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Abstract

Topological indices of nanotubes are numerical descriptors that are derived from graph of

chemical compounds. Such indices based on the distances in graph are widely used for estab-

lishing relationships between the structure of nanotubes and their physico-chemical properties.

The Szeged index is obtained as a bond additive quantity where bond contributions are given

as the product of the number of atoms closer to each of the two end points of each bond. In

this paper we find an exact expression for Szeged index of TUV C6[2p, q], the armchair polyhex

nanotubes, using a theorem of A. Dobrynin and I. Gutman on connected bipartite graphs (see

Ref [1]).

1. Introduction

One of the most important problems in chemistry is to convert chemical structure into

mathematical molecular descriptors that are relevant to the physical, chemical or biological

properties. Molecular structure is one of the basic concepts of chemistry, since properties and

chemical and biological behaviors of molecules are determined by it.Topological indices are a

convenient method of translating chemical constitution into numerical values that can be used

for correlations with physical properties studies. This method has been introduced by Harold

Wiener as a descriptor for explaining the boiling points of paraffins (see [2]-[6]). Harold Wiener

[2] in 1947 introduced the notion of path number of a graph as the sum of the distances between
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two carbon atoms in the molecules, in terms of carbo-carbon bound. Since then, the spectrum

of physico-chemical and biological properties enlarged continuously and several analogues have

been defined.

In 1991 Iijima [7] discovered carbon nanotubes as multi walled structures. Carbon nanotubes

show remarkable mechanical properties. Experimental studies have shown that they belong to

the stiffest and elastic known materials. These mechanical characteristics clearly predestinate

nanotubes for advanced composites. Carbon nanotubes are one of the most promising materials

for use as an electron emission source owing to their substantial emission current at relatively

low applied voltage in addition to their excellent mechanical and chemical stability [8], [9],[10].

Field emission tests have been performed on individual carbon nanotubes and carbon nanotube

films, and the characteristic values of threshold field, saturation current, and current stability

have been measured. These tests have shown that a single tube can emit a current of 0.1mA

[11] while a current density exceeding 1A/cm
2 has been observed for carbon nanotube films [12].

Operation for more than 5000 hours has also been established [13].

Let us recall some algebraic definitions that will be used in the paper. Let G be an undirected

connected graph without loops or multiple edges. The set of vertices and edges of G are denoted

by V (G) and E(G) respectively. For vertices x and y in V (G), we denote by d(x, y) (or dG(x, y)

when we deal with more than one graph) the topological distance i.e., the number of edges on

the shortest path, joining the two vertices of G. Since G is connected, d(x, y) exists for all

x, y ∈ V (G). The distance of a vertex u of G is defined as

d(u) =
∑

x∈V (G)

d(u, x),

the summation of distances between u and all vertices of G. The Wiener index of the graph G

is the half sum of distances over all its vertex pairs (u, v):

W (G) =
1
2

∑
u,v∈V (G)

d(u, v) =
1
2

∑
u∈V (G)

d(u).

A Wiener index analogue, referred to as the Szeged index, Sz, was recently proposed by Gutman

et al. (see for example [14]-[18]). The main advantage of the Szeged index is that it is a

modification of Wiener index for cyclic graphs; otherwise, it coincides with Wiener index (see,

for example [1])).

Let u and v be two adjacent vertices of the graph G and e = uv be the edge between them.

Let Bu(e) be the set of all vertices of G lying closer to u than to v and Bv(e) be the set of all

vertices of G lying closer to v than to u, that is

Bu(e) = {x | x ∈ V (G), dG(x, u) < dG(x, v)}

Bv(e) = {x | x ∈ V (G), dG(x, v) < dG(x, u)}.

Let nu(e) = |Bu(e)| and nv(e) = |Bv(e)|. The Szeged index of G is defined as

Sz(G) =
∑

e∈E(G)

nu(e)nv(e).
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Figure 1: An armchair polyhex nanotube

Diudea was the first chemist which considered the problem of computing topological in-

dices of nanostructures (see for example [19]-[24]). Recently computing topological indices of

nanostructures has been the object of many papers. We encourage the reader to consult pa-

pers [25]-[36] on computing topological indices of some nanotubes. In [31], [32] we computed

the Szeged index of some nanotubes. In this paper we continue this program to find an exact

expression for Szeged index of the armchair polyhex nanotubes, G = TUV C6[2p, q] (see Figure

1). For this purpose we choose a coordinate label for vertices of G as shown in Figure 2.

