MATCH and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 59 (2008) 421-428 Communications in Mathematical

ISSN 0340 - 6253

The Schultz Molecular Topological Index of C_4C_8 Nanotubes¹

LIXIN XU

Department of Mathematics, Shaoyang College, Hunan 422004, P.R.China HANYUAN DENG²

College of Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan 410081, P. R. China

(Received October 20, 2006)

Abstract

A C_4C_8 net is a trivalent decoration made by alternating squares C_4 and octagons C_8 . It can cover either a cylinder or a torus. Such a covering can be derived from a square net by the leapfrog operation. This paper presents a method for calculating the Schultz molecular topological index (MTI) of C_4C_8 nanotubes.

²Corresponding author:hydeng@hunnu.edu.cn

¹A Project Supported by Scientific Research Fund of Hunan Provincial Education Department (06C507)(06C755).

1 Introduction

Let G = (V, E) be a simple connected graph with the vertex set V(G) and the edge set E(G). For any $i, j \in V(G)$, d_i and D_{ij} denote the degree of iand the distance (i.e., the number of edges on the shortest path) between iand j, respectively.

The Schultz molecular topological index (MTI) of a (chemical) graph G introduced by Schultz [1] in 1989 is defined as

$$MTI = MTI(G) = \sum_{i=1}^{n} \sum_{j=1}^{n} d_i (A_{ij} + D_{ij})$$

where *n* is the number of vertices of *G*, $d = (d_1, d_2, \dots, d_n)$ is the degree vector of vertices of *G*. A_{ij} is the (i, j)-th entry of the adjacency matrix *A* of *G* and A_{ij} is 1 if vertices *i* and *j* are adjacent and 0 otherwise.

Let $D_i = \sum_{j=1}^n D_{ij}$ be the sum of distances between vertex *i* and all other vertices. The Schultz molecular topological index can be expressed in the following manner [5]:

$$MTI(G) = \sum_{i=1}^{n} d_i^2 + \sum_{i=1}^{n} d_i D_i$$
(1)

The Wiener index W(G) of a connected graph G is equal to the sum of distances between all pairs of vertices of G, i.e.

$$W(G) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} D_{ij}$$
(2)

For details on the Wiener index, which is among the most frequently used molecular-structure-descriptors in chemical graph theory, see the recent survey [2,3].

It has been demonstrated that MTI and W are closely mutually related for certain classes of molecular graphs [4-10]. [10] derived an explicit relation between MTI and W for a tree T with n vertices

$$MTI(T) = 4W(T) + \sum_{i=1}^{n} d_i^2 - n(n-1).$$

Dobrynin [8] gave the explicit relation between the Wiener index and the Schultz molecular topological index of a catacondensed benzenoid graph with h hexagons

$$MTI(G) = 5W(G) - (12h^2 - 14h + 5).$$

Also, [8,9] showed that the Schultz molecular topological index has the same discriminating power with the Wiener index

 $MTI(G_1) = MTI(G_2)$ if and only if $W(G_1) = W(G_2)$

for an arbitrary catacondensed benzenoid graphs.

A C_4C_8 net is a trivalent decoration made by alternating squares C_4 and octagons C_8 . It can cover either a cylinder or a torus. Such a covering can be derived from a square net by the leapfrog operation. Let SC_4C_8 and RC_4C_8 denote the C_4C_8 square nanotube and C_4C_8 rhomboidal nanotube, respectively. For the construction of C_4C_8 nanotubes, see [11], where the Wiener indices of SC_4C_8 and RC_4C_8 are computed. The Wiener index and the PI index of tori $T_{p,q}[C_4, C_8]$ and nanotube $SC_4C_8[q, 2p]$ were given in [12-14].

In this paper, we will investigate the relation between the Schultz molecular topological index MTI and the Wiener index W for the C_4C_8 nanotubes, and calculate the Schultz molecular topological index of C_4C_8 nanotubes by the Wiener index of C_4C_8 nanotubes.

2 The Schultz molecular topological index of C_4C_8 square nanotubes

Note that the degrees of vertices in an arbitrary C_4C_8 nanotube G are two or three. The Wiener index W(G) can be written as

$$W(G) = \frac{1}{2}(W_2(G) + W_3(G)),$$

where $W_2(G) = \sum_{d_i=2} D_i$ and $W_3(G) = \sum_{d_i=3} D_i$, the summation $\sum_{d_i=k}$ goes over all vertices of G with degree k.

