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Abstract

The energy of a graph is defined as the sum of the absolute values of all the

eigenvalues of the graph. Let B(n) be the class of bipartite bicyclic graphs on n

vertices containing a cycle with length congruent to 2 modulo 4. We determine

respectively the graphs with minimal energies in the class of graphs in B(n) with

exactly three cycles, in the class of graphs in B(n) with exactly two cycles of a

common vertex, and in the class of graphs in B(n) with exactly two vertex-disjoint

cycles.

INTRODUCTION

We consider simple graphs. Let G be a graph on n vertices. The characteristic

polynomial of G is

φ(G, x) = det[xI − A(G)],
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where I is the identity matrix of order n and A(G) is the adjacency matrix of G. The

roots λ1, λ2, · · · , λn of φ(G, x) = 0 are called the eigenvalues of G [1]. Since A(G) is

symmetric, all the eigenvalues of G are real. The energy [2] of G, denoted by E(G),

is then defined as

E(G) =
n∑

i=1

|λi|.

In chemistry, the energy of a molecular graph can be used to approximate the total

π-electron energy of the molecule represented by that graph. For more details, see

the book [3] and the recent reviews [4, 5].

Let G be a bipartite graph on n vertices. The characteristic polynomial of G can

be written as

φ(G, x) =


n/2�∑
k=0

(−1)kbk(G)xn−2k,

where bk(G) ≥ 0 (see [1, 3]). The energy of G can be expressed as the Coulson integral

formula [3]

E(G) =
2

π

∫ +∞

0

1

x2
log

⎡⎣
n/2�∑
k=0

bk(G)x2k

⎤⎦ dx. (1)

Let bk(G) = 0 if k > �n/2�. In view of the expression for φ(G, x), a quasi–order

relation can be introduced over the class of all bipartite graphs [6]: For bipartite

graphs G1 and G2, if bk(G1) ≥ bk(G2) for all k ≥ 0, then we write G1 � G2. If

G1 � G2 and there is a k0 such that bk0(G1) > bk0(G2), then we write G1 � G2. From

(1) we have the following increasing property of energy:

G1 � G2 =⇒ E(G1) > E(G2). (2)

A connected graph with n vertices and n edges is called a unicyclic graph, and a

connected graph with n vertices and n + 1 edges is called a bicyclic graph.

From a chemical point of view, it is of greatest interest to find the extremal values

of the energy for significant classes of graphs. For instance, Gutman [6] determined

the trees with minimal and maximal energies. Hou [7] determined the unicyclic graphs

with minimal energy. Hou [8], Zhang and Zhou [9, 10] studied the minimal energies

of bicyclic graphs. More results in this direction can be found in [11–27].

Let G be a bicyclic graph. The bicyclic subgraph of G with no pendent vertices

(i.e., vertices of degree one) is called the base graph of G, denoted by Ĝ. If Ĝ

contains exactly three cycles, then we say that G is a θ-based graph. If Ĝ consists of

two cycles with exactly one common vertex, then we say that G is a ∞1-based graph.

If Ĝ contains two vertex-disjoint cycles, then we say that G is a ∞2-based graph.

- 382 -



If an edge is introduced between one end vertex of a path and a vertex v of a

graph G, we say that the path is attached to vertex v of G. Let B be the graph with

6 vertices formed by identifying an edge of two quadrangles. Let B1
n be the graph

formed by attaching n − 6 pendent vertices to a vertex of degree two of B, B2
n be

the graph formed by attaching n − 6 pendent vertices to a vertex of degree three of

B, B3
n be the graph formed by identifying a vertex of a hexagon and a vertex of a

quadrangle, and attaching n − 9 pendent vertices to this common vertex, B4
n be the

graph formed by introducing an edge between a vertex of a hexagon and a vertex of

a quadrangle, and attaching n − 10 pendent vertices to the vertex of degree three in

the hexagon. See Fig. 1 for the graphs Bi
n, i = 1, 2, 3, 4.
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Fig. 1. Graphs Bin, i = 1, 2, 3, 4.