Firstly we note that G is a bipartite graph. Recall that a graph G is bipartite if the vertices can

be colored with withe and black so that adjacent vertices have different color, or equivalently,

every cycle has even length (see [37, Theorem 2.4]). So we can use the following theorem of

Dobrynin and Gutman [1] on connected bipartite graphs.

Theorem 1 ([1, Theorem 3]) If G is a connected bipartite graph with n vertices and m edges,

then

Sz(G) =
1
4

(
n

2
m −

∑
uv∈E(G)

(d(u) − d(v))2
)

. (1)

Obviously the number of vertices and the number of edges of G = TUV C6[2p, q] is n = |V (G)| =

2pq and m = |E(G)| = 3pq − 2p, respectively. Thus we need to compute d(u) − d(v), for all

edges e = uv.

3. Computing the Szeged index of armchair polyhex nanotubes

Throughout this section G := TUV C6[2p, q], denotes an arbitrary armchair polyhex nan-

otube in terms of their circumference 2p and their length q, see Figure 1. In this section we

derive an exact formula for the Szeged index of G. At first we consider an armchair lattice and

choose a coordinate label for it, as illustrated in Figure 2. In Figure 3 the distances from x10

to all vertices are given. In [36] a MATHEMATICA [38] program that producing the graph of

TUV C6[2p, q] is given.
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Figure 2: A TUV C6[2p, q] Lattice with p = 5 and q = 7.
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Figure 3: Distances from x10 to all vertices of TUV C6[2p, q] with p = 5 and q = 7.

Now we prove a key lemma on G.

Lemma 4. The sum of distances of one vertex of level 1 (k = 1) to all vertices of level k is

given by

wk :=
∑

x∈ level k

d(x10, x) =
∑

x∈ level k

d(x11, x)

...

=

⎧⎪⎪⎨⎪⎪⎩
2p2 + k

2
− 2k − 2p + 1 + H(p, k) if 1 ≤ k < p

p(p + 2k − 2) if k ≥ p,

where

H(p, k) =

⎧⎪⎪⎨⎪⎪⎩
2p − 1 if k + p is even

2p if k + p is odd.

Proof: We calculate the value of wk. We consider the tube can be built up from two halves

collapsing at the polygon line joining x10 to xq,0 (as high lighted in Figure 3). The right

part is the graph G1 consists of polygon lines on oblique levels 0, 1, . . . , p (joining x1j to xqj ,

j = 0, 1, . . . , p) and x10 is one of the vertices in the first row of the graph G1. The left part is

the graph G2 consists of polygon lines on oblique levels (p + 1), (p + 2), . . . , 2p − 1 (joining x1j

to xqj , j = p+1, p+2, , . . . , 2p− 1). We change the indices of the vertices of G2 in the following
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way:

V (G2) = {x̂ji | x̂j,i = xj,2p−i ∈ V (G)} (See Figure 4)

We must consider two cases:

Case 1: k ≥ p. In the graphs G1 and for 0 ≤ i ≤ p we have

d(x10, xk,i) = k + i − 1.

Also in the graph G2 and for 1 ≤ i < p, we have

d(x10, x̂k,i) = k + i − 1.

Therefore ∑
x∈ level k

d(x10, x) =
p∑

i=0

d(x10, xk,i) +
p−1∑
i=1

d(x10, x̂k,i)

= 2
p−1∑
i=1

(k + i − 1) + (0 + k − 1) + (p + k − 1)

= p(p + 2k − 2),

as desired.

Case 2: k < p. First suppose that 1 ≤ i < k. In the graphs G1 and G2 we have

d(x10, xk,i) = k + i − 1 = d(x10, x̂k,i) = k + i − 1.

We put

SS1 =
k−1∑
i=0

d(x10, xk,i) +
k−1∑
i=1

d(x10, x̂k,i) = (3k − 1)(k − 1).

Now suppose that k ≤ i < p. Then in the graph G1 we can see that if k is odd, then

d(x10, xk,i) =

⎧⎪⎪⎨⎪⎪⎩
2i if i is even

2i − 1 if i is odd

and if k is even, then

d(x10, xk,i) =

⎧⎪⎪⎨⎪⎪⎩
2i − 1 if i is even

2i if i is odd.

Also in G2 we have

d(x10, x̂k,i) =

⎧⎪⎪⎨⎪⎪⎩
2i if i is even

2i + 1 if i is odd
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if k is odd and

d(x10, x̂k,i) =

⎧⎪⎪⎨⎪⎪⎩
2i + 1 if i is even

2i if i is odd

if k is even.

Finally (if k = p) in the graph G1 we have

d(x10, xk,p) = H(p, k).