Let $G = SC_4C_8[p,q]$ be the C_4C_8 square nanotube with p squares at each level and q levels (see Figure 1). Then the Wiener index of G was given in [11]:

Lemma 1([11]). The Wiener index of the nanotube $G = SC_4C_8(S)[p,q]$ is $\left(\frac{2}{ng(q+1)(q^2+4nq-4n-q+12n^2)} - 8n^3q - 1 \le q \le n+1\right)$

$$W(G) = \begin{cases} \frac{4}{3}pq(q+1)(q^2+4pq-4p-q+12p^2) - 8p^3q, & 1 \le q \le p+1; \\ \frac{2}{3}p^2(8q^3-p^3+4p^2q+6pq^2+p-6q, & q \ge p+2. \end{cases}$$

Figure 1. The distance sums from the vertex v to the vertices at levels $k = 1, 2, \dots, 6$.

Now, we derive a formula for calculating the Schultz molecular topological index of $SC_4C_8[p,q]$ nanotube.

Note that the numbers of vertices with degree 2 and 3 in the graph $G = SC_4C_8[p,q]$ are 4p and 4p(q-1), respectively. The equation (1) can be further expressed as:

$$MTI(G) = \sum_{i=1}^{n} d_i^2 + \sum_{i=1}^{n} d_i D_i$$

= $4 \cdot 4p + 9 \cdot 4p(q-1) + 6W(G) - \sum_{d_i=2} D_i$ (3)
= $6W(G) + 36pq - 20p - W_2(G)$

Let $s_{0k} = \sum_{\substack{x \text{ is at level } k}} D_{vx}$ be the sum of distances from v to all other vertices at level k, where v is a vertex of degree 2 at level 1 (see Figure 1).

By the symmetry of
$$G$$
, $W_2(G) = 4p \sum_{k=1}^{n} s_{0k}$.

From [11,14], we know that

$$s_{0k} = \begin{cases} 4p^2 + 2(k-1)(2p+k), & 1 \le k \le p+1; \\ s_{0,p+1} + 8p(k-p-1) = 2p^2 - 6p + 8pk, & p+2 \le k \le q. \end{cases}$$

So,

$$W_2(G) = \begin{cases} -\frac{8}{3}pq - 8p^2q + 16p^3q + 8p^2q^2 + \frac{8}{3}pq^3, & 1 \le q \le p+1; \\ -\frac{8}{3}p^2 + \frac{8}{3}p^4 - 8p^2q + 8p^3q + 16p^2q^2, & q \ge p+2. \end{cases}$$

Combining the equation (3) with Lemma 1, we have

Theorem 2. The Schultz molecular topological index MTI(G) of the nanotube $G = SC_4C_8[p,q]$ is

(i)
$$-20p + \frac{260}{3}pq - 8p^2q - 64p^3q + 44pq^2 - 8p^2q^2 - \frac{8}{3}pq^3 + 16p^2q^3 + 4pq^4$$
, for $1 \le q \le p + 1$;

(ii)
$$-20p + \frac{8}{3}p^2 + 4p^3 - \frac{8}{3}p^4 - 4p^5 + 36pq - 16p^2q - 8p^3q + 16p^4q - 16p^2q^2 + 24p^3q^2 + 32p^2q^3$$
, for $q \ge p + 2$.

3 The Schultz molecular topological index of C_4C_8 rhomboidal nanotubes

Let $G = RC_4C_8[p,q]$ be the C_4C_8 rhomboidal nanotube with p rhombuses at each level and q levels (see Figure 2). Then the Wiener index of G was given in [11]:

Lemma 3([11]). The Wiener index W(G) of the nanotube $G = RC_4C_8[p,q]$ is

$$\begin{split} (\mathrm{i}) & \tfrac{1}{6} pq (16q^3 + 16pq^2 + 36p^2q + 3q(-1)^p - 7q - 6p), \text{ for } 1 \leq q \leq int[\tfrac{(p+1)}{2}]; \\ (\mathrm{ii}) & -\tfrac{1}{24} p[4p^4 - 48p^2q^2 - 192pq^3 - 32p^3q + 24q^2[1 - (-1)^p] - p^2 - 3p^2(-1)^p + 68pq + 12pq(-1)^p - 3[1 - (-1)^p]], \text{ for } q \geq int[\tfrac{(p+1)}{2}] + 1, \\ \text{where } int[x] \text{ is the greatest integer no more than } x. \text{ i.e.,} \end{split}$$

