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Abstract
The polynomial forms of the Dunham and Simons-Parr-Finlan (SPF) interatomic 

potential energy functions are commonly used for quantifying the bond-stretching and 

bond compression potential energy. Due to the limitations of the Dunham and SPF 

potential functions for Rr 2  and Rr 5.0  respectively, where r = internuclear 

distance and R = equilibrium bond length, two sets of converting functions are 

proposed. Each set of converting function enables the coefficients of one potential 

function to be converted to those of the other potential function so that when the 

limitations of one potential function is encountered, one may continue the theoretical 

model using the other potential function. The converting functions were obtained by 

imposing Maclaurin series expansion on both potential functions, followed by 

comparison of terms. It is herein shown that the converting functions take on the form 

of binomial coefficients – thereby allowing the converting functions to be 

schematically represented using the Pascal Triangle. The use of Pascal Triangle is 

convenient and is therefore advantageous especially for generating the converting 

functions up to very high orders. Illustrations on the conversion of Dunham to SPF 

coefficients and vice versa reveal good agreement. 
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1. Introduction 

In spite of its long and illustrious history, the binomial coefficients have continued to 

be applicable even outside the realms of mathematics. For example, the application of 

binomial coefficients can be found within the context of physics [1-14] and chemistry 

[13-21]. In this paper, we apply the Maclaurin series expansion on the interatomic 

potential energy functions of Dunham [22] and Simons-Parr-Finlan (SPF) [23] such 

that both potentials can be related through binomial coefficients. Although Ogilvie 

[24] proposed a “central” potential of these two potential functions to address the 

former’s deficiencies, the latter nevertheless encounters some limitations. Hence a 

relationship is developed herein that converts the Dunham coefficients into those of 

SPF upon encountering realms that are not suited for the Dunham function, and vice 

versa.

2. Analysis 

In spite of its ease of execution, the harmonic potential energy function 
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where = force constant, Hk r = internuclear distance and = equilibrium bond length, 

gives an unrealistically symmetric energy distribution about 

R

Rr . The Dunham 

potential function [22] 
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where

R
Rr

a           (3) 

allows better fit through its power series. It can be easily seen that the Dunham 

function reduces to the harmonic function when ,3,2,1;0 iai . However, the 

Dunham function does not converge for Rr 2 . As a result of this deficiency, Simons 

et al. [23] proposed an alternative potential function (SPF) 
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It can be seen that when ,3,2,1;0 ibi  the SPF potential function reduces to the 

Kratzer [25] potential function 
2
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where D  is the dissociation energy. Although the SPF potential function overcomes 

the deficiency encountered by the Dunham potential function, the former does not 

converge for Rr 5.0 . Arising from these shortcomings, Ogilvie [24] proposed a 

function
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which is “central” to the earlier two potential functions whereby 
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This function, however, does not converge for 3333.0r  and 3r . Figure 1 shows a 

schematic for the convergence range of  with reference to .Rr /

Dunham

Ogilvie

Fig. 1. Convergence range of the parameter  for all three potential functions.
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It is clear that either the Dunham or the SPF potential function would be sufficient for 

all values of r  so long as there exists a set of functions that convert Dunham 

coefficients into those of SPF and vice versa. Introducing the change in bond length as 

Rrr ,          (9) 

then the Dunham and SPF parameters raised to any positive integer powers can be 

written as 
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respectively, where m  and  are positive integers. Substituting Eqs.(10) and (11) into 

Eqs.(2) and (4) respectively, we arrive at 
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Comparing the LHS of Eqs.(12) and (13) gives 

00 ba           (14) 

while comparison of terms on the RHS of these equations leads to 
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which converts SPF coefficients onto those of Dunham potential function. Equation 

(15) can be solved to express the SPF coefficients in terms of Dunham coefficients as 
j

i
ij a

i
j

jb
1 1

1
)1( .        (16) 

The appearance of binomial coefficients in the conversion function established in 

Eqs.(15) and (16) implies that they can be conveniently generated by reference to the 
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Pascal Triangle, as shown in Fig. 2. The trapezium encloses all the coefficients 

described in Eqs.(15) and (16), while the triangle encompasses only the coefficients 

that are multiplied with  or  for obtaining  and  respectively. The bold 

numbers refer to those that are negative when computing  from , as described in 

Eq.(15).
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Fig. 2. The Pascal Triangle that can be used for convenient extraction of Eqs.(15) and (16), 

shown here up to 5j .

