of each entity is referred to as being pseu-
doasymmetric.

This criterion means that an asymmetric center is capable of generating enantiomers along

with RS-diastereomers because of the RS-stereogenic/chiral nature. In contrast, a pseudoasym-

metric center is capable of generating RS-diastereomers, but incapable of generating enan-

tiomers (i.e., achiral) because of the RS-stereogenic/achiral nature. This point has been al-

ready discussed by using several illustrative examples [45, 49]. It should be emphasized that

RS-diastereomers of Type I are superposed upon enantiomers.

2.3 Centroidal Alkanes
2.3.1 Centroids as Asymmetric or Pseudoasymmetric Centers

In the present paper, we start from the dichotomy of centroidal/bicentroidal 3D-trees, which we

once applied to the enumeration of alkanes as stereoisomers [24, 50]. We shall first show how

to apply Criterion 1 to centroidal alkanes by using representative examples shown in Fig. 1 [51].
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RS-stereoisomeric promolecular centroidal carbon-skeletal
type representation representation representation
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Figure 1: Examples of five RS-stereoisomeric types for alkanes as 3D-trees. The letters A, B, X,

and Y denote achiral proligands, while p/p and q/q represent pairs of enantiomeric proligands.

The symbol c© indicates the centroid of each alkane. Each centroid with an asterisk (*) is

asymmetric under Criterion 1, while each centroid with a dagger (†) is pseudoasymmetric under

Criterion 1.
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In Fig. 1, an alkane to be examined is represented in three ways [51]. A promolecular repre-

sentation (e.g., 3) shows general features of the RS-stereoisomeric type of the alkane, where the

letters A, B, X, and Y denote achiral proligands. On the other hand, a centroidal representation

(e.g., 4) emphasizes the centroid of the alkane (denoted by the symbol c©) and relevant ligands.

Finally, a carbon-skeletal representation (e.g., 5) corresponds to a common structural formula

having wedges and broken bold lines, without showing hydrogen atoms except being necessary

to indicate configuration.

The promolecule of Type I (e.g., 3) is chiral, RS-stereogenic, and ascleral so that a quadru-

plet of a Type-I stereoisogram consists of one pair of enantiomers (corresponding to the chiral

nature), which can be alternatively regarded as one pair of RS-diastereomers (corresponding to

RS-stereogenic). The superposition of the enantiomeric relationship onto the RS-diastereomeric

one is ascribed to the ascleral nature of Type I. The application of Criterion 1 to 2-methylhexane

(as an entity) shows that its centroid ( c©) is an asymmetric center, as indicated by the centroidal

representation (4) and by the carbon-skeletal representation (5). The asymmetric nature is de-

noted by an asterisk ( c©∗). It should be noted that the term asymmetric is linked with the

RS-stereogenic nature but not directly with the chirality [52].

The promolecule of Type II (e.g., 6) is chiral, RS-astereogenic, and scleral so that a quadru-

plet of a Type-II stereoisogram consists of one pair of enantiomers but exhibits RS-astereogenic

nature. The application of Criterion 1 to (3R,5R)-3,4,5-trimethylheptane (as an entity) shows

that its centroid ( c©) is not asymmetric nor pseudoasymmetric, as indicated by the centroidal

representation (7) and by the carbon-skeletal representation (8). The centroidal carbon in 7 (or

8) and the centroidal carbon in its enantiomer 7 (or 8) is in an enantiomeric relationship, so that

each of the centroids is locally chiral. It follows that the centroid of being not asymmetric nor

pseudoasymmetric is not linked with the chirality, but with the RS-astereogenic nature.

The promolecule of Type III (e.g., 9) is chiral, RS-stereogenic, and scleral, so that a quadru-

plet of a Type-III stereoisogram consists of two pairs of enantiomers, which can be alternatively

regarded as two pairs of RS-diastereomers. The application of Criterion 1 to (3R,4r,5S)-3,5-

dimethyl-4-[(2S)-butan-2-yl]octane (as an entity) shows that its centroid ( c©∗) is asymmetric,

as indicated by the centroidal representation (10) and by the carbon-skeletal representation (11).

It should be noted that the term asymmetric is linked with the RS-stereogenic nature but not with

the chirality [52]. According to the CIP-nomenclature, on the other hand, the centroid ( c©∗) is

recognized to be reflection-invariant (i.e., “pseudoasymmetric” due to the revised CIP system)

so that the descriptor 4r is adopted in the IUPAC name.

Because of the achiral, RS-astereogenic, and ascleral nature of Type IV (e.g., 12), a quadru-

plet of a Type-IV stereoisogram consists of one promolecule of being self-enantiomeric and

of being self-RS-diastereomeric. The application of Criterion 1 to 3,3-dimethylhexane (as an

entity) shows that its centroid ( c©) is not asymmetric nor pseudoasymmetric, as indicated by

the centroidal representation (13) and by the carbon-skeletal representation (14).

The promolecule of Type V (e.g., 15) is achiral, RS-stereogenic, and scleral, so that a

quadruplet of a Type-V stereoisogram consists of one pair of RS-diastereomers, which can

be alternatively regarded as two self-enantiomeric pairs (i.e., two achiral promolecules). The

application of Criterion 1 to (3R,4r,5S)-3,4,5-trimethylheptane (as an entity) shows that its cen-

troid ( c©†) is pseudoasymmetric, as indicated by the centroidal representation (16) and by the

carbon-skeletal representation (17).
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2.3.2 Asymmetric or Pseudoasymmetric Centers Other Than Centroids

The next task is to determine by Criterion 1 whether each carbon center other than the centroid

in an alkane is asymmetric, pseudoasymmetric, or not either. To do this task, it is important

to select an appropriate entity to which we apply Criterion 1, where the selection should be

well-defined so as to give a definite result.

Once a given alkane is determined to be centroidal, its centroid is uniquely fixed. Thereby,

the alkane can be regarded as a directed graph (digraph) [9]. In other words, it can be regarded

as a kind of rooted tree, in which its centroid is a root. In the present context, a new matter is

that the centroidal alkane is regarded as a rooted three-dimensional (3D) tree [24]. This idea is

applied to select entities for Criterion 1, as depicted in Fig. 2
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*
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*
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*
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*
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P©
C

C
C

C

11′′ 18′

Figure 2: Selection of recursive alkyl ligands by means of directed-tree representations of cen-

troidal alkanes. Each of the alkanes is divided into recursive alkyl ligands (as planted 3D-trees).

The symbol P© indicates the principal node of each alkyl ligand, while the symbol � indicates

the root which is occupied commonly by the resulting alkyl ligands.

To discuss distinction between asymmetric centers and pseudoasymmetric ones, let us re-

gard centroidal alkanes of Type III and V as directed 3D-trees, where incident bonds to each

centroid are marked with arrows aiming at the centroid. Thereby, we obtain directed-tree rep-

resentations of the centroidal alkanes, 11′ (Type III) and 18 (Type V), where the methyl ligand

in 17 is replaced by a pentyl ligand in 18 for convenience of explanation. Then, suppose that

each centroid is replaced by a root ( �) and each neighboring node is regarded as a principal

vertex ( P©). As a result, we obtain such alkyl ligands as contained in 11′′ or 18′, where they

share a single root. Each alkyl ligand in isolation can be regarded as a planted 3D-tree, so that

it is categorized into any one of Types I to V (Fig. 3).

As found easily by Fig. 3, RS-stereoisomeric types for alkyl ligands (planted 3D-trees) are

discussed in a parallel way to those for centroidal alkanes (Fig. 1), because principal nodes ( P©)

for Fig. 3 and centroids ( c©) for Fig. 3 play a common role in determining Types I–V. This

means that such alkyl ligands (planted 3D-trees) can be used as entities for Criterion 1, where

their principal nodes are used as centers to be examined and their roots are regarded as null

proligands (or hypothetical achiral proligands). According to Criterion 1, the principal node of
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RS-stereoisomeric promolecular planted-3D-tree carbon-skeletal
type representation representation representation
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C
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Figure 3: Examples of five RS-stereoisomeric types for alkyl ligands as planted 3D-trees. The

letters A, B, X, and Y denote achiral proligands, while p/p and q/q represent pairs of enan-

tiomeric proligands. The symbol P© indicates the principal node of each alkyl ligand, while the

symbol � indicates the root. The bond between the principal node and the root is called a stem.

Each principal node with an asterisk (*) is asymmetric under Criterion 1, while each principal

node with a dagger (†) is pseudoasymmetric under Criterion 1.
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a Type-I (or Type-III) alkyl ligand is determined to be asymmetric as marked by an asterisk (*);

the principal node of a Type-V alkyl ligand is determined to be pseudoasymmetric as marked

by a dagger (†); and the principal node of a Type-II (or Type-IV) is unmarked to be neither

asymmetric nor pseudoasymmetric.

Each alkyl ligand is further considered to be a directed 3D-tree in a similar way to Fig. 2 so

that the procedure for generating such a directed 3D-tree is found to be recursive, as reported in

[21, 22, 23]. Hence, we call such an alkyl ligand a recursive alkyl ligand if necessary.

Criterion 2 (Selection of Entities for Criterion 1)

1. A centroidal alkane serves as an entity for Criterion 1, where its centroid plays

as a center to be examined.

2. A recursive alkyl ligand serves as an entity for Criterion 1, where its principal

node plays as a center to be examined.

2.4 Bicentroidal Alkanes
Bicentroidal alkanes have a bicentroid, each terminal of which accommodates a recursive alkyl

ligand. Hence, it is sufficient that two recursive alkyl ligands selected from a bicentroidal alkane

by Criterion 2 are examined by Criterion 1.

For example, a bicentroidal alkane of meso-type is represented by a directed-tree represen-

tation (34), as shown in Fig. 4. Each terminal is dually considered to be a principal vertex ( P©)

of one alkyl ligand and to be a root ( �) of the other alkyl ligand. As a result, we obtain such

alkyl ligands as contained in 35. Each alkyl ligand in isolation can be regarded as a planted

3D-tree, so that it is categorized into any one of Types I to V (Fig. 3). Hence, each alkyl ligand

in isolation can be regarded as a recursive alkyl ligand defined by Criterion 2 so as to be selected

as an entity for Criterion 1, where its principal node ( P©) is regarded as a center to be examined.

C
C

c©
*

C

c©*
C

C

C

C
C

P©
*

C

P©*
C

C

C

•
•

34 35

Figure 4: Selection of recursive alkyl ligands by means of directed-tree representations of a

bicentroidal alkane. The alkane is divided into two recursive alkyl ligands (as planted 3D-trees)

at the bicentroid. The symbol P© indicates the principal node of each alkyl ligand, while the

symbol � indicates the root which is occupied commonly by the resulting alkyl ligands.

2.5 The Present Methodology vs. the Conventional One
It is worthwhile to compare the present methodology with the conventional one by referring to

examples which we encounter in the enumeration of alkanes as 3D-trees.

The centroid of a centroidal alkane of carbon content 29 (36) is determined to be asym-

metric in terms of Criterion 1, because the corresponding promolecule (37) belongs to Type III
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Figure 5: Examples of centroidal alkanes, where the determination of asymmetry or pseu-

doasymmetry (for the center CP) by the present methodology is different from the determination

by the revised CIP-system.

(chiral/RS-stereogenic/scleral). The proligands around the centroid of 36 (or 37) are a heptyl

ligand (Type IV: A, achiral), a 5-methylhexyl ligand (Type IV: B, achiral) and a 4-(butan-2-yl)-

3,5-dimethyloctan-4-yl ligand (named L1, Type III: p, chiral) and a hydrogen (X, achiral) so as

to be represented by C(ABXp) (i.e., Type III). The centroid marked by the symbol c© in 36 is

determined to be asymmetric (stereogenic) and to have R-configuration even when we rely on

the revised CIP-system.

The centroid of another centroidal alkane of carbon content 29 (38) is determined to be

asymmetric in terms of Criterion 1, because the corresponding promolecule (39) belongs to

Type I (chiral/RS-stereogenic/ascleral). The proligands around the centroid of 38 (or 39) are

found to be a heptyl ligand (Type IV: A, achiral), a 5-methylhexyl ligand (Type IV: B, achiral)

and a 4-(butan-2-yl)-3-methylnonan-4-yl ligand (named L2, Type V: Y, achiral) and a hydrogen

(X, achiral) so as to be represented by C(ABXY) (i.e., Type I). The centroid marked by the

symbol c© is determined to be asymmetric (stereogenic) and to have R-configuration even when

we rely on the revised CIP-system.

As long as we focus our attention on the centroids of 36 and 38, they seem to behave

similarly under the present methodology and under the revised CIP-system. However, their

inner structures behave differently due to the change of viewpoints.

According to Criterion 2 applied to 36, the heptyl ligand (Type IV), the 5-methylhexyl

ligand (Type IV) and the 4-(butan-2-yl)-3,5-dimethyloctan-4-yl ligand (named L1, Type III)

are selected as entities for Criterion 1. Because Ligand L1 in isolation belongs to Type III

(corresponding to the proligand C(ppq), cf. Fig. 3), the principal node represented by the symbol

CP is determined to be asymmetric, as marked by an asterisk. If we alternatively consider the

principal node (CP) to be the center of another tetrahedral molecule (the same compound as

36) regardless of Criterion 2, the tetrahedral molecule belongs to Type III (corresponding to the
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promolecule C(ppqr), cf. Fig. 1). Hence, the principal node (CP) as such a tentative center in

36 is also concluded to be asymmetric.

According to Criterion 2 applied to 38, the heptyl ligand (Type IV), the 5-methylhexyl ligand

(Type IV) and the 4-(butan-2-yl)-3-methylnonan-4-yl ligand (named L2, Type V) are selected

as next entities for Criterion 1. Because Ligand L2 in isolation belongs to Type V (correspond-

ing to the proligand C(Xpp), cf. Fig. 3), the principal node represented by the symbol CP is

determined to be pseudoasymmetric, as marked by a dagger. If we consider the principal node

(CP) to be the tentative center of a tetrahedral molecule, the principal node (CP) is changed

to be asymmetric, because the tetrahedral molecule belongs to Type III (corresponding to the

promolecule C(ppqX): cf. Fig. 1).

According to the revised CIP-system, on the other hand, the configuration at the the node

denoted by CP in 36 is reflection-invariant so that the node (CP) is determined to be pseu-

doasymmetric. On the same line, the configuration at the the node denoted by CP in 38 is

reflection-invariant so that the node (CP) is determined to be pseudoasymmetric. It follows that

the S-configurations at CP in 36 and 38 are designated by a lowercase letter s according to the

revised CIP-system. Thus, the viewpoint of the revised CIP-system, which takes no thought

of centroids, is in sharp contrast with the present one, where Ligand L1 (p, chiral) around the

centroid of 37 and Ligand L2 (Y, achiral) around the centroid of 39 are selected as entities to be

examined in agreement with Criterion 2.

3 Enumeration
3.1 Enumeration of Alkyl Ligands
In order to take account of asymmetric and pseudoasymmetric centers, we shall enumerate

planted promolecules of Type I and III (for asymmetric centers) and planted promolecules of

Type V (for pseudoasymmetric centers). The obtained cycle indices with chirality fittingness

(CI-CFs) are then converted into functional equations for counting alkyl ligands.

3.1.1 Cycle Indices with Chirality Fittingness

First, we consider the action of the C3v-point group

C3v ∼ {(1)(2)(3),(1 2 3),(1 3 2);(1)(2 3),(1 3)(2),(1 2)(3)}, (1)

which is represented by its right coset representation ((Cs\)C3v) according to the three substi-

tution positions of a methyl skeleton. Note that each overbar indicates the alternation of ligand

chirality. We have recently reported the enumeration of monosubstituted alkanes [21–23] after

we developed the proligand method as a general methodology for enumerating stereoisomers

[17–19]. Although the previous results have taken no account of Types I–V [21], a new view

added to explain them in the present paper serves us with one of important parts to evaluate

planted promolecules (alkyl ligands) of Types I–V distinctly.

We are able to use Theorem 3 of Ref. 19 and the derived eq. 3 of Ref. 21:

CI-CF(I–V)(C3;bd) =
1

3
(b3

1 +2b3) (2)

to count steric isomers also in the present context without any modification, where the symbol

bd represents a sphericity index (SI) which characterizes a hemispheric d-cycle. Note that the
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term steric isomers is used to denote Types I—V achiral planted promolecules and chiral planted

promolecules, where two enantiomers of each pair are counted separately.