(i) $\frac{1}{6}pq(16q^3 + 16pq^2 + 36p^2q - 4q - 6p)$, for $1 \le q \le \frac{p}{2}$ and p is even;

 $(ii)_{\overline{6}}^{1}pq(16q^{3} + 16pq^{2} + 36p^{2}q - 10q - 6p)$, for $1 \le q \le \frac{p+1}{2}$ and p is odd;

(iii) $-\frac{1}{24}p(4p^4-48p^2q^2-192pq^3-32p^3q-4p^2+80pq),$ for $q\geq \frac{p}{2}+1$ and p is even;

(iv) $-\frac{1}{24}p(4p^4 - 48p^2q^2 - 192pq^3 - 32p^3q + 48q^2 + 2p^2 + 56pq - 6)$, for $q \ge \frac{p+1}{2} + 1$ and p is odd.

Figure 2. Distance sums from the vertex v to vertices at levels $k = 1, 2, \dots, 5$.

As in the section two, we derive a formula for calculating the Schultz molecular topological index of $RC_4C_8[p,q]$ nanotube.

Note that the numbers of vertices with degree 2 and 3 in the graph $G = RC_4C_8$ are 2p and 2p(2q-1), respectively. The equation (1) can be further expressed as:

$$MTI(G) = \sum_{i=1}^{n} d_i^2 + \sum_{i=1}^{n} d_i D_i = 6W(G) + 36pq - 10p - W_2(G)$$
(4)

Let $s_{1k} = \sum_{x \text{ is at level } k} D_{vx}$ be the sum of distances from v to all other

vertices at level k, where v is a vertex of degree 2 at level 1 (see Figure 2). By the symmetry of G,

$$W_2(G) = 2p \sum_{k=1}^{q} s_{1k}.$$
 (5)

And

$$s_{1k} = \begin{cases} 3p^2 + 2 + 4(k-1)(2k+p), & 1 \le k \le \frac{p}{2} \text{ and } p \text{ is even;} \\ 3p^2 + 1 + 4(k-1)(2k+p), & 1 \le k \le \frac{p+1}{2} \text{ and } p \text{ is odd.} \end{cases}$$

$$s_{1k} = \begin{cases} s_{1,\frac{p}{2}} + 12(p-1) + 10, & k = \frac{p}{2} + 1 \text{ and } p \text{ is even;} \\ s_{1,\frac{p}{2}+1} + 12p(k-\frac{p}{2}-1), & k \ge \frac{p}{2} + 2 \text{ and } p \text{ is even;} \\ s_{1,\frac{p+1}{2}} + 12p(k-\frac{p+1}{2}), & k \ge \frac{p+1}{2} + 1 \text{ and } p \text{ is odd;} \\ p^2 + 12pk - 8p, & k \ge \frac{p}{2} + 1 \text{ and } p \text{ is even;} \\ p^2 + 12pk - 8p - 1, & k \ge \frac{p+1}{2} + 1 \text{ and } p \text{ is odd.} \end{cases}$$

From (5), we have

(i) If p is even and $1 \le q \le \frac{p}{2}$, then

$$W_2(G) = -\frac{4}{3}pq - 4p^2q + 6p^3q + 4p^2q^2 + \frac{16}{3}pq^3;$$

(ii) If p is even and $q \ge \frac{p}{2} + 1$, then

$$W_2(G) = -\frac{2}{3}p^2 + \frac{2}{3}p^4 - 4p^2q + 2p^3q + 12p^2q^2;$$

(iii) If p is odd and $1 \le q \le \frac{p+1}{2}$, then

$$W_2(G) = -\frac{10}{3}pq - 4p^2q + 6p^3q + 4p^2q^2 + \frac{16}{3}pq^3;$$

(iv) If p is odd and $q \ge \frac{p+1}{2} + 1$, then

$$W_2(G) = -\frac{2}{3}p^2 + \frac{2}{3}p^4 - 2pq - 4p^2q + 2p^3q + 12p^2q^2$$

Combining the equation (4) and Lemma 3, we have

Theorem 4. The Schultz molecular topological index MTI(G) of the nanotube $G = RC_4C_8[p,q]$ is