3. Results and Discussion 

For the purposes of illustration, we select a set of Dunham coefficients for conversion 

into SPF coefficients and vice versa for another set. In Table 1 the Dunham 

coefficients, , refer to those of LiH diatomic molecules [26]. Based on Eq.(16) or 

Fig.2, the equivalent SPF coefficients are 

ja

11 2 ab           (17a) 

212 33 aab          (17b) 
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3213 464 aaab         (17c) 

43214 510105 aaaab        (17d) 

up to 4j .

Table 1. Extraction of SPF coefficients ( ) from Dunham coefficients ( ) for LiH [26].jb ja

j ja jb

0 153796 1cm 153796 1cm

1 -2.70062 -0.70062

2 5.101 -0.00086

3 -7.86 0.34028

4 10.03 -0.2662

Substituting the values of  from Table 1 into Eq.(17), the calculated SPF 

coefficients  are listed on the right-most column of Table 1. The SPF coefficients 

 in Table 2 are taken from GeS diatoms [27]. Using Eq.(15), the Dunham 

coefficients can be calculated as 

ja

jb

jb

11 2 ba           (18a) 

212 33 bba          (18b) 

3213 464 bbba         (18c) 

43214 510105 bbbba        (18d) 

up to 4j . Alternatively, Eq.(18) can be obtained by referring to the Pascal Triangle 

in Fig.2, with the bolded numbers assigned negative values. Upon substituting the 

values of  in Table 2 into Eq.(18), the Dunham coefficients were computed and 

furnished in the middle column of Table 2. 

jb
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Table 2. Extraction of Dunham coefficients ( )from SPF coefficients ( ) for GeS [27].ja jb

j ja jb

0 441896.64 1cm 441896.64 1cm

1 -3.059895 -1.059895

2 5.777875 -0.40181

3 -8.50683 0.2453

4 10.03735 -0.317

Plots of dimensionless interatomic energy, ),(;/ 0 baxxU x , versus the non-

dimensionalized bond length, , are shown in Figs.3 and 4 for LiH and GeS 

diatomic molecules respectively. 
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Fig. 3. Plot of SPF potential energy curve based on the Dunham coefficients for LiH [26].
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The good agreement between the Dunham and SPF potential energy curves in both 

diatomic molecules for Rr 4.1  illustrates the validity of the developed converting 

functions. Needless to say, the extent of correlation can be extended to longer bond 

length if more terms are taken into consideration. 
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Fig. 4. Plot of Dunham potential energy curve based on the SPF coefficients for GeS [27].

4. Conclusions 

Two sets of converting functions have been developed herein to relate the coefficients 

of the Dunham and the SPF potential energy functions. Instead of proposing new 

potential functions or refining these two potential functions for overcoming their 

limitations, two sets of converting functions were developed so that when one of the 

potential functions falls into the range of non-convergence, its coefficients can be 

converted into those of the other potential function for continued computation. The 
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validity of the converting functions has been illustrated through two examples. It is 

worth noting that the converting functions rely heavily on binomial coefficients, 

thereby enabling these converting functions to be easily generated up to very high 

orders by mere reference to the Pascal Triangle. On the other hand, the binomial 

coefficient form is useful for computing purposes. In view of the very good agreement 

at Rr , it is herein suggested that future computation of potential energy curve using 

either of these two potential functions to incorporate the developed converting 

function. This will allow the Dunham potential function to be automatically converted 

into SPF function for Rr 2 , and the SPF function to be automatically converted to 

Dunham potential function for .Rr 5.0
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