By a result in [9], the graph formed by attaching n−5 pendent vertices to a vertex

of degree three of the complete bipartite graph K2,3 is the unique graph with minimal

energy in the class of n-vertex bipartite bicyclic graphs. In [10], it is shown that the

graph formed by attaching n − 7 pendent vertices to the vertex of degree four of the

graph consisting of two quadrangles with exactly one common vertex is the unique

graph with minimal energy in the class of n-vertex bipartite bicyclic graphs of exactly

two cycles. Note that in both extremal graphs all cycle lengths are ≡ 0 (mod 4). Let

B(n) be the class of n-vertex bipartite bicyclic graphs containing a cycle of length

≡ 2 (mod 4). Let Bθ(n), B∞1(n) and B∞2(n) be respectively the class of θ-, ∞1-,

and ∞2-based graphs in B(n). It is a natural question to ask which graphs achieve

the minimal energy in Bθ(n), B∞1(n) and B∞2(n), respectively. The main result of

this work is that in the three classes Bθ(n), B∞1(n) and B∞2(n), the graphs B1
n or

B2
n, B3

n, and B4
n have minimal energy, respectively. A more precise statement of our

results is given in Theorem 4.

PRELIMINARIES

Let G be a bipartite graph on n vertices. Sachs theorem states that [1, 3] for

k ≥ 1,

(−1)kbk(G) =
∑

S∈L2k

(−1)p(S)2c(S),
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where L2k denotes the set of Sachs graph of G with 2k vertices, in which every

component is either a complete graph with two vertices or a cycle, p(S) is the number

of components and c(S) is the number of cycles in S. Clearly, b0(G) = 1, b1(G) equals

the number of edges of G. For convenience, let bk(G) = 0 if k < 0.

Let m(G, k) be number of k-matchings of G. If G is acyclic, then bk(G) = m(G, k)

for all k (see [1, 3]). Let Pn and Cn be respectively the path and cycle on n vertices.

Note that m(Pn, 2) = (n−2)(n−3)
2

and m(Cn, 2) = n(n−3)
2

.

If G is a bipartite graph containing exactly one quadrangle, then by Sachs theorem,

we have b2(G) = m(G, 2) − 2, and b3(G) ≥ m(G, 3) − 2m(G − C4, 1).

Let G be a bipartite graph. Let C(uv) denote the set of cycles containing the edge

uv in G. By [1], we have φ(G, x) = φ(G−uv, x)−φ(G−u−v, x)−2
∑

C∈C(uv)

φ(G−C, x),

from which the following result follows easily.

Lemma 1. Let G be a bipartite graph.

(i) If uv is a bridge in G, then

bk(G) = bk(G − uv) + bk−1(G − u − v),

in particular, if u is a pendent vertex, being adjacent to v, then

bk(G) = bk(G − u) + bk−1(G − u − v).

(ii) If uv is an edge on some cycle, then

bk(G) = bk(G − uv) + bk−1(G − u − v) − 2
∑

Cr∈C(uv)

(−1)
r
2 bk− r

2
(G − Cr).

From Lemma 1 (i), we have

Lemma 2. Let G be a bipartite graph. If H is obtained from G by deleting some

bridges and/or pendent vertices, then bk(G) ≥ bk(H) for all k ≥ 0.

Lemma 3. [3] For 1 ≤ i < �n
2
�, Pn � P2i ∪ Pn−2i � P1 ∪ Pn−1.

Let U r
n be the unicyclic graph formed by attaching the path Pn−r to a vertex of

the cycle Cr. Let Un,i be the graph obtained from Bi
n by deleting an edge incident

with the vertex of maximal degree and a vertex of degree 2 in the hexagon, where

i = 2, 3, 4.

Lemma 4. Let b be an even integer with 4 ≤ b ≤ n − 1 and i = 2, 3, 4, where n ≥ 7

if i = 2, n ≥ 9 if i = 3 and n ≥ 10 if i = 4. Then bk(U
b
n) ≥ bk(Un,i) for k = 2, 3, 4.
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Proof. By Lemma 1,

bk(U
4
n) = bk(Pn) + bk−1(Pn−4 ∪ P2) − 2bk−2(Pn−4)

= bk(Pn−1) + bk−1(Pn−3) + bk−2(Pn−4) + bk−1(Pn−4)

+bk−2(Pn−4) − 2bk−2(Pn−4)

= bk(Pn−1) + bk−1(Pn−3) + bk−1(Pn−4).

Let Pn,i,s be the tree obtained by attaching s pendent vertices to the i-th vertex of

the path Pn labelled consecutively by 1, 2, . . . , n. Obviously, Pn,i,0 = Pn. Similarly,

bk(Un,2) = bk(P6,1,n−7) + bk−1(P4) + bk−1(P2) + bk−3(P1),

bk(Un,3) = bk(P8,3,n−9) + bk−1(P6,1,n−9) + bk−1(P5),

bk(Un,4) = bk(P9,4,n−10) + bk−1(P7,2,n−10) + bk−1(P6,1,n−10).