We must compute
p−1∑
i=k

d(x10, xki) and
p−1∑
i=k

d(x10, x̂ki). We break down these summations into

odd and even indices. Let A = {k, k + 1, k + 2, . . . , (p − 1)}, A1 = {i ∈ A | i is even} and

A2 = {i ∈ A | i is odd}. Put S1 =
∑
i∈A1

d(x10, xki), S2 =
∑
i∈A2

d(x10, xki), Ŝ1 =
∑
i∈A1

d(x10, x̂ki)

and Ŝ2 =
∑
i∈A2

d(x10, x̂ki).

Case 2.1. Suppose that k is odd. It is easy to see that, if p is odd, then

A1 =
{

k + 2t + 1 | t = 0, . . . ,
(p − 1) − k − 1

2

}
, A2 =

{
k + 2t | t = 0, . . . ,

(p − 1) − k − 1
2

}
,

and if p is even, then

A1 =
{

k + 2t + 1 | t = 0, . . . ,
(p − 1) − k

2
− 1

}
, A2 =

{
k + 2t | t = 0, . . . ,

(p − 1) − k

2

}
.

Therefore we have

S1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p−1)−k−1
2∑

t=0

2(k + 2t + 1) if p is odd

(p−1)−k

2
−1∑

t=0

2(k + 2t + 1) if p is even

and

S2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p−1)−k−1
2∑

t=0

[2(k + 2t) − 1] if p is odd

(p−1)−k

2∑
t=0

[2(k + 2t) − 1] if p is even.

Also we have

Ŝ1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p−1)−k−1
2∑

t=0

2(k + 2t + 1) if p is odd

(p−1)−k

2
−1∑

t=0

2(k + 2t + 1) if p is even
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and

Ŝ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p−1)−k−1
2∑

t=0

[2(k + 2t) + 1] if p is odd

(p−1)−k

2∑
t=0

[2(k + 2t) + 1] if p is even.

Therefore the summation of distances from x10 to all vertices on level k, in the graph G, is

∑
x∈level k

d(x10, x)=
[ k−1∑

i=0

d(x10, xki)+
k−1∑
i=1

d(x10, x̂ki)
]
+

p−1∑
i=k

d(x10, xki)+
p−1∑
i=k

d(x10, x̂ki) + d(x10, xkp)

=SS1 + [S1 + S2] + [Ŝ1 + Ŝ2] + H(p, k)

=2p2 + k
2
− 2k − 2p + 1 + H(p, k) (in both cases p is odd or even)

Case 2.2. Suppose that k is even. It is easy to see that, if p is odd, then

A1 =
{

k + 2t | t = 0, . . . ,
(p − 1) − k

2

}
, A2 =

{
k + 2t + 1 | t = 0, . . . ,

(p − 1) − k

2
− 1

}
,

and if p is even, then

A1 =
{

k + 2t | t = 0, . . . ,
(p − 1) − k − 1

2

}
, A2 =

{
k + 2t + 1 | t = 0, . . . ,

(p − 1) − k − 1
2

}
.

Therefore

S1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p−1)−k

2∑
t=0

[2(k + 2t) − 1] if p is odd

(p−1)−k−1
2∑

t=0

[2(k + 2t) − 1] if p is even

and

S2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p−1)−k

2
−1∑

t=0

2(k + 2t + 1) if p is odd

(p−1)−k−1
2∑

t=0

2(k + 2t + 1) if p is even.

Also

Ŝ1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p−1)−k

2∑
t=0

[2(k + 2t) + 1] if p is odd

(p−1)−k−1
2∑

t=0

[2(k + 2t) + 1] if p is even
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and

Ŝ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p−1)−k

2
−1∑

t=0

2(k + 2t + 1) if p is odd

(p−1)−k−1
2∑

t=0

[2(k + 2t) + 1] if p is even.

Therefore the summation of distances from x10 to all vertices on level k, in the graph G, is

∑
x∈level k

d(x10, x)=
[ k−1∑

i=0

d(x10, xki)+
k−1∑
i=1

d(x10, x̂ki)
]
+

p−1∑
i=k

d(x10, xki)+
p−1∑
i=k

d(x10, x̂ki) + d(x10, xkp)

= SS1 + [S1 + S2] + [Ŝ1 + Ŝ2] + H(p, k)

= 2p2 + k
2
− 2k − 2p + 1 + H(p, k) (in both cases p is odd or even)

which is the same as case 2.1.

