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Abstract

Formulas for calculating the Wiener index and Schultz index in nanotubes
covered by C4 are provided in this report.

1 Introduction

The information on the chemical constitution of molecule is conventionally represented

by a molecular graph. In addition, graph theory was successfully provided the chemist

with a variety of very useful tools, namely, topological index. Numbers reflecting certain

structural features of organic molecules that are obtained from the molecular graph are

usually called graph invariants or more commonly topological indices. The oldest and

most thoroughly examined use of a topological index in chemistry was by Wiener [1] in

the study of paraffin boiling points,and the topological index was called Wiener index or

Wiener number. The conventional generalization of W for an arbitrary molecular graph
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is due to Hosoya [2]. Let G = (V, E) be a simple connected graph with the vertex set V

and the edge set E. For any i, j ∈ V , di (or d(i)) and Dij denote the degree of i and the

distance (i.e.,the number of edges on the shortest path) between i and j, respectively.

Then the Wiener index of the graph G, is equals to the sum of distances between all

pairs of vertices of the respective molecular graph, i.e.,

W (G) =
∑
(i,j)

Di,j =
1

2

n∑
i=1

n∑
j=1

Dij . (1)

The Schultz molecular topological index of a (chemical) graph G introduced by Schultz

[3] in 1989 was a graph-theoretical descriptor for characterizing alkanes by an integer.

He named this descriptor the molecular topological index and denoted it by MTI. Later,

MTI became much better known under the name the Schultz index, defined as

MTI(G) =
n∑

i=1

n∑
j=1

[di(Aij + Dij)],

where n is the number of vertices of G, A is the n×n adjacency matrix [3] of G and Aij

is the (i,j)-th entry of the adjacent matrix A. d = (d1, d2, · · · , dn) is the 1 × n vector of

the degrees of the vertices of the molecular graph G. While Schultz in his initial paper

only described MTI, von Knop and his group [4] gave the mathematical formulation of

MTI in the same year (1989).

Let Di =
n∑

j=1
Dij be the sum of distances between vertex i and all other vertices.

Therefore, we can simplify the Schultz index in the following way.

MTI(G) =
n∑

i=1

(di)
2 +

n∑
i=1

diDi, (2)

which holds for all molecular graphs.

It has been demonstrated that MTI and W are closely mutually related for certain

classes of molecular graphs [6-11]. Klein et al derived an explicit relation between MTI

and W for trees [5]:

MTI(G) = 4W (G) +
n∑

i=1

(di)
2
− n(n − 1).

A. A. Dobrynin et al [6] get the explicit relation between the Wiener index and the

Schultz index of Catacondensed Benzenoid graphs:

MTI(G) = 5W (G) − (12h2
− 14h + 5),

where G is an arbitrary catacondensed benzenoid graphs with h hexagons. A. A. Do-

brynin et al [7] showed that the Schultz index has the same discriminating power with
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the Wiener index, i.e., MTI(G1)=MTI(G2) if and only if W(G1)=W(G2) for an arbitrary

catacondensed benzenoid graph pair.

Single walled carbon nanotubes as all-carbon molecules of tubular form exemplify

modern nanometre scale material structures, where the number of atoms range from less

than a million up to few millions. Such system are quite ideal for computational studies

like Molecular Dynamics simulations because the studies can be done at the realistic

limit, rendering them in a predictive way. This point of view we try to explore through

simulations of novel ring-like carbon nanotubes, observed experimentally. Carbon nan-

otubes were discovered in 1992 by Iijima [11] as multi-walled structures. Two years

later, two groups independently discovered the single-walled carbon nanotubes [12,13].

In 1996, Smalley’s group synthesized the aligned single-wall nanotubes [14]. As pointed

out by Smalley, a carbon nanotube is a carbon molecule with almost alien property of

electrical conductivity and super-steel strength. It is expected that carbon nanotubes

can be widely used in many fields. Nanotubes and fullerenes are promising candidates

in the development of nanodevices and super-strong composites. They have aroused

both theoretical and experimental interests either. The Wiener index of several nan-

otubes have been calculated [15–18]. In addition, in References [19–22] the formulas for

computing the PI index of polyhex nanotubes were derived. In the present report, we

shall get an explicit formula for computing the Wiener index and the Schultz index of

nanotubes covered by C4.

2 The Wiener index of nanotubes TUC4[p, q]

In the following, our notation for nanotubes covered by C4 will be denote by G =

TUC4[p, q] (see figure 1). Let us denoted by p, q the number of squares at level 1 and

the level number in the tube, respectively. i.e, the various levels (i.e. the length) of the

tube.

.........
..................................

.........
..................................

....................................................................

....................................................................