Note that bk(Pn) ≥ bk(T ) for any tree T with n vertices and all k ≥ 0 (see [6]). By

Lemma 2, we have bk(U
4
n) ≥ bk(U) for k = 2, 3, 4, where U ∈ {Un,2, Un,3, Un,4}.

Suppose that b ≥ 6. We need only to show that bk(U
b
n) ≥ bk(U

4
n) for k = 2, 3, 4.

First suppose that (k, b) �= (4, 8). Then for k = 2, 3, 4, by Lemma 1,

bk(U
b
n) = bk(Pn) + bk−1(Pn−b ∪ Pb−2) − (−1)

b
2 2bk− b

2
(Pn−b)

≥ bk(Pn) + bk−1(Pn−b ∪ Pb−2)

= bk(Pn−1) + bk−1(Pn−2) + bk−1(Pn−b ∪ Pb−2).

By Lemma 3, we have bk−1(Pn−2) ≥ bk−1(Pn−3), bk−1(Pn−b ∪ Pb−2) ≥ bk−1(Pn−3) ≥
bk−1(Pn−4). Then we have bk(U

b
n) ≥ bk(U

4
n).

Now suppose that (k, b) = (4, 8). By Lemma 1, we have

b4(U
8
n) = b4(Pn) + b3(Pn−8 ∪ P6) − 2

= b4(Pn−1) + b3(Pn−2) + b3(Pn−8 ∪ P6) − 2

= b4(Pn−1) + b3(Pn−3) + b2(Pn−4) + b3(Pn−8 ∪ P6) − 2.

By Lemma 3, b3(Pn−8 ∪ P6) ≥ b3(Pn−3) ≥ b3(Pn−4). Note that b2(Pn−4) ≥ 2. Thus

b4(U
8
n) ≥ b4(U

4
n). �

Lemma 5. Let G1, G2 be two vertex-disjoint bipartite graphs with |V (G1)|+|V (G2)| =

n. Then bk(G1 ∪ G2) =
k∑

i=0

bi(G1)bk−i(G2) for 0 ≤ k ≤ �n
2
�.

Proof. Let |V (Gi)| = ni for i = 1, 2. It is easy to see that
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φ(G1 ∪ G2, x) = φ(G1, x)φ(G2, x)

=

⎡⎣
n1/2�∑
i=0

(−1)ibi(G1)x
n1−2i

⎤⎦⎡⎣
n2/2�∑
j=0

(−1)jbj(G2)x
n2−2j

⎤⎦
=


n/2�∑
k=0

(−1)k

[
k∑

i=0

bi(G1)bk−i(G2)

]
xn−2k.

Now the result follows easily. �

Lemma 6. Let a, b and n be integers, where a ≡ 2 (mod 4), a ≥ 6, b is even,

4 ≤ b ≤ n−1. Let H be the graph formed by identifying the pendent vertex of U b
n and

a vertex of Ca. Then bk(U
b
n ∪ Ca) ≥ bk(H) for all k ≥ 0.

Proof. Let u be the pendent vertex, being adjacent to v, in U b
n. Let U = U b

n −u− v.

By Lemma 1,

bk(Ca ∪ U b
n) = bk(Ca ∪ U b

n−1) + bk−1(Ca ∪ U),

bk(H) = bk(Ca ∪ U b
n−1) + bk−1(Pa−1 ∪ U).

By Lemma 5, we have

bk−1(Ca ∪ U) =
k−1∑
i=0

bi(Ca)bk−i−1(U),

bk−1(Pa−1 ∪ U) =
k−1∑
i=0

bi(Pa−1)bk−i−1(U).

Note that a ≡ 2 (mod 4). By Lemma 1 (ii), we have bi(Ca) ≥ bi(Pa) + bi−1(Pa−2) ≥
bi(Pa−1). It follows that bk−1(Ca ∪U) ≥ bk−1(Pa−1 ∪U) for all k ≥ 0. Thus the result

follows. �

RESULTS

Now we consider minimal energies of the graphs in the class of Bθ(n), B∞1(n) and

B∞2(n), respectively.