To count achiral planted promolecules of Types IV and V only, the elements corresponding

to reflections in eq. 1 are used according to eq. 4 of Ref. 21, which has been derived from the

first proposition of Theorem 4 of Ref. 19. Thereby we obtain the following CI-CF:

CI-CF(IV/V)(C3v;ad,cd) = a1c2. (3)

Note that the symbols ad and cd are used to represent sphericity indices (SIs) other than bd ,

where the SI ad characterizes a homospheric d-cycle and the SI cd characterizes an enantio-

spheric d-cycle.

Let us next consider the action of the permutation group represented by

C3ṽ ∼ {(1)(2)(3),(1 2 3),(1 3 2);(1)(2 3),(1 3)(2),(1 2)(3)}, (4)

which does not involve the alternation of ligand chirality. On the same line as eq. 1 is concerned

with chirality/achirality, eq. 4 is concerned with RS-stereogenicity/RS-astereogenicity. This

means that the three elements other than those of C3 can be used to evaluate the number of

Types II and IV (RS-astereogenic). In parallel to the derivation of eq. 3, the number of planted

promolecules of Type II and IV (RS-astereogenic) can be evaluated by using the following CI-

CF:

CI-CF(II/IV)(C3ṽ;bd) = b1b2. (5)

Let us further consider the action of the ligand-inversion group represented by

C
3Î ∼ {(1)(2)(3),(1 2 3),(1 3 2);(1)(2)(3),(1 2 3),(1 3 2)}, (6)

which is concerned with sclerality/asclerality. The discussions described for deriving eqs. 3 and

5 are effective to the C
3Î-group. It follows that the enumeration of planted promolecules of

Type I and IV (ascleral) can be conducted by using the following CI-CF:

CI-CF(I/IV)(C
3Î;ad,cd) =

1

3
(a3

1 +2a3), (7)

where the three elements other than those of C3 in eq. 6 are used to evaluate the added number

of Types I and IV (ascleral).

The numbers evaluated by eqs. 3, 5, and 7 commonly contain the number of Type-IV alkyl

ligands (i.e., planted promolecules of Type IV). Hence, the next task is to evaluate the num-

ber of such Type-IV alkyl ligands. Achiral and RS-astereogenic planted promolecules (Type

IV) have constitutions such as A3 and A2B, where A and B represent achiral ligands (nested

planted promolecules). As a result, such planted promolecules of Type IV are represented by

the corresponding CI-CF as follows:

CI-CF(IV)(C3v;ad) = a1a2. (8)

Compare eq. 8 with eq. 3, where the product a1c2 demonstrates the participation of App (Type

V) along with A3 and A2B (Type IV).

We then subtract eq. 8 from eq. 7 for counting planted promolecules of Type I (chiral, RS-

stereogenic, and ascleral); from eq. 5 for counting those of Type II (chiral and RS-astereogenic));
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or from eq. 3 for counting those of Type V (achiral and RS-stereogenic). Thereby, we obtain

the following CI-CFs:

CI-CF(I)(C
3Î;ad) =

1

3
(a3

1 +2a3)−a1a2 (9)

CI-CF(II)(C3ṽ;ad,bd) = b1b2 −a1a2 (10)

CI-CF(V)(C3v;ad,cd) = a1c2 −a1a2. (11)

Finally, by subtracting eqs. 8–11 from eq. 2, we obtain the following CI-CF for counting

planted promolecules of Type III (chiral and RS-stereogenic) as follows:

CI-CF(III)(C3;ad,bd,cd) =
1

3
(b3

1 +2b3)− 1

3
(a3

1 +2a3)− (b1b2 −a1a2)− (a1c2 −a1a2), (12)

where the two planted promolecules of each enantiomeric pair are counted separately (i.e.,

under the action of C3).

3.1.2 Functional Equations for Recursive Calculations

According to previous enumerations of monosubstituted alkanes [21–23], let αk be the number

of achiral monosubstituted alkanes (alkyl ligands as planted promolecules) of carbon content

k; let γk be the number of monosubstituted alkanes (diploid as planted promolecules) of carbon

content k; and let βk be the number of monosubstituted alkanes (alkyl ligands as steric isomers)

of carbon content k. The present target is to subdivide these numbers (αk, γk, and βk) with

referring to the numbers of asymmetric and pseudoasymmetric centers, which are determined

by means of Criteria 1 and 2.

Let αk�m, γk�m and βk�m be respective subdivided numbers with respect to � asymmetric cen-

ters and m pseudoasymmetric centers, where they are represented by the following summations:

αk =
∞

∑
�=0

∞

∑
m=0

αk�m (13)

γk =
∞

∑
�=0

∞

∑
m=0

γk�m (14)

βk =
∞

∑
�=0

∞

∑
m=0

βk�m. (15)

We regard these numbers (αk�m, γk�m, and βk�m) as the coefficients of the following generating

functions:

a(xd,yd,zd) =
∞

∑
k=0

(
∞

∑
�=0

(
∞

∑
m=0

αk�mzdm

)
yd�

)
xdk (16)

c(xd,yd,zd) =
∞

∑
k=0

(
∞

∑
�=0

(
∞

∑
m=0

γk�mzdm

)
yd�

)
xdk (17)

b(xd,yd,zd) =
∞

∑
k=0

(
∞

∑
�=0

(
∞

∑
m=0

βk�mzdm

)
yd�

)
xdk, (18)
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where the valuable x is concerned with carbon content, the valuable y is concerned with the

number of asymmetric centers, and the valuable z is concerned with the number of pseudoasym-

metric centers. We put α000 = 1, γ000 = 1, and β000 = 1 for treating the respective initial (trivial)

cases.

We regard these generating functions as functional equations when we take account of the

lowest powers, i.e., a(x,y,z) (d = 1 in eq. 16), c(x2,y2,z2) (d = 2 in eq. 17 because d should be

even), and b(x,y,z) (d = 1 in eq. 18).

Suppose that the functional equation a(x,y,z) has been obtained up to carbon content k for

inner (nested) planted promolecules. Then, the terms of the a(x,y,z) up to k can be recursively

used to enumerate alkyl ligands (planted promolecules) of carbon content k + 1, where the

numbers of asymmetric and pseudoasymmetric centers satisfies � < k and m < k. Because the

resulting functional equation a(x,y,z) is concerned with achiral planted promolecules (Types

IV and V) of carbon content k+1, the Type-V planted promolecules (eq. 11) causes an increase

of pseudoasymmetric centers by one, while Type-IV planted promolecules (eq. 8) has no effects

except the increase of carbon content. As a result, the SIs a1, a2, and c2 in eq. 8 (multiplied by

x) and eq. 11 (multiplied by xz) are replaced by a(x,y,z), a(x2,y2,z2), and c(x2,y2,z2) so as to

give the following functional equation:

a(x,y,z) = 1+ xa(x,y,z)a(x2,y2,z2)+ xz
{

a(x,y,z)c(x2,y2,z2)−a(x,y,z)a(x2,y2,z2)
}

, (19)

where the initial value 1 is added to treat a trivial case of hydrogen substitution.

In a similar way, the functional equation b(x,y,z), which is concerned with all types of

planted promolecules (Types I–V) of carbon content k + 1, can be constructed by the data ob-

tained up to carbon content k. For this purpose, we take account of eq. 5 (multiplied by x for

Types II and IV because of increasing carbon content 1), eq. 11 (multiplied by xz for Type V

because of increasing carbon content 1 and one pseudoasymmetric center) and eqs. 9 and 12

(multiplied by xy for Types I and III because of increasing carbon content 1 and one asym-

metric centers). After the SIs ad , cd , and bd in these equations are replaced by a(xd,yd,zd),
c(xd,yd,zd), and b(xd,yd,zd), they are summed up to give the following functional equation:

b(x,y,z) = 1+ xb(x,y,z)b(x2,y2,z2)+ xz
{

a(x,y,z)c(x2,y2,z2)−a(x,y,z)a(x2,y2,z2)
}

+
xy
3

{
b(x,y,z)3 +2b(x3,y3,z3)

}− xyb(x,y,z)b(x2,y2,z2)

− xy
{

a(x,y,z)c(x2,y2,z2)−a(x,y,z)a(x2,y2,z2)
}

, (20)

where the initial value 1 is added to treat a trivial case of hydrogen substitution.

For the purpose of evaluating c(x2,y2,z2), we have to take account of diploids [21]. Al-

though we omit the details of the derivation, we should replace the terms in eqs. 5, 11, and 9

(and eq. 12), i.e., b(xd,yd,zd) by c(x2d,y2d,z2d), a(xd,yd,zd) by a(x2d,y2d,z2d), and c(xd,yd,zd)
by c(x2d,y2d,z2d). After the replacement, it is necessary for the equation of Types II and IV (in-

creasing carbon content 2) to be multiplied by x2; for the equation of Type V (increasing carbon

content 2 and two pseudoasymmetric centers) to be multiplied by x2z2; as well as for the equa-

tion of Types I and III (increasing carbon content 2 and two asymmetric centers) to be multiplied

by x2y2. By summing up these equations, we obtain the following functional equation:

c(x2,y2,z2) = 1+ x2c(x2,y2,z2)c(x4,y4,z4)
+ x2z2{a(x2,y2,z2)c(x4,y4,z4)−a(x2,y2,z2)a(x4,y4,z4)}
+

x2y2

3

{
c(x2,y2,z2)3 +2c(x6,y6,z6)

}
− x2y2c(x2,y2,z2)c(x4,y4,z4)
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− x2y2
{

a(x2,y2,z2)c(x4,y4,z4)−a(x2,y2,z2)a(x4,y4,z4)
}

, (21)

where the initial value 1 is added to treat a trivial case of hydrogen substitution.

The functional equations, a(x,y,z) (eq. 19), c(x2,y2,z2) (eq. 21), and b(x,y,z) (eq. 20),

have recursive nature so that they can be used to evaluate the numbers of relevant planted pro-

molecules recursively as the carbon content k is increased successively by one. The resulting

generating functions have the forms shown in eqs. 16–18.

3.2 Enumeration of Centroidal Alkanes
In the previous subsection, we have formulated a recursive method of calculating eqs. 16–18 by

using a(x,y,z) (eq. 19), c(x2,y2,z2) (eq. 21), and b(x,y,z) (eq. 20). In the present subsection, the

results of the recursive calculation are applied to enumerate alkanes (promolecules) of Types

I–V on the basis of a tetrahedral skeleton.

3.2.1 Cycle Indices with Chirality Fittingness

Although the previous results concerned with enumeration of promolecules and its application

to centroidal alkanes [24, 27] have not involved subdivision into five types, the methodology

can be applied to evaluate promolecules of Types I–V distinctly. Thus, we consider the action

of the Td-point group:

Td = {(1)(2)(3)(4),(1 2)(3 4),(1 3)(2 4),(1 4)(2 3),(1)(2 4 3),(1 2 3)(4),
(1 3 4)(2),(1 4 2)(3),(1)(2 3 4),(1 2 4)(3),(1 3 2)(4),(1 4 3)(2);
(1)(2 3)(4),(1 2 4 3),(1 3 4 2),(1 4)(2)(3),(1)(2)(3 4),(1 2)(3)(4),
(1 3 2 4),(1 4 2 3),(1)(2 4)(3),(1 2 3 4),(1 3)(2)(4),(1 4 3 2)} (22)

which is represented by its right coset representation ((C3v\)Td) according to the four substi-

tution positions of a tetrahedral skeleton. For the purpose of counting promolecules as steric

isomers (i.e., Types I–V), we have reported eq. 2 of Ref. 24 derived by Theorem 3 of Ref. 19:

CI-CF(I–V)(T;bd) =
1

12
(b4

1 +3b2
2 +8b1b3). (23)

where two enantiomers of each pair and each achiral promolecules are counted separately.

To count achiral promolecules only (i.e., Types IV and V), we have reported eq. 3 of Ref.

24 as follows:

CI-CF(IV/V)(Td;$d) =
1

2
(a2

1c2 + c4), (24)

where the elements corresponding to reflections in eq. 22 are used according to the first propo-

sition of Theorem 4 of Ref. 19.

Let us next consider the permutation group represented as follows:

Tσ̃ = {(1)(2)(3)(4),(1 2)(3 4),(1 3)(2 4),(1 4)(2 3),(1)(2 4 3),(1 2 3)(4),
(1 3 4)(2),(1 4 2)(3),(1)(2 3 4),(1 2 4)(3),(1 3 2)(4),(1 4 3)(2);
(1)(2 3)(4),(1 2 4 3),(1 3 4 2),(1 4)(2)(3),(1)(2)(3 4),(1 2)(3)(4),
(1 3 2 4),(1 4 2 3),(1)(2 4)(3),(1 2 3 4),(1 3)(2)(4),(1 4 3 2)}, (25)
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which is obtained by omitting the alternation of ligand chirality in Td (eq. 22). Note that the

action of Tσ̃ (eq. 25) is concerned with RS-stereogenicity/RS-astereogenicity.

On the same line as the derivation of eq. 24 for Td (eq. 22), the counterpart CI-CF for Tσ̃
(eq. 25) corresponds to RS-astereogenic promolecules (i.e., Types II and IV):

CI-CF(II/IV)(Tσ̃;bd) =
1

2
(b2

1b2 +b4), (26)

where the elements other than those of T in eq. 25 are taken into consideration.

Let us finally consider the ligand-inversion group represented as follows:

TÎ = {(1)(2)(3)(4),(1 2)(3 4),(1 3)(2 4),(1 4)(2 3),(1)(2 4 3),(1 2 3)(4),
(1 3 4)(2),(1 4 2)(3),(1)(2 3 4),(1 2 4)(3),(1 3 2)(4),(1 4 3)(2);
(1)(2)(3)(4),(1 2)(3 4),(1 3)(2 4),(1 4)(2 3),(1)(2 4 3),(1 2 3)(4),
(1 3 4)(2),(1 4 2)(3),(1)(2 3 4),(1 2 4)(3),(1 3 2)(4),(1 4 3)(2)}, (27)

where the latter half (the twelve elements after a semicolon) is obtained by altering the ligand

chirality for the former half of elements (i.e., those of T). Note that the action of TĨ (eq. 27) is

concerned with sclerality/asclerality.

On the same line as the derivation of eq. 24 for Td (eq. 22), the counterpart CI-CF for TĨ
(eq. 27) can be derived so as to count ascleral promolecules (i.e., Types I and IV):

CI-CF(I/IV)(TÎ;$d) =
1

12
(a4

1 +3c2
2 +8a1a3), (28)

where the twelve elements other than those of T in eq. 27 are taken into consideration.

The numbers evaluated by eqs. 24, 26, and 28 commonly contain the number of pro-

molecules of Type IV. Hence, the next task is to evaluate the number of such promolecules

of Type IV. For this purpose, let us examine the terms appearing in eq. 24. The first term (a2
1c2)

in eq. 24 is related to a pseudoasymmetric promolecule XYpp (e.g., 15) along with Type-IV

promolecules of ABX2 (e.g., 12) and A2X2 ( + X2pp). The Type-IV promolecules correspond

to the terms a2
1a2 and a2c2, which contain a duplicated component represented by a2

2. This

means that the first term (a2
1c2) in eq. 24 should be replaced by a2

1a2 + a2c2 − a2
2 so as to ex-

clude contamination by pseudoasymmetry. The second term (c4) in eq. 24 is not related to

pseudoasymmetry. Hence, eq. 24 is converted into the following form:

CI-CF(IV)(Td;$d) =
1

2
(a2

1a2 +a2c2 −a2
2 + c4) (29)

for counting Type-IV promolecules.

The combination of the equations derived above gives the following CI-CFs for counting

respective RS-stereoisomeric types:

CI-CF(I)(TÎ;$d) =
1

12
(a4

1 +3c2
2 +8a1a3)− 1

2
(a2

1a2 +a2c2 −a2
2 + c4) (30)

CI-CF(II)(Tσ̃;$d,bd) =
1

2
(b2

1b2 +b4)− 1

2
(a2

1a2 +a2c2 −a2
2 + c4) (31)

CI-CF(III)(T;$d,bd) =
1

12
(b4

1 +3b2
2 +8b1b3)− 1

12
(a4

1 +3c2
2 +8a1a3)− 1

2
(b2

1b2 +b4)

− 1

2
(a2

1c2 + c4)+(a2
1a2 +a2c2 −a2

2 + c4) (32)

CI-CF(V)(Td;$d) =
1

2
(a2

1c2 −a2
1a2)− 1

2
(a2c2 −a2

2). (33)
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Note that the derivations are schematically shown as follows: Type I (eq. 28 minus eq. 29);

Type II (eq. 26 minus eq. 29); Type V (eq. 24 minus eq. 29); and Type III (eq.23 minus eqs. 30,

31, and 24).