(i) $-10p + \frac{112}{3}pq - 2p^2q - 6p^3q - 4pq^2 - 4p^2q^2 + 36p^3q^2 - \frac{16}{3}pq^3 + 16p^2q^3 + 16pq^4$ for $1 \le q \le \frac{p}{2}$ and p is even;

(ii) $-10p + \frac{118}{3}pq - 2p^2q - 6p^3q - 10pq^2 - 4p^2q^2 + 36p^3q^2 - \frac{16}{3}pq^3 + 16p^2q^3 + 16pq^4$ for $1 \le q \le \frac{p+1}{2}$ and p is odd;

(iii) $-10p + \frac{2}{3}p^2 + p^3 - \frac{2}{3}p^4 - p^5 + 36pq - 16p^2q - 2p^3q + 8p^4q - 12p^2q^2 + 12p^3q^2 + 48p^2q^3$ for $q \ge \frac{p}{2} + 1$ and p is even;

 $\begin{array}{l} (\mathrm{iv}) - \frac{17}{2}p + \frac{2}{3}p^2 - \frac{1}{2}p^3 - \frac{2}{3}p^4 - p^5 + 38pq - 10p^2q - 2p^3q + 8p^4q - 12pq^2 - 12p^2q^2 + 12p^3q^2 + 48p^2q^3 \text{ for } q \geq \frac{p+1}{2} + 1 \text{ and } p \text{ is odd.} \end{array}$

References

 H.P.SCHULTZ, Topological Organic Chemistry. 1. Graph Theory and Topological Indices of Alkanes, J. Chem. Inf. Comput. Sci. 29, (1989), 227-228.

- [2] A.A.DOBRYNIN, R.ENTRINGER, I.GUTMAN, Wiener index of trees: theory and applications, *Acta Appl. Math.* 66, (2001), 211-249.
- [3] A.A.DOBRYNIN, I.GUTMAN, S.KLAVŽAR, P.ZIGERT, Wiener index of hexagonal systems, Acta Appl. Math. 72, (2002), 247 - 294.
- [4] I.GUTMAN, S. KLAVŽAR, Bounds for the Schultz molecular topological index of benzenoid systems in terms of the Wiener index, J. Chem. Inf. Comput. Sci. 37, (1997), 741-744.
- [5] S.KLAVŽAR, I.GUTMAN, A comparison of the Schultz molecular topological index with the Wiener index, J. Chem. Inf. Comput. Sci. 36, (1996), 1001-1003.
- [6] I.GUTMAN, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34, (1994), 1087-1089.
- [7] D.PLAVŠIĆ, S.NIKOLIĆ, N.TRINAJSTIĆ, D.J.KLEIN, Relaton between the Wiener index and the Schultz index for several classes of chemical graphs, *Croat. Chem. Acta 66*, (1993), 345-353.
- [8] A.A.DOBRYNIN, Explicit relation between the Wiener index and the Schultz index of catacondensed benzenoid graphs, *Croat. Chem. Acta* 72, (1999), 869-874.
- [9] A.A.DOBRYNIN, Discriminating power of the Schultz index for catacondensed benzenoid graphs, MATCH Commun. Math. Comput. Chem. 38, (1998), 19-35.
- [10] D.KLEIN, Z.MIHALIĆ, D.PLAVŠIĆ, N.TRINAJSTIĆ, Molecular topological index: a relation with the Wiener index, J. Chem. Inf. Comput. Sci. 32, (1992), 304-305.
- [11] M.STEFU, M.V.DIUDEA, Wiener index of C₄C₈ nanotubes, MATCH Commun. Math. Comput. Chem. 50, (2004), 133-144.
- [12] H.DENG, Wiener index of Tori $T_{p,q}[C_4, C_8]$ covered by C_4 and C_8 , MATCH Commun. Math. Comput. Chem. 56,(2006), 357-374.
- [13] H.DENG, J.HOU, PI indices of nanotubes SC₄C₈[q, 2p] covering by C₄ and C₈, MATCH Commun. Math. Comput. Chem. 57, (2007), 503-516.
- [14] L.XU, H.DENG, PI indices of tori $T_{p,q}[C4, C8]$ covered by C_4 and C_8 , MATCH Commun. Math. Comput. Chem. 57, (2007), 485-502.