Theorem 1. If G ∈ Bθ(n) and G �= B1
n, B2

n, where n ≥ 8, then G � B2
n.
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Proof. Note that bk(B
2
n) = 0 for k ≥ 4. We will show that bk(G) ≥ bk(B

2
n) for

k = 2, 3 and it is strict for k = 2. We use induction on n.

The graphs in Bθ(8) (except B1
8 , B2

8) are shown in Fig. 2, and the b2, b3-values

are listed below the corresponding graphs. Note that b2(B
2
8) = 15 and b3(B

2
8) = 7. It

can be checked that the result is true for n = 8.
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Fig. 2. Graphs in Bθ(8) (except B1
8 , B2

8) and their b2, b3-values.

Suppose that n ≥ 9 and the result is true for graphs with n − 1 vertices. Let

G ∈ Bθ(n). Then G contains three cycles, say Ca, Cb and Cc, where a ≡ 2 (mod 4)

and b ≤ c.

Case 1. Ĝ = G. Let u be a vertex of degree three of G and v be its neighbor outside

Cb. Since n ≥ 9, we have c ≥ 6. By Lemma 1 (ii),

bk(G) = bk(U
b
n) + bk−1(G − u − v) + 2bk−a

2
(G − Ca) − (−1)

c
2 2bk− c

2
(G − Cc)

≥ bk(U
b
n) + bk−1(G − u − v),

bk(B
2
n) = bk(Un,2) + bk−1(P4) + 2bk−3((n − 6)P1) − 2bk−2(P2) = bk(Un,2) + 1

for k = 2, 3. By Lemma 4, we have bk(U
b
n) ≥ bk(Un,2) for k = 2, 3. Note that G−u−v

is a tree. By Sachs theorem,

b1(G − u − v) = n − 3 > 1,

b2(G − u − v) = m(G − u − v, 2) ≥ m(Pa−2, 2) =
(a − 4)(a − 5)

2
≥ 1.

Hence we have bk(G) ≥ bk(B
2
n) for k = 2, 3 and it is strict for k = 2.

Case 2. Ĝ �= G. Since G �= B1
n, B2

n, and n ≥ 9, we can choose a pendent vertex u,

being adjacent to v, in G such that G − u �= B1
n−1, B2

n−1. By Lemma 1 (i),

bk(G) = bk(G − u) + bk−1(G − u − v),

bk(B
2
n) = bk(B

2
n−1) + bk−1(P5)

- 387 -



for k = 2, 3, where

bk−1(P5) =

{
4, if k = 2,

3, if k = 3.

By the induction hypothesis, bk(G − u) ≥ bk(B
2
n−1) for k = 2, 3, and it is strict for

k = 2. We need only to show that bk−1(G − u − v) ≥ bk−1(P5) for k = 2, 3.

Subcase 2.1. G−u−v contains Ĝ. By Lemma 2, we have bk−1(G−u−v) ≥ bk−1(Ĝ).

So by Sachs theorem,

b1(G − u − v) ≥ b1(Ca) = a > 4,

b2(G − u − v) ≥ m(Ĝ, 2) − 4 ≥ m(Ca, 2) − 4 =
a(a − 3)

2
− 4 ≥ 5 > 3.

Subcase 2.2. G − u − v contains exactly one cycle C. If C is a quadrangle, then

G−u−v contains a subgraph H which is a unicyclic graph with 6 vertices or P2∪U4
5 ,

and so by Lemma 2,

b1(G − u − v) ≥ b1(H) = 6 > 4,

b2(G − u − v) ≥ b2(H) = m(H, 2) − 2 ≥ 3.

Otherwise, we have C = Cr with r ≥ 6, and by Sachs theorem,

b1(G − u − v) = m(G − u − v, 1) ≥ m(Cr, 1) ≥ 6 > 4,

b2(G − u − v) = m(G − u − v, 2) ≥ m(Cr, 2) =
r(r − 3)

2
> 3.

Subcase 2.3. G− u− v is acyclic. Then P5 is a subgraph of G− u− v. By Lemma

2, we have bk−1(G − u − v) ≥ bk−1(P5) for k = 2, 3.

Combining Subcases 2.1–2.3, we have bk−1(G − u − v) ≥ bk−1(P5) for k = 2, 3.

Therefore bk(G) ≥ bk(B
2
n) for k = 2, 3 and it is strict for k = 2. Now the result

follows. �

Theorem 2. If G ∈ B∞1(n) and G �= B3
n, where n ≥ 10, then G � B3

n.