3.2.2 Functional Equations for Counting Centroidal Alkanes

The CI-CFs for counting centroidal promolecules (eqs. 29–33) should be converted into the

corresponding functional equations for counting centroidal alkanes, where each SI is modified

so as to accommodate a respective functional equation for counting alkyl ligands (one of eqs.

19–21).

Let B(τ)
k�m (τ = I, II, . . . V or their combinations) be the number of alkanes (promolecules) of

Type τ, which have k carbons, � asymmetric centers and m pseudoasymmetric centers. Let the

symbol B(τ)
k be the summation for each type (τ) represented as follows:

B(τ)
k =

∞

∑
�=0

∞

∑
m=0

B(τ)
k�m, (34)

Then, we regard these numbers B(τ)
k�m as the coefficients of the following generating functions:

B(τ)(xd,yd,zd) =
∞

∑
k=0

(
∞

∑
�=0

(
∞

∑
m=0

B(τ)
k�mzdm

)
yd�

)
xdk (35)

where the valuable x is concerned with carbon content, the valuable y is concerned with the

number of asymmetric centers, and the valuable z is concerned with the number of pseudoasym-

metric centers. We put B(τ)
000 = 0 for treating the respective initial (trivial) cases.

To evaluate the generating functions (eq. 35: τ = I, II, . . ., V and d = 1), we derive the

corresponding functional equations by starting from the CI-CFs (eqs. 29–33). Thus, the SIs ad ,

cd , and bd in these equations are replaced by a(xd,yd,zd), c(xd,yd,zd), and b(xd,yd,zd) to give

the following functional equations:

B(I)(x,y,z) =
xy
12

{
a(x,y,z)4 +3c(x2,y2,z2)2 +8a(x,y,z)a(x3,y3,z3)

}
− xy

2

{
a(x,y,z)2a(x2,y2,z2)+a(x2,y2,z2)c(x2,y2,z2)

− a(x2,y2,z2)2 + c(x4,y4,z4)
}

(36)

B(II)(x,y,z) =
x
2

{
b(x,y,z)2b(x2,y2,z2)+b(x4,y4,z4)

}
− x

2

{
a(x,y,z)2a(x2,y2,z2)+a(x2,y2,z2)c(x2,y2,z2)

− a(x2,y2,z2)2 + c(x4,y4,z4)
}

(37)

B(III)(x,y,z) =
xy
12

{
b(x,y,z)4 +3b(x2,y2,z2)2 +8b(x,y,z)b(x3,y3,z3)

}
− xy

12

{
a(x,y,z)4 +3c(x2,y2,z2)2 +8a(x,y,z)a(x3,y3,z3)

}
− xy

2

{
b(x,y,z)2b(x2,y2,z2)+b(x4,y4,z4)

}
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− xy
2

{
a(x,y,z)2c(x2,y2,z2)+ c(x4,y4,z4)

}
+ xy
{

a(x,y,z)2a(x2,y2,z2)+a(x2,y2,z2)c(x2,y2,z2)

− a(x2,y2,z2)2 + c(x4,y4,z4)
}

(38)

B(IV)(x,y,z) =
x
2

{
a(x,y,z)2a(x2,y2,z2)+a(x2,y2,z2)c(x2,y2,z2)

− a(x2,y2,z2)2 + c(x4,y4,z4)
}

(39)

B(V)(x,y,z) =
xz
2

{
a(x,y,z)2c(x2,y2,z2)−a(x,y,z)2a(x2,y2,z2)

}
−xz

2

{
a(x2,y2,z2)c(x2,y2,z2)−a(x2,y2,z2)2

}
, (40)

where, to treat the effect of the central carbon atom (i.e., the centroid here), we should consider

the multiplication of xy for Types I and III in accord with the increase of carbon content and an

asymmetric center; that of x for Types II and IV in accord with the increase of carbon content;

and that of xz for Type V in accord with the increase of carbon content and a pseudoasymmetric

center.

Suppose that we have obtained a(x,y,z) = ∑μ
k=0 αkxk, c(x2,y2,z2) = ∑μ

k=0 γkx2k, and b(x,y,z)
= ∑μ

k=0 βkxk, where μ is tentatively fixed. On a similar line to the treatment described in

Ref. [27], eqs. 36–40 are evaluated as follows. They are introduced into eqs. 36–40 to give

B(τ)(μ)
(x,y,z) (τ = I, II, . . ., V). Let the symbol coeff(B(τ)(μ)

(x,y,z),x2μ+1) etc. represent the co-

efficient of the term x2μ+1 appearing in the equation B(τ)(μ)
(x,y,z) etc. after expansion. Note that

the coefficient is a polynomial containing y�zm. Then, we obtain the following coefficients:

∞

∑
�=0

(
∞

∑
m=0

B(τ)
(2μ+1)�mzm

)
y� = coeff(B(τ)(μ)

(x,y,z),x2μ+1) (41)

for odd carbon contents as well as the following coefficients:

∞

∑
�=0

(
∞

∑
m=0

B(τ)
(2μ+2)�mzm

)
y� = coeff(B(τ)(μ)

(x,y,z),x2μ+2) (42)

for even carbon contents, where τ represents I, II, . . ., or V. Note that the powers of y and z
are equal to or less than 2μ + 2. These requirements should be considered in the following

programming.

Let A(x,y,z), C(x,y,z), and B(x,y,z) be functional equations for calculating the numbers

of achiral, chiral, and total (achiral plus chiral) alkanes, where each pair of two enantiomers

and each achiral alkane are respectively counted just once. Because the symbols concerning

chiral alkanes, i.e., B(I)(x,y,z) (Type I: chiral/RS-stereogenic/ascleral), B(II)(x,y,z) (Type II:

chiral/RS-astereogenic/scleral), and B(III)(x,y,z) (Type III: chiral/RS-stereogenic/scleral), rep-

resent the separate counting of two enantiomers of each pair, the functional equations A(x,y,z),
C(x,y,z), and B(x,y,z) are calculated as follows:

A(x,y,z) = B(IV)(x,y,z)+B(V)(x,y,z) (43)

C(x,y,z) =
1

2

{
B(I)(x,y,z)+B(II)(x,y,z)+B(III)(x,y,z)

}
(44)

B(x,y,z) =
1

2

{
B(I)(x,y,z)+B(II)(x,y,z)+B(III)(x,y,z)

}
+B(IV)(x,y,z)+B(V)(x,y,z) (45)
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On the same line as above, we obtain the following coefficients:

∞

∑
�=0

(
∞

∑
m=0

A(2μ+1)�mzm

)
y� = coeff(A(x,y,z)(μ),x2μ+1) (46)

∞

∑
�=0

(
∞

∑
m=0

C(2μ+1)�mzm

)
y� = coeff(C(x,y,z)(μ),x2μ+1) (47)

∞

∑
�=0

(
∞

∑
m=0

B(2μ+1)�mzm

)
y� = coeff(B(x,y,z)(μ),x2μ+1) (48)

for odd carbon contents as well as the following coefficients:

∞

∑
�=0

(
∞

∑
m=0

A(2μ+2)�mzm

)
y� = coeff(A(x,y,z)(μ),x2μ+2) (49)

∞

∑
�=0

(
∞

∑
m=0

C(2μ+2)�mzm

)
y� = coeff(C(x,y,z)(μ),x2μ+2) (50)

∞

∑
�=0

(
∞

∑
m=0

B(2μ+2)�mzm

)
y� = coeff(B(x,y,z)(μ),x2μ+2) (51)

for even carbon contents.

3.2.3 Programming and Implementation

The functional equations a(xd,yd,zd), c(xd,yd,zd), and b(xd,yd,zd) contained in the right-hand

sides of eqs. 36–40 have been evaluated respectively by eq. 19, eq. 21, and eq. 20 for alkyl

ligands as planted 3D-trees. For the purpose of programming and implementation, the require-

ments represented by eqs. 41 and 42 as well as eqs. 46–51 should be considered in processes of

recursive calculation.

Concretely speaking, suppose that the functional equation a(x,y,z) (eq. 19), c(x2,y2,z2)
(eq. 21), and b(x,y,z) (eq. 19) have been recursively calculated up to carbon content k. They

are introduced into eqs. 36–40 to count centroidal alkanes. Among the terms appearing in the

expanded functional equations, the terms corresponding to x2k+1 and x2k+2 are adopted as new

entries according to the definition of centroidal alkanes (cf. eqs. 41 and 42 as well as eqs. 46–

51).

The procedure described in the preceding paragraph is implemented by mean of the Maple

programming language and stored with the name “Alkane1-30b.mpl”. Although the upper limit

of the carbon content (k) is tentatively fixed to be 30, it can be freely selected as far as the

capacity of a computer permits.

#Alkane1-30b.mpl
axyz := 1 + x*a111*a222 + x*z*(a111*c222 - a111*a222);
cxyz := 1 + xˆ2*c222*c444 + xˆ2*zˆ2*(a222*c444-a222*a444)
+ (1/3)*xˆ2*yˆ2*c222ˆ3 + (2/3)*xˆ2*yˆ2*c666
- xˆ2*yˆ2*c222*c444 - xˆ2*yˆ2*(a222*c444-a222*a444);

bxyz := 1 + x*b111*b222 + x*z*(a111*c222 - a111*a222)
+ (1/3)*x*y*b111ˆ3 + (2/3)*x*y*b333
- x*y*b111*b222 - x*y*(a111*c222 - a111*a222);

"Alkanes as Centroidal 3D-Trees";

typeI := (x*y/12)*(a111ˆ4 + 3*c222ˆ2 + 8*a111*a333)
- (x*y/2)*(a111ˆ2*a222 + a222*c222 -a222ˆ2 + c444);
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typeII := (x/2)*(b111ˆ2*b222 + b444)
- (x/2)*(a111ˆ2*a222 + a222*c222 -a222ˆ2 + c444);

typeIII:= (x*y/12)*(b111ˆ4 + 3*b222ˆ2 + 8*b111*b333)
- (x*y/12)*(a111ˆ4 + 3*c222ˆ2 + 8*a111*a333)
- (x*y/2)*(a111ˆ2*c222 + c444) - (x*y/2)*(b111ˆ2*b222 + b444)
+ x*y*(a111ˆ2*a222 + a222*c222 -a222ˆ2 + c444);

typeIV := (x/2)*(a111ˆ2*a222 + a222*c222 - a222ˆ2 + c444);
typeV := (x*z/2)*(a111ˆ2*c222 - a111ˆ2*a222) - (x*z/2)*(a222*c222 - a222ˆ2);

Axh := typeIV + typeV;
Cxh := (1/2)*(typeI + typeII + typeIII);

"Initial Values";
a111 := 1; a222 := 1; a333 :=1; a444 :=1;
c222 := 1; c444 := 1; c666 := 1;
b111 := 1; b222 := 1; b333 := 1; b444 := 1;
asum := 1; csum := 1; bsum := 1;

Ah := x; Ch := 0;
BtypeI := 0; BtypeII := 0; BtypeIII := 0; BtypeIV := x; BtypeV := 0;

"Recursive Calculation";
for k from 1 to 30 by 1 do
Cbxyz:= expand(coeff(bxyz,xˆk));
Caxyz:= expand(coeff(axyz,xˆk));
Ccxyz:= expand(coeff(cxyz,xˆ(k*2)));

b1yz := expand(coeff(y*Cbxyz,y)):
b2yz := b1yz: b3yz := b1yz: b4yz := b1yz: subbsum := b1yz:
a1yz := expand(coeff(y*Caxyz,y)):
a2yz := a1yz: a3yz := a1yz: a4yz := a1yz: subasum := a1yz:
c1yz := expand(coeff(y*Ccxyz,y)):
c2yz := c1yz: c3yz := c1yz: subcsum := c1yz:

for l from 1 to degree(Cbxyz,y) by 1 do
CCbxyz:= coeff(Cbxyz, yˆl):
bb1yz:= expand(coeff(z*CCbxyz,z)):
bb2yz:= bb1yz: bb3yz:= bb1yz: bb4yz:= bb1yz: subbsum := subbsum + bb1yz:

CCcxyz:= coeff(Ccxyz, yˆ(2*l)):
cc1yz:= expand(coeff(z*CCcxyz,z)):
cc2yz:= cc1yz: cc3yz:= cc1yz: subcsum := subcsum + cc1yz:

CCaxyz:= coeff(Caxyz, yˆl):
aa1yz := expand(coeff(z*CCaxyz,z)):
aa2yz := aa1yz: aa3yz := aa1yz: aa4yz := aa1yz: subasum := subasum + aa1yz:

for m from 1 to degree(CCcxyz,z) by 1 do
CCCcxyz:= coeff(CCcxyz, zˆ(2*m)):
cc1yz:= cc1yz + CCCcxyz*zˆ(2*m): cc2yz:= cc2yz + CCCcxyz*zˆ(4*m):
cc3yz:= cc3yz + CCCcxyz*zˆ(6*m): subcsum := subcsum + CCCcxyz:
end do:

for n from 1 to degree(CCaxyz,z) by 1 do
CCCaxyz:= coeff(CCaxyz, zˆn):
aa1yz:= aa1yz + CCCaxyz*zˆn: aa2yz:= aa2yz + CCCaxyz*zˆ(2*n):
aa3yz:= aa3yz + CCCaxyz*zˆ(3*n): aa4yz:= aa4yz + CCCaxyz*zˆ(4*n):
subasum := subasum + CCCaxyz:
end do:

for p from 1 to degree(CCbxyz,z) by 1 do
CCCbxyz:= coeff(CCbxyz, zˆp):
bb1yz:= bb1yz + CCCbxyz*zˆp: bb2yz:= bb2yz + CCCbxyz*zˆ(2*p):
bb3yz:= bb3yz + CCCbxyz*zˆ(3*p): bb4yz:= bb4yz + CCCbxyz*zˆ(4*p):
subbsum := subbsum + CCCbxyz:
end do:

c1yz:= c1yz + cc1yz*yˆ(2*l): c2yz:= c2yz + cc2yz*yˆ(4*l):
c3yz:= c3yz + cc3yz*yˆ(6*l):
a1yz:= a1yz + aa1yz*yˆl: a2yz:= a2yz + aa2yz*yˆ(2*l):
a3yz:= a3yz + aa3yz*yˆ(3*l): a4yz:= a4yz + aa4yz*yˆ(4*l):
b1yz:= b1yz + bb1yz*yˆl: b2yz:= b2yz + bb2yz*yˆ(2*l):
b3yz:= b3yz + bb3yz*yˆ(3*l): b4yz:= b4yz + bb4yz*yˆ(4*l):
end do:

bsum := bsum + subbsum*xˆk: asum := asum + subasum*xˆk:
csum := csum + subcsum*xˆ(2*k):
b111 := b111 + b1yz*xˆk: b222 := b222 + b2yz*xˆ(2*k):
b333 := b333 + b3yz*xˆ(3*k): b444 := b444 + b4yz*xˆ(4*k):
a111 := a111 + a1yz*xˆk: a222 := a222 + a2yz*xˆ(k*2):
a333 := a333 + a3yz*xˆ(k*3): a444 := a444 + a4yz*xˆ(k*4):
c222 := c222 + c1yz*xˆ(k*2): c444 := c444 + c2yz*xˆ(k*4):
c666 := c666 + c3yz*xˆ(k*6):

q := 2*k +1:
BtypeI := BtypeI + coeff(typeI,xˆq)*xˆq + coeff(typeI,xˆ(q+1))*xˆ(q+1):
BtypeII := BtypeII + coeff(typeII,xˆq)*xˆq + coeff(typeII,xˆ(q+1))*xˆ(q+1):
BtypeIII := BtypeIII + coeff(typeIII,xˆq)*xˆq + coeff(typeIII,xˆ(q+1))*xˆ(q+1):
BtypeIV := BtypeIV + coeff(typeIV,xˆq)*xˆq + coeff(typeIV,xˆ(q+1))*xˆ(q+1):
BtypeV := BtypeV + coeff(typeV,xˆq)*xˆq + coeff(typeV,xˆ(q+1))*xˆ(q+1):
Ah := Ah + coeff(Axh,xˆq)*xˆq + coeff(Axh,xˆ(q+1))*xˆ(q+1):
Ch := Ch + coeff(Cxh,xˆq)*xˆq + coeff(Cxh,xˆ(q+1))*xˆ(q+1):
end do:

Bh := Ah + Ch:
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"Print Out of Type I (Chiral/RS-Stereogenic/Ascleral)";
for k from 1 to 30 by 1 do
printf("k = %d: ", k);
NtI := expand(coeff(BtypeI,xˆk)):
if NtI = 0 then
degNtI := 1; else
degNtI := degree(NtI,z) + 1;
fi:
for m from 1 to degNtI do
printf("m = %d: ", m-1);
NNtI := coeff(z*NtI, zˆm):
printf("%d &", expand(coeff(y*NNtI,y)));
for l from 1 to degree(NNtI,y) by 1 do
printf("%d &",
coeff(NNtI,yˆl));
end do;
printf("YYYY Yn");
end do;
end do;

(Omitted)

In this code named “Alkane1-30b.mpl”, the abbreviated symbols for functional equations

(as generating functions) are used as follows: a111 for a(x,y,z) etc.; c222 for c(x2,y2,z2)
etc.; b111 for b(x,y,z) etc. so that they store calculated values in the form of counting series

of generating functions. The symbols asum, csum, and bsum are used to store the series for

a(x,1,1), and c(x2,1,1), and b(x,1,1).
The first part of this code declares three functional equations for alkyl ligands, i.e., axyz for

a(x,y,z) (eq. 19), cxyz for c(x2,y2,z2) (eq. 21), and bxyz for b(x,y,z) (eq. 20), as well as five

functional equations for alkanes, i.e., typeI for B(I)(x,y,z) (eq. 36), typeII for B(II)(x,y,z)
(eq. 37), typeIII for B(III)(x,y,z) (eq. 38), typeIV for B(IV)(x,y,z) (eq. 39), typeV for

B(V)(x,y,z) (eq. 40). In addition, Ah for A(x,y,z) (eq. 43) and Ch for C(x,y,z) (eq. 44) are

involved.