As a summary of case 2 we have∑
x∈ level k

d(x10, x) = 2p2 + k
2
− 2k − 2p + 1 + H(p, k),

which completes the proof for x10. For other vertices we can apply a similar argument by

choosing suitable G1 and G2. �

By a straightforward computation we can see

H(p, k) = 2p − 1 + irem(k + p, 2)

= 2p − 1 +
1
2

+
1
2
(−1)k−irem(p,2)+1

,

where

irem(p, 2) =

⎧⎪⎪⎨⎪⎪⎩
0 if p is even

1 if p is odd.

So, by Lemma 1, when 1 ≤ k ≤ p, we have

wk = 2p2 + k
2
− 2k +

1
2

+
1
2
(−1)k−irem(p,2)+1

.

Also in the graph G,

d(x10) =
∑

x∈level 1

d(x10, x) +
∑

x∈level 2

d(x10, x) + · · · +
∑

x∈level q

d(x10, x)

= w1 + w2 + · · · + wq.

So

d(x10) = d(x11) = · · · = d(x2p−1,1) = w1 + w2 + · · · + wq. (2)
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Corollary 3. For each xj,i ∈ V (G), where j ≥ 2, we have

d(xj,i) = w1 + w2 + · · · + wq−j+1 + w2 + · · · + wj .

Proof: We consider the tube that can be built up from two halves collapsing at level j. The

bottom part is the graph G1 = TUV C6[2p, q − j + 1] and we can consider xj,i as one of the

vertices in the first row of the graph G1. According to (2) we have

dG1(xj,i) = w1 + w2 + · · · + wq−j+1.

The top part is the graph TUV C6[2p, j] = Ĝ1 and level j of graph G is the first its row and xj,i

is such a vertex of Ĝ1. Therefore by (2), d
̂G1

(xj,i) = w1 + w2 + · · · + wj . So

dG(xj,i) = dG1(xj,1) + d
̂G1

(xj,1) − w1 = w1 + w2 + · · · + wq−j+1 + w2 + · · · + wj ,

which completes the proof. �

Now we are in the position to prove the main result of this section.

Theorem 4. The Szeged index of G := TUV C6[2p, q] nanotubes is given by

Case 1: If p is even, then

Sz(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
12 p

(
− 36p2

q
3 + 24p2

q
2
− 3q + 6q2 + 2q5

− 6(−1)q
q
2+

4q3
− 3 + 3(−1)q

q + 3(−1)q
− 6q4

)
if q ≤ p

1
60p

(
12p5 + 30p4

− 80qp4
− 120qp3 + 160q2

p
3 + 60q3

p
2+

80p2
q − 120q2

p + 30p(−1)q + 18p + 20q4
p − 33q − 2q5+

15(−1)(q+1)
q + 20q3

)
if p < q < 2p − 2

−1
30 p

2

(
− 70pq

3 + 24 + 26p4
− 80p2

− 15p3 + 60p2
q − 40p3

q + 80pq

)
if q ≥ 2p − 2.

Case 2: If p is odd, then

Sz(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
12 p

(
− 36p2

q
3 + 24p2

q
2 + 9q − 6q2

− 9(−1)q
q + 2q5+

6(−1)q
q
2 + 4q3

− 3 + 3(−1)q
− 6q4

)
if q ≤ p

1
60p

(
30 − 80qp4

− 120qp3 + 160q2
p
3 + 60q3

p
2 + 80p2

q−

120q2
p + 30p(−1)q + 20q4

p + 12p5 + 30p4 + 20q3
− 60p2

−

2q5 + 15(−1)(q+1)
q + 120pq − 33q − 42p

)
if p < q < 2p − 2

−1
30 p

(
− 60pq + 54p + 30p2

− 15 − 80p3
− 15p4

− 70p2
q
3
−

40p4
q + 60p3

q + 80p2
q + 26p5

)
if q ≥ 2p − 2.
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Proof: The number of vertices and edges of the graph G are m = 3pq − 2p and n = 2pq,

respectively. We want to determine the sum
∑

uv∈E(G)

(dG(v) − dG(u))2, in Theorem 1, that we

need to compute Sz(G). For all 1 ≤ j ≤ q, put f(j) = d(xj,i), then by Corollary 3,

f(j) =
q−j+1∑
k=1

wk +
j∑

k=2

wk

where
1∑

k=2

wk := 0. There are two types of edges in the graph G, the edges on horizontal and

oblique levels. For each edge on horizontal levels, for example the edge xj,ixj,i+1, we have

(d(xj,i) − d(xj,i+1))2 = (f(j) − f(j))2 = 0.