Proof. Note that φ(B3
n, x) = xn − (n + 1)xn−2 + (6n − 25)xn−4 − (11n − 71)xn−6 +

(6n − 46)xn−8. So bk(B
3
n) = 0 for k ≥ 5. We will show that bk(G) ≥ bk(B

3
n) for

k = 2, 3, 4 and it is strict for k = 2. We use induction on n.
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Fig. 3. Graphs in B∞1(10) (except B3
10) and their b2, b3, b4-values.
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The graphs in B∞1(10) (except B3
10) are shown in Fig. 3, and the b2, b3, b4-values

are listed below the corresponding graphs. Since the b2, b3, b4-values of B3
10 are re-

spectively 35, 39, 14, it can be checked that the result is true for n = 10.

Suppose that n ≥ 11, and the result is true for all graphs with n − 1 vertices.

Let G ∈ B∞1(n) and G �= B3
n. Then G contains two cycles, say Ca and Cb, where

a ≡ 2 (mod 4).

Case 1. Ĝ = G. Then n = a + b − 1, and either a = 6, b ≥ 6 or b = 4, a ≥ 10. By

Lemma 1 (ii),

bk(G) = bk(U
b
n) + bk−1(Pa−2 ∪ Pb−1) + 2bk−a

2
(Pb−1)

≥ bk(U
b
n) + bk−1(Pa−2 ∪ Pb−1),

bk(B
3
n) = bk(Un,3) + bk−1(P4 ∪ P3) + 2bk−3(P3),

where it is easy to see that

bk−1(P4 ∪ P3) + 2bk−3(P3) =

⎧⎪⎨⎪⎩
5, if k = 2,

9, if k = 3,

6, if k = 4.

By Lemma 4, bk(U
b
n) ≥ bk(Un,3) for k = 2, 3, 4. Moreover, bk−1(Pa−2 ∪ Pb−1) =

m(Pa−2 ∪ Pb−1, k − 1) and so

b1(Pa−2 ∪ Pb−1) = a + b − 5 = n − 4 > 5,

b2(Pa−2 ∪ Pb−1) ≥ (a − 3)(b − 2) > 9,

b3(Pa−2 ∪ Pb−1) ≥ (b − 2)m(Pa−2, 2) + (a − 3)m(Pb−1, 2)

=
(a − 4)(a − 5)(b − 2)

2
+

(a − 3)(b − 3)(b − 4)

2
> 6.

Therefore, bk(G) > bk(B
3
n) for k = 2, 3, 4.

Case 2. Ĝ �= G.

Let G0 be the graph obtained by attaching a pendent vertex to the pendent vertex

of B3
10. Note that

b2(G0) = 45, b3(G0) = 68, b4(G0) = 42,

b2(B
3
11) = 41, b3(B

3
11) = 50, b4(B

3
11) = 20.

If G = G0, then the result follows.

Suppose that G �= G0. Then we can choose a pendent vertex u, being adjacent to

v, in G such that G − u �= B3
n−1. By Lemma 1 (i),

bk(G) = bk(G − u) + bk−1(G − u − v),

bk(B
3
n) = bk(B

3
n−1) + bk−1(P5 ∪ P3)
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for k = 2, 3, 4, and

bk−1(P5 ∪ P3) =

⎧⎪⎨⎪⎩
6, if k = 2,

11, if k = 3,

6, if k = 4.

By the induction hypothesis, bk(G − u) ≥ bk(B
3
n−1) for k = 2, 3, 4, and it is strict for

k = 2. It suffices to show that bk−1(G − u − v) ≥ bk−1(P5 ∪ P3) for k = 2, 3, 4.

Subcase 2.1. G − u − v contains Ĝ. By Lemma 2, bk−1(G − u − v) ≥ bk−1(Ĝ), and

then by Sachs theorem,

b1(G − u − v) ≥ m(Ĝ, 1) = a + b > 6,

b2(G − u − v) ≥ m(Ĝ, 2) − 2

= m(Ca, 2) + m(Cb, 2) + a(b − 2) + 2(a − 2) − 2

≥ a(b − 2) + 2(a − 2) − 2 > 11,

b3(G − u − v) ≥ m(Ĝ, 3) − 2(a − 2)

≥ (b − 2)m(Ca, 2) + (a − 2)m(Cb, 2) − 2(a − 2)

=
a(a − 3)(b − 2)

2
+

b(a − 2)(b − 3)

2
− 2(a − 2)

≥ a(a − 3)(b − 2)

2
> 6.