In the paragraph “Initial Values”, the initial values for the initial (trivial) alkyl ligands as

well as the initial centroidal alkanes. Note that the setting of Ah := x; and BtypeIV :=
x; represents their initial values, each of which consists of the first value x (= 1 · x1) for q = 1

(i.e., q = 2k + 1, k = 0) and the second value 0 (= 0 · x2) for q + 1 = 2, because there are no

centroidal alkanes of carbon content 2 and we start from k = 1 (q = 3) in a do loop for carbon

content k.

The paragraph “Recursive Calculation” of the code shows the do loop for carbon content k,

in which a nested do loop for the number of asymmetric centers (l) and three do loops nested

further for pseudoasymmetric centers (m, n, and p are used). In each do loop, the next coef-

ficients are calculated by using a Maple command coeff and added to the end of respective

functional equations so as to generate intermediate generating functions. In the last part of the

do loop for carbon content k, resulting coefficients are stored in counting series represented by

BtypeI etc. After escaping from the outer do loop for k, the code Bh := Ah + Ch: calcu-

lates B(x,y,z) (eq. 45). The paragraph “Print Out of Type I (Chiral/RS-Stereogenic/Ascleral)”

and omitted paragraphs of the code show the print-out of the calculation results. Strictly speak-

ing, k represents the carbon content of an alkyl ligand, while q represents the carbon content of

an alkane. In the print-out sections, however, k is used in place of q for the sake of convenience.

We execute the code by inputting the following command on the Maple inputting window:

> read "Alkane1-30b.mpl";

The above described code gives calculation results according to the indication of its print-out

sections. For example, we obtain the following result:

k = 19:
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3 5
NtI := 19104 y + 380 z y + 6 y

m = 0: 0 &19104 &0 &0 &0 &6 &YY
m = 1: 0 &0 &0 &380 &YY

for the coefficient of the term x19 of B(I)(x,y,z), which is stored as the counting series BtypeI.

The output of NtI means the term:

x19
(

19104y+380y3z+6y5
)

, (52)

which shows the numbers of Type-I alkanes of of carbon content 19. The last two lines of the

output are intended to construct rows of a table with respect to k = 19; m = 0,1; and � = 0 to

5 (xky�zm) (cf. Table 1 shown below). As found by the code, when the carbon content of alkyl

ligands runs from 1 to 30, the carbon content of alkanes runs from 3 to 62. For the sake of page

saving, however, calculated values are shown up to 30.

3.2.4 Results and Illustrative Examples

Centroidal Alkanes of Type I Table 1 lists the coefficient B(I)

k�m of the term xky�zm calcu-

lated by means of B(I)(x,y,z) (eq. 36), where each coefficient is stored in the series obtained as

BtypeI of the code “Alkane1-30b.mpl”.

In order to grasp the gist of the data collected in Table 1, it is worthwhile to examine several

lower cases of carbon content. For example, the value 380 at the intersection between the

(k = 19, m = 1)-row and the (� = 3)-column corresponds to the term 380x19y3z (cf. eq. 52).

Hence, there exist 380 chiral centroidal alkanes of Type I which have three asymmetric centers

and one pseudoasymmetric center according to Criteria 1 and 2. Because the centroid of each of

the 380 alkanes is asymmetric, the one pseudoasymmetric center is involved in an achiral alkyl

ligand which belongs to Type V (e.g., 31). It follows that each of the 380 alkanes is represented

by the formula 40 or 41, where the symbols A, B, and X represent a hydrogen atom or alkyl

ligands. The alkyl ligands should be selected from achiral alkyl ligands of carbon content 1–8

so as to keep the central atom c© of 40 or 41 being a centroid.

C
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C

C
† C

*

C

H

C
C

* c©A

X

B

C
C

C
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C

C
† C
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C

* c©A

X

B

40 41

Figure 6: Chiral centroidal alkanes of Type I corresponding to the term 380x19y3z, where one

substituent is an achiral alkyl ligand having a pseudoasymmetric center. The symbols A, B, and

X represent a hydrogen atom or alkyl ligands, which are selected from achiral alkyl ligands of

carbon content 1–8 to keep the central atom c© being a centroid. An appropriate enantiomer of

a pair is depicted as a representative.

The value 380 of the term 380x19y3z can be verified by using the data of a(x,y,z) (for achiral

alkyl ligands) up to x8 appearing in the following generating function:

a(x,y,z) = x+ x2 +2x3 +3x4 +5x5 +8x6 +14x7 +23x8 +(39+2y2z)x9 + · · · , (53)
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Table 1: Centroidal Alkanes of Type I (Chiral/RS-Stereogenic/Ascleral)a

Carbon No. of Pseudoasym. No. of Asymmetric Centers (�)

Content (k) Centers (m) � = 0 1 2 3 4 5 6 7 8 9 10 11

k = 1 : m = 0 : 0
k = 2 : m = 0 : 0
k = 3 : m = 0 : 0
k = 4 : m = 0 : 0
k = 5 : m = 0 : 0
k = 6 : m = 0 : 0
k = 7 : m = 0 : 0 4
k = 8 : m = 0 : 0 2
k = 9 : m = 0 : 0 14

k = 10 : m = 0 : 0 20
k = 11 : m = 0 : 0 74
k = 12 : m = 0 : 0 104
k = 13 : m = 0 : 0 316
k = 14 : m = 0 : 0 470
k = 15 : m = 0 : 0 1298
k = 16 : m = 0 : 0 2002
k = 17 : m = 0 : 0 5064
k = 18 : m = 0 : 0 7918
k = 19 : m = 0 : 0 19104 0 0 0 6

m = 1 : 0 0 0 380
k = 20 : m = 0 : 0 30060

m = 1 : 0 0 0 740
m = 2 : 0 0 0 0 0 2

k = 21 : m = 0 : 0 69530 0 0 0 22 0 4
m = 1 : 0 0 0 2916
m = 2 : 0 0 0 0 0 18

k = 22 : m = 0 : 0 110614
m = 1 : 0 0 0 5184
m = 2 : 0 0 0 0 0 34

k = 23 : m = 0 : 0 248652 0 0 0 88 0 32
m = 1 : 0 0 0 18596
m = 2 : 0 0 0 0 0 214

k = 24 : m = 0 : 0 397736
m = 1 : 0 0 0 33284
m = 2 : 0 0 0 0 0 508

k = 25 : m = 0 : 0 870538 0 0 0 268 0 168 0 10
m = 1 : 0 0 0 96388
m = 2 : 0 0 0 0 0 1970

k = 26 : m = 0 : 0 1398848
m = 1 : 0 0 0 168476
m = 2 : 0 0 0 0 0 3998

k = 27 : m = 0 : 0 3000730 0 0 0 800 0 718 0 120
m = 1 : 0 0 0 464532 0 10424
m = 2 : 0 0 0 0 0 13980 0 464

k = 28 : m = 0 : 0 4843730
m = 1 : 0 0 0 811444 0 19592
m = 2 : 0 0 0 0 0 28442 0 1248 0 12

k = 29 : m = 0 : 0 10202056 0 0 0 2168 0 2674 0 770 0 32
m = 1 : 0 0 0 2052328 0 75784
m = 2 : 0 0 0 0 0 85782 0 5456 0 76
m = 3 : 0 0 0 0 0 0 0 8

k = 30 : m = 0 : 0 16528192
m = 1 : 0 0 0 3553848 0 134072
m = 2 : 0 0 0 0 0 166544 0 11120 0 156
m = 3 : 0 0 0 0 0 0 0 56

aTwo chiral alkanes of each enantiomeric pair are counted separately.

which is stored in a111 during the recursive calculation by the code “Alkane1-30b.mpl”. Let

the partition [k1,k2,k3] represent the carbon contents of A, B, and X under the condition of

A �=B, A �=X, B �=X and k1 + k2 + k3 = 9. Then, the number of enantiomeric pairs is calculated

by using the coefficients appearing in the right-side of eq. 53 as follows:

[8,1,0] 23×1×1 = 23; [7,2,0] 14×1×1 = 14

[6,3,0] 8×2×1 = 16; [6,2,1] 8×1×1 = 8

[5,4,0] 5×3×1 = 15; [5,3,1] 5×2×1 = 10

[4,4,1] (2+1)×1 = 3; [4,3,2] 3×2×1 = 6

total: 95

It should be noted that the three pairs of butyl ligands (A and B) for the partition [4,4,1] can

- 531 -



c©∗
p

pq
q

c©∗
p

pq
q

c©∗
p

pr
r

c©∗
p

pr
r

c©∗
p

ps
s

c©∗
p

ps
s

42 42 43 43 44 44︸ ︷︷ ︸
enantiomeric

︸ ︷︷ ︸
enantiomeric

︸ ︷︷ ︸
enantiomeric︸ ︷︷ ︸

RS-diastereomeric
︸ ︷︷ ︸
RS-diastereomeric

︸ ︷︷ ︸
RS-diastereomeric

p = �
C
* C

C

C q = �
C
* C

C

C
C r = �

C
C
*

C

C
C s = �

C
* C

C

C

C

p = �
C
* C

C

C q = �
C
* C

C

C
C r = �

C
C
*

C

C
C s = �

C
* C

C

C

C

︸ ︷︷ ︸
chiral alkyl ligand

︸ ︷︷ ︸
chiral alkyl ligand

of carbon content 4 of carbon content 5

Figure 7: Chiral centroidal alkanes of Type I corresponding to the term 6x19y5. Each pair of

enantiomers (42/42, 43/43, or 44/44) is RS-diastereomeric at the same time.

be selected from three achiral butyl ligands (cf. 3x4 in eq. 53) under the condition of A�=B:

i.e., n-butyl—isobutyl, n-butyl—tert-butyl, and isobutyl—tert-butyl. Because there exist two

enantiomers for each of 95 enantiomeric pairs on the basis of 40 or 41, we obtain the number of

alkanes at issue to be 95×2×2 = 380, which is equal to the coefficient of the term 380x19y3z.

Because we can manually depict the achiral isomers of alkanes of carbon content 1–8, we are

able to depict the 380 stereoisomers based on 40 and 41 if we would go to such trouble.

We should here emphasize the importance of Criterion 2. The pseudoasymmetric center

of 40 (or 41) is determined at the step of the alkyl ligand of carbon content 9 under Criterion

2. If the same carbon center is examined at the step of the constructed alkane (40 or 41), it is

determined to be asymmetric, because the corresponding promolecule belongs to Type III. The

latter determination is not permitted if we start from Criterion 2. Compare the present case with

11, which has been determined to be Type III.

The value 6 at the intersection between the (k = 19, m = 0)-row and the (� = 5)-column

corresponds to the term 6x19y5 (cf. eq. 52). This means that there exist six chiral centroidal

Type-I alkanes which have five asymmetric centers and no pseudoasymmetric centers accord-

ing to Criteria 1 and 2. Because there exist one enantiomeric pair of carbon content 4 (p/p) and

three enantiomeric pairs of carbon content 5 (q/q, r/r and s/s), we are able to generate six of

alkanes depicted in Fig. 7 (42–44 and their enantiomers). It should be noted that the centroid

of 42 (or 43 or 44) is asymmetric because of Type I (chiral/RS-stereogenic/ascleral) under Cri-

terion 1. The chiral, RS-stereogenic, and ascleral nature of Type I causes the superposition of

an enantiomeric relationship onto an RS-diastereomeric relationship, as found in each pair of

enantiomers (42/42, 43/43, or 44/44).

From the viewpoint of the revised CIP-system, on the other hand, a reflection operation
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converts each RS-descriptor for 42–44 into the opposite one for the corresponding enantiomers

(42–44). This means that the centers ( c©) are reflection-variant so as not to be pseudoasymmet-

ric, but to be asymmetric. In spite of the presence of an enantiomeric pair p/p, alkanes of Type

I (e.g., Fig. 7) are chiral and not pseudoasymmetric (according to the CIP system). According

to the CIP system, the effect of the pair p/p upon pseudoasymmetry is different between Type I

and Types III/V, so that alkanes of Type III (e.g., 11 in Fig. 1) are chiral and pseudoasymmetric

and so that alkanes of Type V (e.g., 17 in Fig. 1) are achiral and pseudoasymmetric. This differ-

ence implies that the effect of such reflection-invariance as adopted by the revised CIP-system

should be re-examined in more detail.

Centroidal Alkanes of Type II The coefficient B(II)

k�m of the term xky�zm is calculated by means

of B(II)(x,y,z) (eq. 37), where each coefficient is stored in the series obtained as BtypeII of

the code “Alkane1-30b.mpl”. The results of calculation are listed in Table 2.