Therefore, we should only consider the edges on oblique levels. For these edges it is sufficient to

do computations on the edges xj,0xj+1,0, with 1 ≤ j ≤ q − 1. We have

d(xj,i) − d(xj+1,i) = d(xj,0) − d(xj+1,0) = f(j) − f(j + 1).

Thus we need to compute
q−1∑
j=1

(f(j) − f(j + 1))2 and use Theorem 1.

First suppose that q ≤ p and p is even. Then for each k, where 1 ≤ k ≤ q, we have

wk = 2p2 + k
2
− 2k +

1
2

+
1
2
(−1)k−irem(p,2)+1

= 2p2 + k
2
− 2k +

1
2

+
1
2
(−1)k+1

.

So, by definition of f(j) we have

q−1∑
j=1

(f(j) − f(j + 1))2 =
1
6
(q − 1)

(
2q4

− 4q3 + 6q − 6(−1)q
q + 3 − 3(−1)q

)
.

The above sum is for the polygon line consisting of oblique edges joining x1,0 to xq,0. Note that

we have 2p polygon lines consisting of oblique edges joining x1,i to xq,i, i = 0, 2, . . . , 2p − 1.

Therefore by Theorem 1, we have

Sz(G) =
1
4
n

2
m −

1
4

∑
uv∈E(G)

(d(u) − d(v))2

=
1
4
n

2
m −

1
4

[
2p

q−1∑
j=1

(f(j) − f(j + 1))2
]

=
1
4
(2pq)2(3pq − 2p) −

1
4

[
2p

1
6
(q − 1)(2q4

− 4q3 + 6q − 6(−1)q
q + 3 − 3(−1)q)

]
=

−1
12

p

(
− 36p2

q
3 + 24p2

q
2
− 3q + 6q2 + 2q5

− 6(−1)q
q
2 + 4q3

−

3 + 3(−1)q
q + 3(−1)q

− 6q4

)
.
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Now suppose that q > p and p is even. Let

A1 : = {j | 1 ≤ q − j + 1 ≤ p − 1, 1 ≤ j ≤ p − 1}

A2 : = {j | 1 ≤ q − j + 1 ≤ p − 1, p ≤ j ≤ q}

A3 : = {j | p ≤ q − j + 1 ≤ q, 1 ≤ j ≤ p − 1}

A4 : = {j | p ≤ q − j + 1 ≤ q, p ≤ j ≤ q},

and

wk : = 2p2 + k
2
− 2k +

1
2

+
1
2
(−1)k+1

wwk : = p(p + 2k − 2).

Note that if A1 �= ∅, then q < 2p− 2. Also if A4 �= ∅, then 2p− 2 ≤ q. Therefore first suppose

that A1 �= ∅. Thus A4 = ∅ and 2p − 3 ≥ q. So, by Lemma 1 we obtain that

if j ∈ A1 then f(j) =
q−j+1∑
k=1

wk +
j∑

k=2

wk.

if j ∈ A2 then f(j) =
q−j+1∑
k=1

wk +
p−1∑
k=2

wk +
j∑

k=p

wwk.

if j ∈ A3 then f(j) =
p−1∑
k=1

wk +
q−j+1∑
k=p

wwk +
j∑

k=2

wk.

Therefore straightforward computations show that

q−1∑
j=1

(f(j) − f(j + 1))2 =
∑

j∈ A1

(f(j) − f(q − (j + 1)))2 +
∑

j∈ A2

(f(j) − f(q − (j + 1)))2 +

∑
j∈ A3

(f(j) − f(q − (j + 1)))2

=
p−1∑

j=q−p

(f(j) − f(j + 1))2 +
q−p−1∑

j=0

(f(j) − f(j + 1))2 +

q−1∑
j=p

(f(j) − f(j + 1))2

= −

4
15

p +
4
15

q +
2
3
p
3
−

2
5
p
5 +

1
1
5q5 + 2pq

2
−

2
3
pq

4 + 4q3
p
2
−

16
3

q
2
p
3
−

8
3
p
2
q +

8
3
p
4
q −

1
3
q
3
.

Hence, we have

Sz(G) =
1
4
n

2
m −

1
4

∑
uv∈E(G)

(d(u) − d(v))2

=
1
4
n

2
m −

1
4

[
2p

q−1∑
j=1

(f(j) − f(j + 1))2
]
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=
1
60

p

(
12p5 + 30p4

− 80qp4
− 120qp3 + 160q2

p
3 + 60q3

p
2 + 80p2

q − 120q2
p

+30p(−1)q + 18p + 20q4
p − 33q − 2q5 + 15(−1)(q+1)

q + 20q3

)
.

Similarly we can handle the other cases. �
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