Subcase 2.2. G−u−v contains exactly one cycle Cr, r ∈ {a, b}. By Sachs theorem,

bk−1(G−u− v) = m(G−u− v, k− 1)+2(−1)
r
2
−1m(G−u− v−Cr, k− 1− r

2
). Then

b1(G − u − v) ≥ a + b − 2 > 6.

Suppose that k = 3, 4. If r ≥ 6, then bk−1(G− u− v) ≥ m(G− u− v, k− 1); if r = 4,

then bk−1(G − u − v) = m(G − u − v, k − 1) − 2m(G − u − v − C4, k − 3). In either

case, we have bk−1(G − u − v) ≥ m(Pa−1, k − 1) + 2m(Pa−1, k − 2). Thus

b2(G − u − v) ≥ (a − 3)(a − 4)

2
+ 2(a − 2) ≥ 11,

b3(G − u − v) ≥ (a − 3)(a − 4) ≥ 6.

Subcase 2.3 G − u − v is acyclic. Then P5 ∪ P3 is a subgraph of G − u − v. By

Lemma 2, bk−1(G − u − v) ≥ bk−1(P5 ∪ P3) for k = 2, 3, 4.

Combining Subcases 2.1–2.3, we have bk−1(G−u−v) ≥ bk−1(P5∪P3) for k = 2, 3, 4.

Therefore bk(G) ≥ bk(B
3
n) for k = 2, 3, 4 and it is strict for k = 2. Now the result

follows. �

Theorem 3. If G ∈ B∞2(n) and G �= B4
n, where n ≥ 11, then G � B4

n.
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Proof. Note that φ(B4
n, x) = xn − (n + 1)xn−2 + (8n− 41)xn−4 − (19n− 139)xn−6 +

(12n − 98)xn−8. So bk(B
4
n) = 0 for k ≥ 5. We will show that bk(G) ≥ bk(B

4
n) for

k = 2, 3, 4, and it is strict for k = 3. We use induction on n.

The graphs in B∞2(11) (except B4
11) are shown in Fig. 4, and the b2, b3, b4-values

are listed below the corresponding graphs. Since the b2, b3, b4-values of B4
11 are re-

spectively 47, 70, 34, it can be checked that the result is true for n = 11.
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Fig. 4. Graphs in B∞2(11) (except B4
11) and their b2, b3, b4-values.

Suppose n ≥ 12 and the result is true for all graph on n − 1 vertices. Let G ∈
B∞2(n), and G �= B4

n. Then G contains two vertex-disjoint cycles, say Ca and Cb,

where a ≡ 2 (mod 4).

Suppose that n = a + b. Then G is formed by introducing an edge between a

vertex in Ca and a vertex in Cb, where either a = 6, b ≥ 6 or b = 4, a ≥ 10. By

Lemma 1 (ii),

bk(G) = bk(U
b
n) + bk−1(Pa−2 ∪ Cb) + 2bk−a

2
(Cb)

≥ bk(U
b
n) + bk−1(Pa−2 ∪ Cb),

bk(B
4
n) = bk(Un,4) + bk−1(P4 ∪ C4) + 2bk−3(C4),

where

bk−1(P4 ∪ C4) + 2bk−3(C4) =

⎧⎪⎨⎪⎩
7, if k = 2,

15, if k = 3,

12, if k = 4.

By Lemma 4, we know that bk(U
b
n) ≥ bk(Un,4) for k = 2, 3, 4. Moreover, by Sachs

theorem,

b1(Pa−2 ∪ Cb) = n − 3 > 7,

b2(Pa−2 ∪ Cb) ≥ m(Pa−2 ∪ Cb, 2) − 2

≥ m(Pa−2, 2) + m(Cb, 2) + (a − 3)b − 2

≥ (a − 3)b > 15,
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b3(Pa−2 ∪ Cb) ≥ m(Pa−2 ∪ Cb, 3) − 2(a − 3)

= bm(Pa−2, 2) + m(Pa−2, 3) + m(Cb, 3)

+m(Cb, 2)(a − 3) − 2(a − 3)

≥ bm(Pa−2, 2) + m(Cb, 2)(a − 3) − 2(a − 3)

=
(a − 4)(a − 5)b

2
+ (a − 3)

[
b(b − 3)

2
− 2

]
> 12.