Table 2: Centroidal Alkanes of Type II (Chiral/RS-Astereogenic/Scleral)a

Carbon No. of No. of Asymmetric Centers (�)

Cont. (k) P. C. (m) � = 0 1 2 3 4 5 6 7 8 9 10 11 12

k = 1 : m = 0 : 0
k = 2 : m = 0 : 0
k = 3 : m = 0 : 0
k = 4 : m = 0 : 0
k = 5 : m = 0 : 0
k = 6 : m = 0 : 0
k = 7 : m = 0 : 0
k = 8 : m = 0 : 0
k = 9 : m = 0 : 0 10 2

k = 10 : m = 0 : 0 6 2
k = 11 : m = 0 : 0 60 22
k = 12 : m = 0 : 0 54 24
k = 13 : m = 0 : 0 310 252 76 8
k = 14 : m = 0 : 0 264 198 40 4
k = 15 : m = 0 : 0 1376 1826 1052 220
k = 16 : m = 0 : 0 1258 1478 724 160
k = 17 : m = 0 : 0 5680 11164 10548 4548 664 32
k = 18 : m = 0 : 0 5240 8982 7060 2520 208 8
k = 19 : m = 0 : 0 22150 60514 83052 56330 16088 1624

m = 1 : 0 0 0 500 544 112
k = 20 : m = 0 : 0 21020 50378 59456 34706 7720 624

m = 1 : 0 0 0 224 176 16
k = 21 : m = 0 : 0 83490 303504 570288 564932 276000 61528 4912 128

m = 1 : 0 0 0 2720 3840 1328 64
k = 22 : m = 0 : 0 79500 255824 420236 360522 143632 24472 1216 16

m = 1 : 0 0 0 2164 2808 840 40
k = 23 : m = 0 : 0 303896 1419704 3493328 4717404 3407644 1259832 212368 13040

m = 1 : 0 0 0 19600 40104 28352 7464 640
m = 2 : 0 0 0 0 0 60 8

k = 24 : m = 0 : 0 294300 1227888 2681448 3197852 1981896 606092 79680 3664
m = 1 : 0 0 0 13604 23692 12968 2224 80
m = 2 : 0 0 0 0 0 32 4

k = 25 : m = 0 : 0 1081588 6333264 19768652 34852418 34726192 19178868 5542224 746400 34528 512
m = 1 : 0 0 0 92944 246796 257456 113944 18768 512
m = 2 : 0 0 0 0 0 560 148

k = 26 : m = 0 : 0 1053564 5556870 15564752 24519826 21432540 10081964 2350432 231248 5888 32
m = 1 : 0 0 0 77312 184796 167224 60792 7536 144
m = 2 : 0 0 0 0 0 500 140

k = 27 : m = 0 : 0 3772998 27127012 104713548 232861578 303663676 231380188 99856104 22775032 2380416 90624
m = 1 : 0 0 0 474392 1620568 2386768 1696544 592608 93936 5088
m = 2 : 0 0 0 0 0 5388 2994 792 64

k = 28 : m = 0 : 0 3710798 24200478 84618784 170100714 198297376 132545036 48618208 8923900 673536 15880
m = 1 : 0 0 0 380328 1159528 1491368 887356 235216 22528 416
m = 2 : 0 0 0 0 0 4112 2240 352 8

k = 29 : m = 0 : 0 12949452 112400466 526084244 1439477280 2372569196 2374158472 1422719184 491022828 90437760 7792136 224704 2048
m = 1 : 0 0 0 2033288 8667216 16929320 16989428 8969200 2340272 242048 4096
m = 2 : 0 0 0 0 0 34204 32506 14224 2136

k = 30 : m = 0 : 0 12790188 101455558 433682616 1082046376 1614036244 1442261420 754801120 219163840 31822400 1947720 32064 64
m = 1 : 0 0 0 1780304 6893228 12019120 10501476 4671160 979344 74848 896
m = 2 : 0 0 0 0 0 30028 27184 10512 1264
m = 3 : 0 0 0 0 0 0 0 8

aTwo chiral alkanes of each enantiomeric pair are counted separately.

The value 500 at the intersection between the (k = 19, m = 1)-row and the (� = 3)-column

corresponds to the term 500x19y3z. Hence, there exist 500 chiral centroidal alkanes of Type II

which have three asymmetric centers and one pseudoasymmetric center according to Criteria 1

and 2. On a similar line to the formula 40 or 41 in Fig. 6, each of the 500 alkanes is represented

by the formula 45 or 46, where the symbol A represents a hydrogen atom, a methyl ligand, or
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Figure 8: Chiral centroidal alkanes of Type II corresponding to the term 500x19y3z, where

one substituent is an achiral alkyl ligand having a pseudoasymmetric center. The symbol A

represents a hydrogen atom, a methyl ligand, or an ethyl ligand, while the symbol p is a chiral

ligand with one asymmetric center. The ligands A and p are selected to keep the central atom
c© being a centroid. An appropriate enantiomer of a pair is depicted as a representative.

an ethyl ligand, while the symbol p is a chiral ligand with one asymmetric center. The ligands

A and p are selected to keep the central atom c© being a centroid.

The value 500 of the term 500x19y3z can be verified as follows. By using the data of a(x,y,z)
(eq. 53) and the data of b(x,y,z) up to x9, we obtain the following generating function for

counting chiral alkyl ligands:

1

2
{b(x,y,z)−a(x,y,z)}
= yx4 +3yx5 +(8y+2y2)x6 +(20y+10y2)x7

+(46y+38y2 +4y3)x8 +(102y+125y2 +28y3)x9 + · · · , (54)

where the data are stored by a111 and b111 during the recursive calculation by the code

“Alkane1-30b.mpl”. Note that eq. 54 counts each pair of enantiomers just once. Let the partition

[k1,k2,k2] represent the carbon contents of p and A under the condition of k1 +2k2 = 9. Then,

the number of enantiomeric pairs is calculated by using the coefficients of the terms containing

y, which appear in the right-side of eq. 54. Thereby we obtain the following numbers for

respective partitions:

[9,0,0] 102×1×1 = 102; [7,1,1] 20×1×1 = 20

[5,2,2] 3×1×1 = 3;

total: 125

Because there exist two enantiomers for each of 125 enantiomeric pairs on the basis of 45 or

46, we obtain the number of alkanes at issue to be 125× 2× 2 = 500, which is equal to the

coefficient of the term 500x19y3z.

Centroidal Alkanes of Type III Table 3 collects the coefficient B(III)

k�m of each term xky�zm,

which is calculated by means of B(III)(x,y,z) (eq. 38). Each of the coefficients is stored in the

series obtained as BtypeIII of the code “Alkane1-30b.mpl”.

The value 920 at the intersection between the (k = 19, m = 1)-row and the (� = 4)-column

corresponds to the term 920x19y4z. On the analogy of the formula 40 or 41 in Fig. 6, we can

adopt the same alkyl ligand having one pseudoasymmetric center as 40 (or 41), so that each of

the 920 alkanes is represented by one of the formulas 47—50. The symbols A and B represent
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Table 3: Centroidal Alkanes of Type III (Chiral/RS-Stereogenic/Scleral)a

Carbon No. of No. of Asymmetric Centers (�)

Cont. (k) P. C. (m) � = 0 1 2 3 4 5 6 7 8 9 10 11 12 13

k = 1: m = 0: 0
k = 2: m = 0: 0
k = 3: m = 0: 0
k = 4: m = 0: 0
k = 5: m = 0: 0
k = 6: m = 0: 0
k = 7: m = 0: 0
k = 8: m = 0: 0
k = 9: m = 0: 0 0 8

k = 10: m = 0: 0 0 20
k = 11: m = 0: 0 0 104 24
k = 12: m = 0: 0 0 192 48
k = 13: m = 0: 0 0 760 440 64
k = 14: m = 0: 0 0 1364 984 236 8
k = 15: m = 0: 0 0 4700 5016 1896 176
k = 16: m = 0: 0 0 8284 10416 5072 688
k = 17: m = 0: 0 0 25564 42256 28532 7024 424
k = 18: m = 0: 0 0 44548 84272 68588 22400 2352 48
k = 19: m = 0: 0 0 127704 299356 311792 141996 24552 1080

m = 1: 0 0 0 0 920 480 32
k = 20: m = 0: 0 0 220236 577908 695716 384640 88536 6360

m = 1: 0 0 0 0 2360 1848 288
k = 21: m = 0: 0 0 596616 1871596 2754112 1961852 639584 80768 2512

m = 1: 0 0 0 0 10512 10024 2368 64
k = 22: m = 0: 0 0 1027616 3550032 5881020 4875952 1956712 337680 18624 224

m = 1: 0 0 0 0 21576 24296 7232 272
k = 23: m = 0: 0 0 2660596 10718564 21040956 21347612 11040884 2691752 258528 6272

m = 1: 0 0 0 0 88792 125288 57904 7408 128
m = 2: 0 0 0 0 0 0 52

k = 24: m = 0: 0 0 4568132 20026004 43478928 49913132 30233240 9122760 1199184 51424
m = 1: 0 0 0 0 182552 303552 178136 35024 1840
m = 2: 0 0 0 0 0 0 224 8

k = 25: m = 0: 0 0 11387700 57222004 144000688 195831756 145399200 56831760 10683376 797456 14288
m = 1: 0 0 0 0 603032 1205048 925288 268016 23920 256
m = 2: 0 0 0 0 0 0 1464 176

k = 26: m = 0: 0 0 19511824 105758276 290677692 439055644 370871100 170958464 40163280 4182768 136624 960
m = 1: 0 0 0 0 1176792 2665640 2422648 898816 116944 2400
m = 2: 0 0 0 0 0 0 4036 808

k = 27: m = 0: 0 0 47178864 289104556 905460132 1582396996 1583140452 895501448 272837256 40466112 2374480 34048
m = 1: 0 0 0 0 3649360 9651328 10865696 5448600 1149312 79776 768
m = 2: 0 0 0 0 0 0 19508 6880 680

k = 28: m = 0: 0 0 80758776 529921796 1794912392 3436070128 3832143224 2476764136 894183808 166709256 13727408 368944
m = 1: 0 0 0 0 7044240 20822856 26975824 16319056 4482096 483440 14752
m = 2: 0 0 0 0 0 0 49888 24452 4064 112

k = 29: m = 0: 0 0 190139716 1395543128 5316202664 11572992068 14927093980 11436224808 5076627440 1232594888 146705728 6927984 76352
m = 1: 0 0 0 0 19959840 67836328 104607568 78773096 28794400 4613664 244384 1536
m = 2: 0 0 0 0 0 0 192836 132740 34992 2176

k = 30: m = 0: 0 0 325205076 2541081904 10388800120 24517843500 34744573964 29781398560 15170974336 4389997616 662254208 44515152 914112 3968
m = 1: 0 0 0 0 37690600 140982016 244350432 213267904 94177976 19494688 1519104 19008
m = 2: 0 0 0 0 0 0 449468 392860 137904 14048
m = 3: 0 0 0 0 0 0 0 0 8

aTwo chiral alkanes of each enantiomeric pair are counted separately.

a hydrogen atom or an achiral ligand, while the symbol p is a chiral ligand with one asymmetric

center. The ligands A, B, and p are so selected as to keep the central atom c© being a centroid.

Note that 47 and 48 are RS-diastereomeric and 49 and 50 are RS-diastereomeric in accord with

the Type-III nature of these alkanes.

Let the partition [k1,k2,k3] represent the carbon contents of p, A and B under the condition

of A �=B and k1 + k2 + k3 = 9. Then, the number of enantiomeric pairs is calculated by using

the coefficients appearing in the right-side of eq. 53 (for k2 and k3) and in the one of eq. 54 (for

k1). The following partitions are effective to maintain the Type-III nature of centroidal alkanes:

[8,1,0] 46×1×1 = 46; [7,2,0] 20×1×1 = 20

[6,3,0] 8×2×1 = 16; [6,2,1] 8×1×1 = 8

[5,4,0] 3×3×1 = 9; [5,3,1] 3×2×1 = 6

[4,5,0] 5×1×1 = 5; [4,4,1] 1×3×1 = 3

[4,3,2] 1×2×1 = 2;

total: 115

Because there exist two enantiomers for each of 115 pairs on the basis of one of 47—50, we

obtain the number of alkanes at issue to be 115×2×4 = 920, which is equal to the coefficient

of the term 920x19y4z.
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Figure 9: Chiral centroidal alkanes of Type III corresponding to the term 920x19y4z, where one

substituent is an achiral alkyl ligand having a pseudoasymmetric center. The symbols A and B

represent a hydrogen atom or achiral alkyl ligands, while p represents a chiral alkyl ligand with

one asymmetric center. The alkyl ligands are selected from alkyl ligands of carbon content 1–8

to keep the central atom c© being a centroid. An appropriate enantiomer of a pair is depicted as

a representative.

Centroidal Alkanes of Type IV The coefficient B(IV)

k�m of the term xky�zm is calculated by

means of B(IV)(x,y,z) (eq. 39), where each coefficient is stored in the series named BtypeIV
in the code “Alkane1-30b.mpl”. The results of calculation are listed in Table 4.
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Figure 10: Achiral centroidal alkanes of Type IV corresponding to the term 130x19y2z, where

one substituent is an achiral alkyl ligand having a pseudoasymmetric center. The symbol A and

B represents a hydrogen atom or an alkyl ligand, where A may be equal to B. The ligands A

and B are selected to keep the central atom c© being a centroid. An appropriate enantiomer of

a pair is depicted as a representative.

To illustrate the generation of alkanes by substituting alkyl ligands, let us examine the value

130 at the intersection between the (k = 19, m = 1)-row and the (� = 2)-column in Table 4, which

corresponds to the term 130x19y2z. This means that there exist 130 achiral centroidal alkanes

of Type IV which have two asymmetric centers and one pseudoasymmetric center according to

Criteria 1 and 2. On a similar line to the formula 40 or 41 in Fig. 6, each of the 130 alkanes is

represented by the formula 51 or 52 (Fig. 10), where the symbols A and B represents a hydrogen

atom or an alkyl ligand. The ligands A and B are selected to keep the central atom c© being a

centroid.

Let the partition [k1,k1,k2] represent the carbon contents of A, A and B under the condition

that A may be equal to B and we put 2k1 + k3 = 9. Then, the number of constitutional isomers

is calculated by using the coefficients appearing in the right-side of eq. 53 (for k1 and k2). The

following partitions are effective to maintain the Type-IV nature of centroidal alkanes:
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Table 4: Centroidal Alkanes of Type IV (Achiral/RS-Astereogenic/ascleral)

Carbon No. of No. of Asymmetric Centers (�)

Cont. (k) P. C. (m) � = 0 1 2 3 4 5 6 7 8 9 10 11 12

k = 1: m = 0: 1
k = 2: m = 0: 0
k = 3: m = 0: 1
k = 4: m = 0: 1
k = 5: m = 0: 3
k = 6: m = 0: 2
k = 7: m = 0: 7
k = 8: m = 0: 7
k = 9: m = 0: 20 0 1

k = 10: m = 0: 20
k = 11: m = 0: 55 0 4
k = 12: m = 0: 60
k = 13: m = 0: 156 0 12 0 2
k = 14: m = 0: 162
k = 15: m = 0: 438 0 33 0 12
k = 16: m = 0: 471
k = 17: m = 0: 1239 0 83 0 51 0 4
k = 18: m = 0: 1319
k = 19: m = 0: 3498 0 198 0 177 0 32

m = 1: 0 0 130
m = 2: 0 0 0 0 3

k = 20: m = 0: 3767
m = 1: 0 0 90
m = 2: 0 0 0 0 2

k = 21: m = 0: 9890 0 455 0 558 0 180 0 8
m = 1: 0 0 588
m = 2: 0 0 0 0 15

k = 22: m = 0: 10572
m = 1: 0 0 548
m = 2: 0 0 0 0 18

k = 23: m = 0: 27951 0 1013 0 1607 0 798 0 88
m = 1: 0 0 3132
m = 2: 0 0 0 0 129 0 2

k = 24: m = 0: 30064
m = 1: 0 0 2696
m = 2: 0 0 0 0 100

k = 25: m = 0: 79019 0 2200 0 4392 0 3054 0 618 0 16
m = 1: 0 0 11954
m = 2: 0 0 0 0 580 0 10

k = 26: m = 0: 84798
m = 1: 0 0 11420
m = 2: 0 0 0 0 566

k = 27: m = 0: 223373 0 4686 0 11423 0 10526 0 3302 0 228
m = 1: 0 0 48356 0 2080
m = 2: 0 0 0 0 3199 0 322 0 14

k = 28: m = 0: 240364
m = 1: 0 0 44948 0 1424
m = 2: 0 0 0 0 2666 0 112 0 4
m = 3: 0 0 0 0 0 0 4

k = 29: m = 0: 631477 0 9811 0 28693 0 33582 0 14942 0 1964 0 32
m = 1: 0 0 170008 0 9388
m = 2: 0 0 0 0 13157 0 1518 0 82
m = 3: 0 0 0 0 0 0 12

k = 30: m = 0: 678034
m = 1: 0 0 166688 0 8776
m = 2: 0 0 0 0 12496 0 1136 0 52
m = 3: 0 0 0 0 0 0 44

[4,4,1] 3×1 = 3; [3,3,3] 2+2 = 4

[2,2,5] 1×5 = 5; [1,1,7] 1×14 = 14

[0,0,9] 1×39 = 39;

total: 65

Because the 65 constitutional isomers are achiral and have the formula 51 or 52, the number of

alkanes at issue is calculated to be 65× 2 = 130, which is equal to the coefficient of the term

130x19y2z.

Centroidal Alkanes of Type V Table 5 lists the coefficient B(V)

k�m of the term xky�zm, which

is calculated by means of B(V)(x,y,z) (eq. 40). Each of the coefficients is stored in the series

obtained as BtypeV of the code “Alkane1-30b.mpl”.