Figure 1. TUC4(6, q), a nanotube covered by C4.
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Figure 2. The distance sum from the vertex v to all other vertices

p = 8, q = 7

s01 = 16

s02 = 24

s03 = 32

s04 = 40

s05 = 48

s06 = 56

s07 = 64

s08 = 72

Δ = 8

Δ = 8

Δ = 8

Δ = 8

Δ = 8

Δ = 8

Δ = 8

The sum from a vertex v lying at level 1 to all other vertices on the same level 1 is

given by:

s1p =
p2

4
−

1 − (−1)p

8
. (3)

Then the total distance from all vertices lying at level 1 to all other vertices is given

by:

s1(p) =
p(q + 1)[2p2 + 4pq + (−1)p

− 1]

8
(4)

The total distance from all vertices lying at level 2 to all other vertices is given by:

s2(p) =
p(q + 1)[2p2 + 4pq + (−1)p

− 1]

8
− p2(q − 1). (5)

The total distance from all vertices lying at level i (i ≤ q

2
for i is even, and i ≤ q+1

2
for

i is odd) to all other vertices is given by:

si(p) =
p(q + 1)[2p2 + 4pq + (−1)p

− 1]

8
− p2(i − 1)(q + 1 − i). (6)

By the symmetry of nanotubes, the total distance sums to all vertices can be divided

into two cases:

Case 1. q is even.

From figure 2, we know si = sq+2−i(i = 1, 2, · · · , q

2
). Now, the total distances in tube

between vertices is given by:

st1(p, q) = 2

q

2∑
i=1

[s1 − p2(i − 1)(q + 1 − i)] + s q

2
+1

= p

24
[6p2q2 + 8pq3 + 12p2q + 24pq2 + 3(q + 1)2(−1)p

+6p2
− 3q2 + 16pq − 6q − 3].

Case 2. q is odd.

From figure 2, we know si = sq+2−i(i = 1, 2, · · · , q+1
2

). Now, the total distances in tube

between vertices is given by:
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st2(p, q) = 2

q+1
2∑

i=1
[s1 − p2(i − 1)(q + 1 − i)]

= p

24
[6p2q2 + 8pq3 + 12p2q + 24pq2 + 3(q + 1)2(−1)p

+6p2
− 3q2 + 16pq − 6q − 3].

From two cases two, we get the total distances are the same when q is even or odd.

Note that W (G) =
∑
(i,j)

Di,j = 1
2

n∑
i=1

n∑
j=1

Dij . Therefore, the Wiener index of nonatubes

covered by C4 is:

W (G) =
p

48
[6p2q2 + 8pq3 + 12p2q + 24pq2 + 3(q + 1)2(−1)p + 6p2

− 3q2 + 16pq − 6q − 3].

Theorem 1 (i)W (G) = p

48
[6p2q2 + 8pq3 + 12p2q + 24pq2 + 3(q + 1)2 + 6p2 + 16pq] if p

is even;

(ii)W (G) = p

48
[6p2q2 + 8pq3 + 12p2q + 24pq2 + 6p2

− 6q2 + 16pq − 12q − 6] if p is odd.

3 The Schultz index of nanotubes TUC4[p, q]

Let G = TUC4[p, q] be the nanotubes covered by C4 defined as above. In view of the

fact that TUC4[p, q] have only degree three and degree four vertices, the Wiener index

may be decomposed into two parts: 2W (G) = W3(G)+W4(G), where W3(G) =
∑

i,di=3
Di

and W4(G) =
∑

i,di=4
Di. The summation

∑
di=k

goes over all vertices of G with degree k.

Note that the number of vertices with degree 3 and 4 in the graph G = TUC4[p, q] are

2p, p(q − 1) respectively. The equation (2) can be further expressed as:

MTI =
n∑

i=1
d2

i +
n∑

i=1
diDi

= 9 × 2p + 16 × p(q − 1) + 8W −

∑
i,di=3

Di

= 16pq + 2p + 8W −

∑
i,di=3

Di.

Let sk =
∑

x is at level k

Dvx be the sum of distances from v to all other vertices at level k,

where v is a vertex of degree 3 at level 1 (see Figure 2). By the symmetry of G,

W3(G) = 2p
q∑

i=1

sk.

From (4) we know that

p
q∑

i=1

sk =
p(q + 1)[2p2 + 4pq + (−1)p

− 1]

8
.

Therefore,

W3(G) = 2 × p(q+1)[2p2+4pq+(−1)p−1]
8

= p(q+1)[2p2+4pq+(−1)p−1]
4

.
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Lemma 2 (i) W3(G) = p(q+1)(p2+2pq)
2

if p is even;

(ii) W3(G) = p(q+1)(p2+2pq−1)
2

if p is odd.

Now, we are ready to calculate the Schultz index of G = TUC4[p, q]. By combining

Theorem 1 and Lemma 2, we get

Theorem 3 Let G = TUC4[p, q] be the nanotubes covered by C4. Then the Schultz index

of G is

(i)p

6
[6p2q2 + 8pq3 + 9p2q + 18pq2 + 3p2 + 10pq + 90q + 12] if p is even;

(ii)p

6
[6p2q2 + 8pq3 + 9p2q + 18pq2 + 3p2

− 6q2 + 10pq + 87q + 15] if p is odd.

The relationship between the Wiener index and the Schultz index has been explicated

for several family of graphs. In this report, the Wiener index and the Schultz index

are calculated by using the relationship between Wiener and Schultz index of nanotubes

covered by C4. In fact, we can utilize this relationship to calculate the Wiener and

Schultz index for more graphs.
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