The examination of the value 12 at the intersection between the (k = 12, m = 1)-row and the
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Table 5: Centroidal Alkanes of Type V (Achiral/RS-Stereogenic/Scleral)

Carbon No. of No. of Asymmetric Centers (�)

Cont. (k) P. C. (m) � = 0 1 2 3 4 5 6 7 8 9 10 11 12

k = 1: m = 0: 0
k = 2: m = 0: 0
k = 3: m = 0: 0
k = 4: m = 0: 0
k = 5: m = 0: 0
k = 6: m = 0: 0
k = 7: m = 0: 0
k = 8: m = 0: 0
k = 9: m = 0: 0

k = 10: m = 0: 0
m = 1: 0 0 2

k = 11: m = 0: 0
m = 1: 0 0 2

k = 12: m = 0: 0
m = 1: 0 0 12

k = 13: m = 0: 0
m = 1: 0 0 16

k = 14: m = 0: 0
m = 1: 0 0 54 0 4

k = 15: m = 0: 0
m = 1: 0 0 80 0 4

k = 16: m = 0: 0
m = 1: 0 0 214 0 32

k = 17: m = 0: 0
m = 1: 0 0 338 0 40

k = 18: m = 0: 0
m = 1: 0 0 706 0 176 0 8

k = 19: m = 0: 0
m = 1: 0 0 1160 0 244 0 8
m = 2: 0 0 0 0 4

k = 20: m = 0: 0
m = 1: 0 0 2384 0 810 0 80
m = 2: 0 0 0 0 16

k = 21: m = 0: 0
m = 1: 0 0 4026 0 1202 0 96
m = 2: 0 0 0 0 52

k = 22: m = 0: 0
m = 1: 0 0 7344 0 3330 0 544 0 16
m = 2: 0 0 0 0 96 0 8

k = 23: m = 0: 0
m = 1: 0 0 12658 0 5190 0 712 0 16
m = 2: 0 0 0 0 308 0 24

k = 24: m = 0: 0
m = 1: 0 0 23152 0 12712 0 2940 0 208
m = 2: 0 0 0 0 668 0 112
m = 3: 0 0 0 0 0 0 4

k = 25: m = 0: 0
m = 1: 0 0 40406 0 20514 0 4124 0 240
m = 2: 0 0 0 0 1748 0 296
m = 3: 0 0 0 0 0 0 4

k = 26: m = 0: 0
m = 1: 0 0 68762 0 44790 0 13796 0 1696 0 32
m = 2: 0 0 0 0 3060 0 712 0 16
m = 3: 0 0 0 0 0 0 28

k = 27: m = 0: 0
m = 1: 0 0 121272 0 74080 0 20380 0 2128 0 32
m = 2: 0 0 0 0 7772 0 1992 0 64
m = 3: 0 0 0 0 0 0 38

k = 28: m = 0: 0
m = 1: 0 0 208618 0 154714 0 58696 0 10652 0 520
m = 2: 0 0 0 0 14728 0 5052 0 352
m = 3: 0 0 0 0 0 0 164 0 8

k = 29: m = 0: 0
m = 1: 0 0 369928 0 260574 0 90276 0 14284 0 584
m = 2: 0 0 0 0 34324 0 12412 0 992
m = 3: 0 0 0 0 0 0 274 0 8

k = 30: m = 0: 0
m = 1: 0 0 607118 0 505024 0 232632 0 56704 0 5064 0 64
m = 2: 0 0 0 0 58860 0 24644 0 3104 0 64
m = 3: 0 0 0 0 0 0 892 0 80
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Figure 11: Achiral centroidal alkanes of Type V corresponding to the term 12x12y2z. They are

typical examples of pseudoasymmetric molecules.

(� = 2)-column of Table 5 (corresponding to the term 12x12y2z) is illustrative to understand typ-

ical pseudoasymmetric cases. The 12 achiral centroidal alkanes of Type V have two asymmetric

centers and one pseudoasymmetric center under Criteria 1 and 2. The total carbon content 12

restricts the carbon contents of involved chiral ligands, so that a pair involved in each of the

centroidal alkanes should be selected from one pair of enantiomeric butan-2-yl ligands (carbon

content 4) or from three pairs of enantiomeric ligands of carbon content 5 (cf. eq. 54). For

the list of these enantiomeric ligands, see the bottom part of Fig. 7. As a result, the 12 achiral

centroidal alkanes of Type V have structures shown in Fig. 11.

3.2.5 Comparison with Previous Results

Achiral Centroidal Alkanes The total numbers of achiral centroidal alkanes can be obtained

as the coefficients Ak�m of the term xky�zm appearing in A(x,y,z) (eq. 43), which is stored in the

series obtained as Ah of the code “Alkane1-30b.mpl”. The results of calculation are listed in

Table 6. Because we can put

Ak�m = B(IV)

k�m +B(V)

k�m, (55)

each value of Table 6 can be obtained by summing up corresponding values appearing in Table

4 and Table 5.

The total number of achiral centroidal alkanes of carbon content k is calculated by using eq.

34 as follows:

Âk = B(IV)

k +B(V)

k =
∞

∑
�=0

∞

∑
m=0

Ak�m. (56)
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Table 6: Achiral Centroidal Alkanes (Type IV and Type V)

Carbon No. of No. of Asymmetric Centers (�)

Cont. (k) P. C. (m) � = 0 1 2 3 4 5 6 7 8 9 10 11 12

k = 1: m = 0: 1
k = 2: m = 0: 0
k = 3: m = 0: 1
k = 4: m = 0: 1
k = 5: m = 0: 3
k = 6: m = 0: 2
k = 7: m = 0: 7
k = 8: m = 0: 7
k = 9: m = 0: 20 0 1

k = 10: m = 0: 20
m = 1: 0 0 2

k = 11: m = 0: 55 0 4
m = 1: 0 0 2

k = 12: m = 0: 60
m = 1: 0 0 12

k = 13: m = 0: 156 0 12 0 2
m = 1: 0 0 16

k = 14: m = 0: 162
m = 1: 0 0 54 0 4

k = 15: m = 0: 438 0 33 0 12
m = 1: 0 0 80 0 4

k = 16: m = 0: 471
m = 1: 0 0 214 0 32

k = 17: m = 0: 1239 0 83 0 51 0 4
m = 1: 0 0 338 0 40

k = 18: m = 0: 1319
m = 1: 0 0 706 0 176 0 8

k = 19: m = 0: 3498 0 198 0 177 0 32
m = 1: 0 0 1290 0 244 0 8
m = 2: 0 0 0 0 7

k = 20: m = 0: 3767
m = 1: 0 0 2474 0 810 0 80
m = 2: 0 0 0 0 18

k = 21: m = 0: 9890 0 455 0 558 0 180 0 8
m = 1: 0 0 4614 0 1202 0 96
m = 2: 0 0 0 0 67

k = 22: m = 0: 10572
m = 1: 0 0 7892 0 3330 0 544 0 16
m = 2: 0 0 0 0 114 0 8

k = 23: m = 0: 27951 0 1013 0 1607 0 798 0 88
m = 1: 0 0 15790 0 5190 0 712 0 16
m = 2: 0 0 0 0 437 0 26

k = 24: m = 0: 30064
m = 1: 0 0 25848 0 12712 0 2940 0 208
m = 2: 0 0 0 0 768 0 112
m = 3: 0 0 0 0 0 0 4

k = 25: m = 0: 79019 0 2200 0 4392 0 3054 0 618 0 16
m = 1: 0 0 52360 0 20514 0 4124 0 240
m = 2: 0 0 0 0 2328 0 306
m = 3: 0 0 0 0 0 0 4

k = 26: m = 0: 84798
m = 1: 0 0 80182 0 44790 0 13796 0 1696 0 32
m = 2: 0 0 0 0 3626 0 712 0 16
m = 3: 0 0 0 0 0 0 28

k = 27: m = 0: 223373 0 4686 0 11423 0 10526 0 3302 0 228
m = 1: 0 0 169628 0 76160 0 20380 0 2128 0 32
m = 2: 0 0 0 0 10971 0 2314 0 78
m = 3: 0 0 0 0 0 0 38

k = 28: m = 0: 240364
m = 1: 0 0 253566 0 156138 0 58696 0 10652 0 520
m = 2: 0 0 0 0 17394 0 5164 0 356
m = 3: 0 0 0 0 0 0 168 0 8

k = 29: m = 0: 631477 0 9811 0 28693 0 33582 0 14942 0 1964 0 32
m = 1: 0 0 539936 0 269962 0 90276 0 14284 0 584
m = 2: 0 0 0 0 47481 0 13930 0 1074
m = 3: 0 0 0 0 0 0 286 0 8

k = 30: m = 0: 678034
m = 1: 0 0 773806 0 513800 0 232632 0 56704 0 5064 0 64
m = 2: 0 0 0 0 71356 0 25780 0 3156 0 64
m = 3: 0 0 0 0 0 0 936 0 80
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The total numbers Âk (k = 1 to 20) have been directly obtained as a generating function and

collected in Table 2 of Ref. [24]. They are confirmed by the present itemized enumeration. For

example, the rows concerning k = 20 (Table 6) are summed up to give the following result:

k = 20: m = 0: 3767 3767

m = 1: 0 0 2474 0 810 0 80 3364

m = 2: 0 0 0 0 18 18

3767 0 2474 0 828 0 80 7149

The total number 7149 is equal to the value reported previously in Table 2 of Ref. [24].

Moreover, the functional equation for calculating the total numbers (eq. 38 of Ref. [24]) can

be derived by starting from eq. 43. When we put y = z = 1 in eq. 43, we obtain the following

equation:

A(x,1,1) = B(IV)(x,1,1)+B(V)(x,1,1) (57)

=
x
2

{
a(x,1,1)2c(x2,1,1)+ c(x4,1,1)

}
. (58)

The latter equation (eq. 58) can be directly obtained from eq. 24, where we take no account

of the numbers of asymmetric and pseudoasymmetric centers. Note that the coefficient of the

term xk in B(τ)(x,1,1) (T = I, II, . . ., V) is equal to the value of B(τ)
k (eq. 34). By putting

A(x,1,1) = Â(x), a(x,1,1) = a(x), and c(x2,1,1) = c(x2), eq. 58 is converted into the following

functional equation:

Â(x) =
x
2

(
a(x)2c(x2)+ c(x4)

)
, (59)

which is identical with eq. 38 of Ref. [24].

Chiral Centroidal Alkanes The total numbers of chiral centroidal alkanes can be obtained

as the coefficients Ck�m of the term xky�zm appearing in C(x,y,z) (eq. 44), which is stored in the

series obtained as Ch of the code “Alkane1-30b.mpl”. The results of calculation are listed in

Table 7. Because we can put

Ck�m =
1

2

{
B(I)

k�m +B(II)

k�m +B(III)

k�m

}
, (60)

each value of Table 7 can be obtained by the half of the sum of corresponding values appearing

in Tables 1, 2, and 3.

The total number of chiral centroidal alkanes of carbon content k is calculated by using eq.

34 as follows:

Ĉk =
1

2

{
B(I)

k +B(II)

k +B(III)

k

}
=

∞

∑
�=0

∞

∑
m=0

Ck�m. (61)

The total numbers Ĉk (k = 1 to 20) have been directly obtained as a generating function and

collected in Table 2 of Ref. [24]. They are confirmed by the present itemized enumeration. For

example, the rows concerning k = 20 (Table 7) are summed up to give the following result:

k = 20: m = 0: 0 25540 135307 318682 365211 196180 44580 3180 1088680

m = 1: 0 0 0 482 1268 932 144 2826

m = 2: 0 0 0 0 0 1 1

0 25540 135307 319164 366479 197113 44724 3180 1091507
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Table 7: Chiral Centroidal Alkanes (Enantiomeric Pairs for Types I, II, and III)

Carbon No. of No. of Asymmetric Centers (�)

Cont. (k) P. C. (m) � = 0 1 2 3 4 5 6 7 8 9 10 11 12 13

k = 1: m = 0: 0
k = 2: m = 0: 0
k = 3: m = 0: 0
k = 4: m = 0: 0
k = 5: m = 0: 0
k = 6: m = 0: 0
k = 7: m = 0: 0 2
k = 8: m = 0: 0 1
k = 9: m = 0: 0 12 5

k = 10: m = 0: 0 13 11
k = 11: m = 0: 0 67 63 12
k = 12: m = 0: 0 79 108 24
k = 13: m = 0: 0 313 506 258 36
k = 14: m = 0: 0 367 781 512 120 4
k = 15: m = 0: 0 1337 3263 3034 1058 88
k = 16: m = 0: 0 1630 4881 5570 2616 344
k = 17: m = 0: 0 5372 18364 26402 16540 3844 228
k = 18: m = 0: 0 6579 26765 45666 35554 11304 1180 24
k = 19: m = 0: 0 20627 94109 191204 184061 79045 13088 540

m = 1: 0 0 0 440 732 296 16
k = 20: m = 0: 0 25540 135307 318682 365211 196180 44580 3180

m = 1: 0 0 0 482 1268 932 144
m = 2: 0 0 0 0 0 1

k = 21: m = 0: 0 76510 450060 1220942 1659522 1118937 350556 42842 1320
m = 1: 0 0 0 2818 7176 5676 1216 32
m = 2: 0 0 0 0 0 9

k = 22: m = 0: 0 95057 641720 1985134 3120771 2509792 990592 169448 9320 112
m = 1: 0 0 0 3674 12192 12568 3636 136
m = 2: 0 0 0 0 0 17

k = 23: m = 0: 0 276274 2040150 7105946 12879180 12377672 6150358 1452076 135784 3136
m = 1: 0 0 0 19098 64448 76820 32684 4024 64
m = 2: 0 0 0 0 0 137 30

k = 24: m = 0: 0 346018 2898010 11353726 23338390 25947514 15419666 4601220 601424 25712
m = 1: 0 0 0 23444 103122 158260 90180 17552 920
m = 2: 0 0 0 0 0 270 114 4

k = 25: m = 0: 0 976063 8860482 38495328 89426553 115279108 82289034 31187076 5714888 415997 7400
m = 1: 0 0 0 94666 424914 731252 519616 143392 12216 128
m = 2: 0 0 0 0 0 1265 806 88

k = 26: m = 0: 0 1226206 12534347 60661514 157598759 230244092 190476532 86654448 20197264 2094328 68328 480
m = 1: 0 0 0 122894 680794 1416432 1241720 453176 58544 1200
m = 2: 0 0 0 0 0 2249 2088 404

k = 27: m = 0: 0 3386864 37152938 196909052 569160855 943030736 907260320 497679135 147806144 21423324 1232552 17024
m = 1: 0 0 0 469462 2634964 6024260 6281120 3020604 621624 42432 384
m = 2: 0 0 0 0 0 9684 11251 4068 372

k = 28: m = 0: 0 4277264 52479627 307270290 982506553 1817183752 1982344130 1262691172 451553854 83691396 6871644 184472
m = 1: 0 0 0 595886 4101884 11166908 13931590 8277136 2252312 241928 7376
m = 2: 0 0 0 0 0 16277 26064 13026 2036 62

k = 29: m = 0: 0 11575754 151270091 960813686 3377839972 6972781716 8650626226 6429473333 2783825134 661516709 77248932 3576360 39200
m = 1: 0 0 0 2042808 14313528 42420716 60798498 43871148 15567336 2427856 124240 768
m = 2: 0 0 0 0 0 59993 112671 76210 18564 1126
m = 3: 0 0 0 0 0 0 0 4

k = 30: m = 0: 0 14659190 213330317 1487382260 5735423248 13065939872 18093417692 15268099840 7695069088 2210910008 332100964 22273608 457088 1984
m = 1: 0 0 0 2667076 22291914 76567604 127425954 108969532 47578660 9784768 760000 9504
m = 2: 0 0 0 0 0 98286 238326 207246 69584 7102
m = 3: 0 0 0 0 0 0 0 32 4

The total number 1091507 is equal to the value reported previously in Table 2 of Ref. [24].

The functional equation for calculating the total numbers (eq. 40 of Ref. [24]) is regarded

as a special case of eq. 44, so that it can be derived by starting from this equation. When we put

y = z = 1 in eq. 44, we obtain the following equation:

C(x,1,1) =
1

2

{
B(I)(x,1,1)+B(II)(x,1,1)+B(III)(x,1,1)

}
=

x
24

{
b(x,1,1)4 +3b(x2,1,1)2 +8b(x,1,1)b(x3,1,1)

− 6a(x,1,1)2c(x2,1,1)−6c(x4,1,1)
}

(62)

By putting C(x,1,1) = Ĉ(x), a(x,1,1) = a(x), c(x2,1,1) = c(x2), and b(x,1,1) = b(x), eq. 62

is converted into the following functional equation:

Ĉ(x) =
x

24

{
b(x)4 +3b(x2)2 +8b(x)b(x3)−6a(x)2c(x2)−6c(x4)

}
, (63)

which is identical with eq. 40 of Ref. [24].

Achiral Centroidal Alkanes and Enantiomeric Pairs of Chiral Ones Table 8 lists the total

numbers of achiral and chiral centroidal alkanes, which are obtained as the coefficients Bk�m
of the term xky�zm appearing in B(x,y,z) (eq. 45). Each of the numbers is stored in the series
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Table 8: Achiral Centroidal Alkanes and Enantiomeric Pairs of Chiral Ones

Carbon No. of No. of Asymmetric Centers (�)

Cont. (k) P. C. (m) � = 0 1 2 3 4 5 6 7 8 9 10 11 12 13

k = 1: m = 0: 1
k = 2: m = 0: 0
k = 3: m = 0: 1
k = 4: m = 0: 1
k = 5: m = 0: 3
k = 6: m = 0: 2
k = 7: m = 0: 7 2
k = 8: m = 0: 7 1
k = 9: m = 0: 20 12 6

k = 10: m = 0: 20 13 11
m = 1: 0 0 2

k = 11: m = 0: 55 67 67 12
m = 1: 0 0 2

k = 12: m = 0: 60 79 108 24
m = 1: 0 0 12

k = 13: m = 0: 156 313 518 258 38
m = 1: 0 0 16
k = 14: m = 0: 162 367 781 512 120 4
m = 1: 0 0 54 0 4
k = 15: m = 0: 438 1337 3296 3034 1070 88
m = 1: 0 0 80 0 4
k = 16: m = 0: 471 1630 4881 5570 2616 344
m = 1: 0 0 214 0 32
k = 17: m = 0: 1239 5372 18447 26402 16591 3844 232

m = 1: 0 0 338 0 40
k = 18: m = 0: 1319 6579 26765 45666 35554 11304 1180 24

m = 1: 0 0 706 0 176 0 8
k = 19: m = 0: 3498 20627 94307 191204 184238 79045 13120 540

m = 1: 0 0 1290 440 976 296 24
m = 2: 0 0 0 0 7

k = 20: m = 0: 3767 25540 135307 318682 365211 196180 44580 3180
m = 1: 0 0 2474 482 2078 932 224
m = 2: 0 0 0 0 18 1

k = 21: m = 0: 9890 76510 450515 1220942 1660080 1118937 350736 42842 1328
m = 1: 0 0 4614 2818 8378 5676 1312 32
m = 2: 0 0 0 0 67 9

k = 22: m = 0: 10572 95057 641720 1985134 3120771 2509792 990592 169448 9320 112
m = 1: 0 0 7892 3674 15522 12568 4180 136 16
m = 2: 0 0 0 0 114 17 8

k = 23: m = 0: 27951 276274 2041163 7105946 12880787 12377672 6151156 1452076 135872 3136
m = 1: 0 0 15790 19098 69638 76820 33396 4024 80
m = 2: 0 0 0 0 437 137 56

k = 24: m = 0: 30064 346018 2898010 11353726 23338390 25947514 15419666 4601220 601424 25712
m = 1: 0 0 25848 23444 115834 158260 93120 17552 1128
m = 2: 0 0 0 0 768 270 226 4
m = 3: 0 0 0 0 0 0 4

k = 25: m = 0: 79019 976063 8862682 38495328 89430945 115279108 82292088 31187076 5715506 415997 7416
m = 1: 0 0 52360 94666 445428 731252 523740 143392 12456 128
m = 2: 0 0 0 0 2328 1265 1112 88
m = 3: 0 0 0 0 0 0 4

k = 26: m = 0: 84798 1226206 12534347 60661514 157598759 230244092 190476532 86654448 20197264 2094328 68328 480
m = 1: 0 0 80182 122894 725584 1416432 1255516 453176 60240 1200 32
m = 2: 0 0 0 0 3626 2249 2800 404 16
m = 3: 0 0 0 0 0 0 28

k = 27: m = 0: 223373 3386864 37157624 196909052 569172278 943030736 907270846 497679135 147809446 21423324 1232780 17024
m = 1: 0 0 169628 469462 2711124 6024260 6301500 3020604 623752 42432 416
m = 2: 0 0 0 0 10971 9684 13565 4068 450
m = 3: 0 0 0 0 0 0 38

k = 28: m = 0: 240364 4277264 52479627 307270290 982506553 1817183752 1982344130 1262691172 451553854 83691396 6871644 184472
m = 1: 0 0 253566 595886 4258022 11166908 13990286 8277136 2262964 241928 7896
m = 2: 0 0 0 0 17394 16277 31228 13026 2392 62
m = 3: 0 0 0 0 0 0 168 0 8

k = 29: m = 0: 631477 11575754 151279902 960813686 3377868665 6972781716 8650659808 6429473333 2783840076 661516709 77250896 3576360 39232
m = 1: 0 0 539936 2042808 14583490 42420716 60888774 43871148 15581620 2427856 124824 768
m = 2: 0 0 0 0 47481 59993 126601 76210 19638 1126
m = 3: 0 0 0 0 0 0 286 4 8

k = 30: m = 0: 678034 14659190 213330317 1487382260 5735423248 13065939872 18093417692 15268099840 7695069088 2210910008 332100964 22273608 457088 1984
m = 1: 0 0 773806 2667076 22805714 76567604 127658586 108969532 47635364 9784768 765064 9504 64
m = 2: 0 0 0 0 71356 98286 264106 207246 72740 7102 64
m = 3: 0 0 0 0 0 0 936 32 84

obtained as Bh of the code “Alkane1-30b.mpl”. Because we can put

Bk�m =
1

2

{
B(I)

k�m +B(II)

k�m +B(III)

k�m

}
+B(IV)

k�m +B(V)

k�m (64)

in agreement with eq. 45, each value of Table 8 can be obtained by starting from corresponding

values appearing in Tables 1–5.

The total numbers B̂k (= ∑∞
�=0 ∑∞

m=0 Bk�m, k = 1 to 20) have been directly obtained as a

generating function and collected in Table 2 of Ref. [24]. They are confirmed by the present

itemized enumeration. For example, the rows concerning k = 20 (Table 8) are summed up to

give the following result:

k = 20: m = 0: 3767 25540 135307 318682 365211 196180 44580 3180 1092447

m = 1: 0 0 2474 482 2078 932 224 6190

m = 2: 0 0 0 0 18 1 19

3767 25540 137781 319164 367307 197113 44804 3180 1098656

The total number 1098656 is equal to the value reported previously in Table 2 of Ref. [24].
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Moreover, the functional equation for calculating the total numbers (eq. 29 of Ref. [24]) can

be derived by starting from eq. 45. When we put y = z = 1 in eq. 45, we obtain the following

equation:

B(x,1,1) =
1

2

{
B(I)(x,1,1)+B(II)(x,1,1)+B(III)(x,1,1)

}
+B(IV)(x,1,1)+B(V)(x,1,1)

=
x

24

{
b(x,1,1)4 +3b(x2,1,1)2 +8b(x,1,1)b(x3,1,1)

+ 6a(x,1,1)2c(x2,1,1)+6c(x4,1,1)
}

(65)

By putting B(x,1,1) = B̂(x), a(x,1,1) = a(x), c(x2,1,1) = c(x2), and b(x,1,1) = b(x), eq. 65

is converted into the following functional equation:

B̂(x) =
x

24

{
b(x)4 +3b(x2)2 +8b(x)b(x3)+6a(x)2c(x2)+6c(x4)

}
, (66)

which is identical with eq. 29 of Ref. [24].

Under the condition of y = z = 1, we obtain the following equation:

B(I–V)(x,1,1) = B(I)(x,1,1)+B(II)(x,1,1)+B(III)(x,1,1)+B(IV)(x,1,1)+B(V)(x,1,1)(67)

=
x

12

{
b(x,1,1)4 +3b(x2,1,1)2 +8b(x,1,1)b(x3,1,1)

}
(68)

The latter equation (eq. 68) can be directly obtained from eq. 23, where we take no account

of the numbers of asymmetric and pseudoasymmetric centers. By putting B(I–V)(x,1,1) = Ê(x)
and b(x,1,1) = b(x), eq. 68 is converted into the following functional equation:

Ê(x) =
x

12

{
b(x)4 +3b(x2)2 +8b(x)b(x3)

}
, (69)

which is identical with eq. 36 of Ref. [24].

3.3 Enumeration of Bicentroidal Alkanes
The categorization into RS-stereoisomeric types is not so effective to treat bicentroidal alkanes,

because these belong to either Type II or Type IV [29]. Hence, it is sufficient to discuss achiral

and chiral bicentroidal alkanes. By using a(x,y,z) (eq. 19), c(x2,y2,z2) (eq. 21), and b(x,y,z)
(eq. 20), we enumerate bicentroidal alkanes on the basis of a dumbbell-like skeleton. Although

the skeleton has been previously formulated without regard to RS-stereoisomeric types [24], its

theoretical essence can be applied to the present enumeration after slight modification.

3.3.1 Cycle Indices with Chirality Fittingness

Although the previous results concerned with centroidal alkanes [24, 27] have not taken RS-

stereoisomeric types, the methodology can be applied to evaluate bicentroidal alkanes. Thus,

we consider the action of the K-factor group (K = D∞h/C∞v) and its maximum chiral group

(K2) on the dumbbell-like skeleton:

K ∼ {(1)(2),(1 2);(1)(2),(1 2)} (70)

K2 ∼ {(1)(2),(1 2)} (71)

(72)
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Because bicentroidal alkanes are RS-astereogenic, the K-group itself can be regarded as a point

subgroup and as a ligand-inversion subgroup. This means that it is sufficient to examine only

the chiral/achiral nature of bicentroidal alkanes.

On the same line as the derivation of eq. 23 for T (contained in eq. 22), we collect products

of SIs concerning rotoreflections of K2 (eq. 71) in order to obtain a CI-CF for counting achiral

plus chiral bicentroidal promolecules (i.e., Types II and IV):

CI-CF(II/IV)(K2;bd) =
1

2
(b2

1 +b2), (73)

where achiral alkanes and two enantiomers of each pair are counted separately.

On the same line as the derivation of eq. 24 for Td (eq. 22), we collect products of SIs

concerning rotoreflections of K (eq. 70), to obtain a CI-CF for counting achiral bicentroidal

alkanes (i.e., Type IV):

CI-CF(IV)(K;$d) =
1

2
(a2

1 + c2). (74)

The subtraction of eq. 74 from eq. 73 leaves the CI-CF for counting chiral bicentroidal alkanes

(i.e., Type II):

CI-CF(II)(K;$d) =
1

2
(b2

1 +b2 −a2
1 − c2) (75)

3.3.2 Functional Equations for Counting Bicentroidal Alkanes

Let B̃(τ)
k�m (τ = II or IV or their combinations) be the number of bicentroidal alkanes (pro-

molecules) of Type T, which have k carbons, � asymmetric centers and m pseudoasymmetric

centers. Let the symbol B̃(τ)
k be the summation for each type (τ) represented as follows:

B̃(τ)
k =

∞

∑
�=0

∞

∑
m=0

B̃(τ)
k�m. (76)

We now regard these numbers B̃(τ)
k�m as the coefficients of the following generating functions:

B̃(τ)(xd,yd,zd) =
∞

∑
k=0

(
∞

∑
�=0

(
∞

∑
m=0

B̃(τ)
k�mzdm

)
yd�

)
xdk, (77)

where the valuable x is concerned with carbon content, the valuable y is concerned with the

number of asymmetric centers, and the valuable z is concerned with the number of pseudoasym-

metric centers. We put B̃(τ)
000 = 0 for treating the respective initial (trivial) cases.

To evaluate the generating functions (eq. 77, d = 1), we derive the corresponding func-

tional equations by starting from the CI-CFs (eqs. 74 and 75). Thus, the SIs ad , cd , and bd in

these equations are replaced by a(xd,yd,zd), c(xd,yd,zd), and b(xd,yd,zd) to give the following

functional equations:

B̃(II)(x,y,z) =
1

2

{
b(x,y,z)2 +b(x2,y2,z2)−a(x,y,z)2 − c(x2,y2,z2)

}
(78)

B̃(IV)(x,y,z) =
1

2

{
a(x,y,z)2 + c(x2,y2,z2)

}
. (79)
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Let Ã(x,y,z), C̃(x,y,z), and B̃(x,y,z) be functional equations for calculating the numbers

of achiral, chiral, and total (achiral plus chiral) bicentroidal alkanes, where each pair of two

enantiomers and each achiral alkane are respectively counted just once. Because the symbol

B̃(II)(x,y,z) (Type II: chiral/RS-astereogenic/scleral) counts two enantiomers of each pair sepa-

rately, the numbers are calculated as follows:

Ã(x,y,z) = B̃(IV)(x,y,z) =
1

2

{
a(x,y,z)2 + c(x2,y2,z2)

}
(80)

C̃(x,y,z) =
1

2
B̃(II)(x,y,z)

=
1

4

{
b(x,y,z)2 +b(x2,y2,z2)−a(x,y,z)2 − c(x2,y2,z2)

}
(81)

B̃(x,y,z) =
1

2
B̃(II)(x,y,z)+B(IV)(x,y,z)

=
1

4

{
b(x,y,z)2 +b(x2,y2,z2)+a(x,y,z)2 + c(x2,y2,z2)

}
(82)

Suppose that we have obtained a(x,y,z) = ∑μ
k=0 αkxk, c(x2,y2,z2) = ∑μ

k=0 γkx2k, and b(x,y,z)
= ∑μ

k=0 βkxk, where μ is tentatively fixed. They are introduced into eqs. 80–82 so as to give

Ã(x,y,z)(μ), C̃(x,y,z)(μ), and B̃(x,y,z)(μ), where the coefficient of the resulting term x2μ is ef-

fective after expansion. Note that the coefficient is a polynomial containing y�zm. Thereby, we

obtain the following coefficients:

∞

∑
�=0

(
∞

∑
m=0

Ã(2μ)�mzm

)
y� = coeff(Ã(x,y,z)(μ),x2μ) (83)

∞

∑
�=0

(
∞

∑
m=0

C̃(2μ)�mzm

)
y� = coeff(C̃(x,y,z)(μ),x2μ) (84)

∞

∑
�=0

(
∞

∑
m=0

B̃(2μ)�mzm

)
y� = coeff(B̃(x,y,z)(μ),x2μ). (85)

3.3.3 Programming and Implementation

The recursive calculations of a(xd,yd,zd), c(xd,yd,zd), and b(xd,yd,zd) in the right-hand sides

of eqs. 80–82 are the same as described in the code “Alkane1-30b.mpl”, although they are

omitted. The paragraph “Alkanes as Centroidal 3D-Trees” in the code “Alkane1-30b.mpl” is

replaced as follows in the code “BAlkane1-30b.mpl” for calculating bicentroidal alkanes:

# BAlkane1-30b.mpl
(omitted)
"Alkanes as Bicentroidal 3D-Trees";
Bxt := (1/4)*(b111ˆ2 + b222 + a111ˆ2 + c222);
Axt := (1/2)*(a111ˆ2 + c222);
Cxt := (1/4)*(b111ˆ2 + b222 - a111ˆ2 - c222);

in accord with eqs. 80–82. The storage part from the line “q := 2*k +1:” to the line “end
do:” is replaced as follows:

q := 2*k:
Bt := Bt + coeff(Bxt,xˆq)*xˆq:
At := At + coeff(Axt,xˆq)*xˆq:
Ct := Ct + coeff(Cxt,xˆq)*xˆq:
end do:

which is in agreement with the bicentroidal nature of alkanes to be counted (cf. eqs. 83–85).

- 546 -



3.3.4 Results and Illustrative Examples

Achiral Bicentroidal Alkanes Table 9 lists the coefficient Ãk�m of the term xky�zm calculated

by means of Ã(x,y,z) (eq. 80), where each coefficient is stored in the series obtained as At of

the code “BAlkane1-30b.mpl”.

Table 9: Achiral Bicentroidal Alkanes

Carbon No. of No. of Asymmetric Centers (�)

Cont. (k) P. C. (m) � = 0 1 2 3 4 5 6 7 8 9 10 11 12

k = 2: m = 0: 1
k = 4: m = 0: 1
k = 6: m = 0: 3
k = 8: m = 0: 6 0 1

k = 10: m = 0: 15 0 3
k = 12: m = 0: 36 0 8 0 2
k = 14: m = 0: 105 0 20 0 10
k = 16: m = 0: 276 0 46 0 38 0 4
k = 18: m = 0: 780 0 102 0 125 0 28

m = 1: 0 0 78
m = 2: 0 0 0 0 3

k = 20: m = 0: 2145 0 220 0 366 0 148 0 8
m = 1: 0 0 260
m = 2: 0 0 0 0 10

k = 22: m = 0: 6105 0 461 0 1000 0 614 0 80
m = 1: 0 0 1320
m = 2: 0 0 0 0 78 0 2

k = 24: m = 0: 17020 0 948 0 2588 0 2224 0 528 0 16
m = 1: 0 0 4416
m = 2: 0 0 0 0 300 0 8

k = 26: m = 0: 48205 0 1921 0 6430 0 7288 0 2678 0 212
m = 1: 0 0 17360 0 1240
m = 2: 0 0 0 0 1596 0 254 0 14

k = 28: m = 0: 135460 0 3836 0 15442 0 22226 0 11542 0 1736 0 32
m = 1: 0 0 56160 0 4160
m = 2: 0 0 0 0 5886 0 954 0 64

k = 30: m = 0: 384126 0 7574 0 36099 0 64024 0 44296 0 10528 0 552
m = 1: 0 0 197976 0 28032
m = 2: 0 0 0 0 25651 0 7486 0 668 0 12

The value 6 at the intersection between the (k = 8, m = 0)-row and the (� = 0)-column in

Table 9 corresponds to the term 6x8. Hence, there exist six achiral bicentroidal alkanes (65–70)

which have no asymmetric center and no pseudoasymmetric center, as depicted in Fig. 12.

On the other hand, the value 1 at the intersection between the (k = 8, m = 0)-row and

the (� = 2)-column in Table 9 corresponds to the term 6x8y2. Hence, there exists one achiral

bicentroidal alkane (71) which has two asymmetric center and no pseudoasymmetric center (a

meso-case).

The seven alkanes collected in Fig. 12 have been already illustrated in Fig. 6 of Ref. [24],

where they are not itemized with respect to the number of asymmetric centers. The present

enumeration discriminates such meso-cases as 71 from cases in which two terminal alkyl lig-

ands are alkyl ligands having no asymmetric centers and no pseudoasymmetric centers. As a

result, the value Ãk00 at the intersection between the (k, m = 0)-row and the (� = 0)-column

can be calculated by using the data α(k/2)00 (cf. eq. 53), i.e., Ãk00 = α(k/2)00(α(k/2)00 + 1)/2.

For example, we obtain 39× (39 + 1)/2 = 780, which is equal to the value appearing at the

intersection between the (k = 18, m = 0)-row and the (� = 0)-column in Table 9.

The total number of achiral bicentroidal alkanes of carbon content k is calculated by using

eq. 76 as follows:

Ãk = B̃(IV)

k =
∞

∑
�=0

∞

∑
m=0

Ãk�m. (86)
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Figure 12: Six achiral bicentroidal alkanes (65–70) corresponding to the term 6x8 as well as

one achiral bicentroidal alkane (71) corresponding to the term x8y2.

The total numbers Ãk (k = 1 to 20) have been directly obtained as a generating function and

collected in Table 3 of Ref. [24]. They are confirmed by the present itemized enumeration. For

example, the rows concerning k = 20 (Table 9) are summed up to give the following result:

k = 20: m = 0: 2145 0 220 0 366 0 148 0 8 2887

m = 1: 0 0 260 260

m = 2: 0 0 0 0 10 10

2145 0 480 0 376 0 148 0 8 3157

The total number 3157 is equal to the value reported previously in Table 3 of Ref. [24].

The numerical confirmation described above can be traced in general. Thus, the functional

equation for calculating the total numbers (eq. 56 of Ref. [24]) can be derived by starting from

eq. 80. When we put y = z = 1 in eq. 80, we obtain the following equation:

Ã(x,1,1) = B̃(IV)(x,1,1) (87)

=
x
2

{
a(x,1,1)2 + c(x2,1,1)

}
(88)

The latter equation (eq. 88) can be directly obtained from eq. 74, where we take no account of

the numbers of asymmetric and pseudoasymmetric centers. Note that the coefficient of the term

xk in B̃(IV)(x,1,1) is equal to the value of B̃(IV)

k (eq. 76). By putting Ã(x,1,1) = Ã(x), a(x,1,1) =
a(x), and c(x2,1,1) = c(x2), eq. 88 is converted into the following functional equation:

Ã(x) =
1

2

{
a(x)2 + c(x2)

}
, (89)

which is identical with eq. 56 of Ref. [24].

Chiral Bicentroidal Alkanes Table 10 lists the coefficient C̃k�m of the term xky�zm, which is

calculated by means of C̃(x,y,z) (eq. 81) and stored in the series obtained as Ct of the code

“BAlkane1-30b.mpl”.
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Table 10: Enantiomeric Pairs of Chiral Bicentroidal Alkanes

Carbon No. of No. of Asymmetric Centers (�)

Cont. (k) P. C. (m) � = 0 1 2 3 4 5 6 7 8 9 10 11 12

k = 2: m = 0: 0
k = 4: m = 0: 0
k = 6: m = 0: 0
k = 8: m = 0: 0 3 1
k = 10: m = 0: 0 15 9
k = 12: m = 0: 0 64 80 32 4
k = 14: m = 0: 0 280 540 400 100
k = 16: m = 0: 0 1058 2990 3588 1812 304 16
k = 18: m = 0: 0 3978 15279 26592 21337 7000 784

m = 1: 0 0 0 204 250 56
k = 20: m = 0: 0 14300 72190 170660 199596 111856 27760 2368 64

m = 1: 0 0 0 880 1464 592 32
k = 22: m = 0: 0 50710 322521 989540 1574908 1301760 536996 98240 6400

m = 1: 0 0 0 5752 13844 11368 3416 320
m = 2: 0 0 0 0 0 24 4

k = 24: m = 0: 0 174432 1374896 5316064 11011600 12515456 7709440 2431360 349952 16896 256
m = 1: 0 0 0 24224 77280 94784 48256 8832 256
m = 2: 0 0 0 0 0 192 64

k = 26: m = 0: 0 595510 5683541 26963340 70175576 104078276 88368528 41760848 10261796 1135472 44944
m = 1: 0 0 0 116876 476580 816980 664408 260008 44856 2544
m = 2: 0 0 0 0 0 1680 1124 360 32

k = 28: m = 0: 0 1994720 22744736 130028544 414975076 775880728 863793436 566925112 211374724 41496288 3752384 111104 1024
m = 1: 0 0 0 461088 2372776 5425472 6235504 3687512 1054624 116864 2048
m = 2: 0 0 0 0 0 9720 11124 5760 1008

k = 30: m = 0: 0 6634824 88988200 602912676 2311776649 5302623088 7457116880 6440476448 3350078256 1003379072 159741568 11622912 304704
m = 1: 0 0 0 1934228 12128606 35181316 53979752 45723560 20829904 4628256 424896 13248
m = 2: 0 0 0 0 0 57404 96156 81960 30176 3744 144
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Figure 13: Three chiral bicentroidal alkanes (72–74) of corresponding to the term 3x8y and one

chiral bicentroidal alkane (75) of corresponding to the term x8y2. An appropriate chiral alkane

is depicted as a representative of each pair of enantiomers.

To illustrate the data of Table 10, let us examine the value 3 at the intersection between

the (k = 8, m = 0)-row and the (� = 1)-column, where the value corresponds to the term 3x8y.

The value 3 indicates that there exist three pairs of chiral bicentroidal alkanes (72–74) which

have one asymmetric center and no pseudoasymmetric center, as depicted in the first row of

Fig. 13. This result can be confirmed by the fact that there exist one enantiomeric pair of chiral

butan-2-yl ligands (cf. eq. 54) and three achiral ligands of carbon content 4 (cf. eq. 53).

On the other hand, the value 1 at the intersection between the (k = 8, m = 0)-row and

the (� = 2)-column in Table 10 corresponds to the term x8y2. Hence, there exists one chiral

bicentroidal alkane (75) which has two asymmetric centers and no pseudoasymmetric center, as

shown in the second row of Fig. 13.

The four alkanes collected in Fig. 13 have been already illustrated in Fig. 6 of Ref. [24],

where they are not itemized with respect to the number of asymmetric centers. The present

enumeration discriminates the cases having one asymmetric center (72–74) from the case hav-

ing two asymmetric centers (75).

The total number of chiral bicentroidal alkanes of carbon content k is calculated by using
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eq. 76 as follows:

C̃k =
1

2
B̃(II)

k =
∞

∑
�=0

∞

∑
m=0

C̃k�m. (90)

The total numbers C̃k (k = 1 to 20) have been directly obtained as a generating function and

collected in Table 3 of Ref. [24]. They are numerically confirmed by the present itemized

enumeration. For example, the rows concerning k = 20 (Table 10) are summed up to give the

following result:

k = 20: m = 0: 0 14300 72190 170660 199596 111856 27760 2368 64 598794

m = 1: 0 0 0 880 1464 592 32 2968

0 14300 72190 171540 201060 112448 27792 2368 64 601762

The total number 601762 is equal to the value reported previously in Table 3 of Ref. [24].

In addition to the numerical confirmation, the functional equation for calculating the total

numbers (eq. 58 of Ref. [24]) can be algebraically derived by starting from eq. 81. When we

put y = z = 1 in eq. 81, we obtain the following equation:

C̃(x,1,1) =
1

2
B̃(II)(x,1,1)

=
1

4

{
b(x,1,1)2 +b(x2,1,1)−a(x,1,1)2 − c(x2,1,1)

}
(91)

The latter equation (eq. 91) can be directly obtained from eq. 75, where we take no account

of the numbers of asymmetric and pseudoasymmetric centers. By putting C̃(x,1,1) = C̃(x),
a(x,1,1) = a(x), and c(x2,1,1) = c(x2), eq. 91 is converted into the following functional equa-

tion:

C̃(x) =
1

4

{
b(x)2 +b(x2)−a(x)2 − c(x2)

}
, (92)

which is identical with eq. 58 of Ref. [24].

Achiral Bicentroidal Alkanes and Enantiomeric Pairs of Chiral Ones Table 11 lists the

coefficient B̃k�m of the term xky�zm calculated by means of B̃(x,y,z) (eq. 82), where each coef-

ficient is stored in the series obtained as Bt of the code “BAlkane1-30b.mpl”.

The total number of bicentroidal alkanes of carbon content k is calculated by using eq. 76

as follows:

B̃k =
1

2
B̃(II)

k + B̃(IV)

k =
∞

∑
�=0

∞

∑
m=0

B̃k�m. (93)

The total numbers B̃k (k = 1 to 20) have been directly obtained as a generating function and

collected in Table 3 of Ref. [24]. They are confirmed by the present itemized enumeration. For

example, the rows concerning k = 20 (Table 11) are summed up to give the following result:

k = 20: m = 0: 2145 14300 72410 170660 199962 111856 27908 2368 72 601681

m = 1: 0 0 260 880 1464 592 32 3228

m = 2: 0 0 0 0 10 10

2145 14300 72670 171540 201436 112448 27940 2368 72 604919

The total number 604919 is equal to the value reported previously in Table 3 of Ref. [24].

- 550 -



Table 11: Achiral Bicentroidal Alkanes and Enantiomeric Pairs of Chiral Ones

Carbon No. of No. of Asymmetric Centers (�)

Cont. (k) P. C. (m) � = 0 1 2 3 4 5 6 7 8 9 10 11 12

k = 2: m = 0: 1
k = 4: m = 0: 1
k = 6: m = 0: 3
k = 8: m = 0: 6 3 2
k = 10: m = 0: 15 15 12
k = 12: m = 0: 36 64 88 32 6
k = 14: m = 0: 105 280 560 400 110
k = 16: m = 0: 276 1058 3036 3588 1850 304 20
k = 18: m = 0: 780 3978 15381 26592 21462 7000 812

m = 1: 0 0 78 204 250 56
m = 2: 0 0 0 0 3

k = 20: m = 0: 2145 14300 72410 170660 199962 111856 27908 2368 72
m = 1: 0 0 260 880 1464 592 32
m = 2: 0 0 0 0 10

k = 22: m = 0: 6105 50710 322982 989540 1575908 1301760 537610 98240 6480
m = 1: 0 0 1320 5752 13844 11368 3416 320
m = 2: 0 0 0 0 78 24 6

k = 24: m = 0: 17020 174432 1375844 5316064 11014188 12515456 7711664 2431360 350480 16896 272
m = 1: 0 0 4416 24224 77280 94784 48256 8832 256
m = 2: 0 0 0 0 300 192 72

k = 26: m = 0: 48205 595510 5685462 26963340 70182006 104078276 88375816 41760848 10264474 1135472 45156
m = 1: 0 0 17360 116876 477820 816980 664408 260008 44856 2544
m = 2: 0 0 0 0 1596 1680 1378 360 46

k = 28: m = 0: 135460 1994720 22748572 130028544 414990518 775880728 863815662 566925112 211386266 41496288 3754120 111104 1056
m = 1: 0 0 56160 461088 2376936 5425472 6235504 3687512 1054624 116864 2048
m = 2: 0 0 0 0 5886 9720 12078 5760 1072

k = 30: m = 0: 384126 6634824 88995774 602912676 2311812748 5302623088 7457180904 6440476448 3350122552 1003379072 159752096 11622912 305256
m = 1: 0 0 197976 1934228 12156638 35181316 53979752 45723560 20829904 4628256 424896 13248
m = 2: 0 0 0 0 25651 57404 103642 81960 30844 3744 156

Moreover, the functional equation for calculating the total numbers (eq. 52 of Ref. [24]) can

be derived by starting from eq. 82. When we put y = z = 1 in eq. 82, we obtain the following

equation:

B̃(x,1,1) =
1

2
B̃(II)(x,1,1)+ B̃(IV)(x,1,1)

=
1

4

{
b(x,1,1)2 +b(x2,1,1)+a(x,1,1)2 + c(x2,1,1)

}
(94)

By putting B̃(x,1,1) = B̃(x), a(x,1,1) = a(x), and c(x2,1,1) = c(x2), eq. 94 is converted into

the following functional equation:

B̃(x) =
1

4

{
b(x)2 +b(x2)+a(x)2 + c(x2)

}
, (95)

which is identical with eq. 52 of Ref. [24].

4 Conclusions
A criterion for specifying asymmetric and pseudoasymmetric centers in alkanes has been devel-

oped on the basis of three kinds of attributes of RS-stereoisomers (chirality, RS-stereogenicity,

and sclerality), which were formulated by a recently-developed method [29]. The three kinds

of attributes are capable of defining five RS-stereoisomeric types (Types I–V), so that RS-

stereogenic promolecules (Type I, III, and V) are divided into chiral (Types I and III) and achiral

ones (Type V). After another criterion has been formulated to select entities for the application

of the first criterion, the central atom of each promolecule of Types I and III is defined as an

asymmetric center, while the central atom of each promolecule of Types V is defined as a pseu-

doasymmetric center. According to the Criteria, alkyl ligands (equivalently, monosubstituted

alkanes) have been regarded as nested planted promolecules, where each participating planted

promolecule is categorized into an asymmetric (Types I/III), a pseudoasymmetric (Type V), or a
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symmetric one (Types II/IV). Thereby, they have been counted combinatorially with itemization

with respect to carbon content (k), to the number of asymmetric carbons (�), as well as to the

number of pseudoasymmetric carbons (m). The data of alkyl ligands stored as generating func-

tions have been used to count centroidal and bicentroidal alkanes on the basis of a tetrahedral

skeleton, where the criteria are effective to categorize alkanes into Types I–V. Each itemized

number has been obtained as the coefficient of the term xky�zm appearing in a respective gen-

erating function, which has been derived by following Fujita’s proligand method [17–19]. The

itemized values up to carbon content 30 have been listed in tabular forms, which are distinc-

tively concerned with Type I, . . ., or Type V as well as with achiral stereoisomers and chiral

stereoisomers.
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