It follows that bk−1(Pa−2 ∪ Cb) > bk−1(P4 ∪ C4) + 2bk−3(C4) for k = 2, 3, 4. Therefore

bk(G) > bk(B
4
n) for k = 2, 3, 4.

Now suppose that n > a + b. By Lemma 1 (i),

bk(B
4
n) = bk(B

4
n−1) + bk−1(P5 ∪ C4),

for k = 2, 3, 4, and

bk−1(P5 ∪ C4) =

⎧⎪⎨⎪⎩
8, if k = 2,

19, if k = 3,

12, if k = 4.

Case 1. Ĝ = G. By Lemma 1 (i),

bk(G) = bk(Ca ∪ U b
n−a) + bk−1(Pa−1 ∪ U b

n−a−1).

By Lemma 6 and the induction hypothesis, we have bk(Ca∪U b
n−a) ≥ bk(H) ≥ bk(B

4
n−1)

for k = 2, 3, 4, and b3(Ca ∪ U b
n−a) > b3(B

4
n−1), where H is the graph obtained by

identifying a vertex of Ca and the pendent vertex of U b
n−a. Moreover, by Sachs

theorem,

b1(Pa−1 ∪ U b
n−a−1) = n − 3 > 8,

b2(Pa−1 ∪ U b
n−a−1) ≥ m(Pa−1 ∪ U b

n−a−1, 2) − 2

= m(Pa−1, 2) + m(U b
n−a−1, 2) + (a − 2)(n − a − 1) − 2

≥ m(Pa−1, 2) + (a − 2)(n − a − 1)

≥ (a − 3)(a − 4)

2
+ (a − 2)b ≥ 19,

b3(Pa−1 ∪ U b
n−a−1) ≥ m(Pa−1 ∪ U b

n−a−1, 3) − 2(n − b − 4)

= m(Pa−1, 3) + (n − a − 1)m(Pa−1, 2)

+(a − 2)m(U b
n−a−1, 2) + m(U b

n−a−1, 3) − 2(n − b − 4)

≥ (n − a − 1)m(Pa−1, 2) + (n − b − 4)m(Cb, 2)

−2(n − b − 4)

≥ (n − a − 1)m(Pa−1, 2) ≥ b(a − 3)(a − 4)

2
≥ 12.
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Therefore bk(G) ≥ bk(B
4
n) for k = 2, 3, 4, and it is strict for k = 3.

Case 2. Ĝ �= G.

Let G0 be the graph obtained by attaching a pendent vertex to the pendent vertex

of B4
11. Note that

b2(G0) = 58, b3(G0) = 109, b4(G0) = 85,

b2(B
4
12) = 55, b3(B

4
12) = 89, b4(B

4
12) = 46.

If G = G0, then the result follows.

Suppose that G �= G0. Then we can choose a pendent vertex u, being adjacent to

v, in G such that G − u �= B4
n−1. By Lemma 1 (i),

bk(G) = bk(G − u) + bk−1(G − u − v).

By the induction hypothesis, we have bk(G − u) ≥ bk(B
4
n−1) for k = 2, 3, 4, and it

is strict for k = 3. So it suffices to show that bk−1(G − u − v) ≥ bk−1(P5 ∪ C4) for

k = 2, 3, 4.

Subcase 2.1. G− u− v contains Ĝ. By Lemma 2, bk−1(G− u− v) ≥ bk−1(Ca ∪Cb).

By Sachs theorem,

b1(G − u − v) ≥ m(Ca ∪ Cb, 1) = a + b > 8,

b2(G − u − v) ≥ b2(Ca ∪ Cb) ≥ m(Ca ∪ Cb, 2) − 2 ≥ ab > 19,

b3(G − u − v) ≥ b3(Ca ∪ Cb) ≥ m(Ca ∪ Cb, 3) − 2a

= m(Ca, 3) + bm(Ca, 2) + am(Cb, 2) + m(Cb, 3) − 2a

≥ bm(Ca, 2) =
a(a − 3)b

2
> 12.

Subcase 2.2. G − u − v contains exactly one cycle Cr, r ∈ {a, b}. If r = 4, then

P5 ∪C4 is a subgraph of G−u− v, and by Lemma 2, bk−1(G−u− v) ≥ bk−1(P5 ∪C4)

for k = 2, 3, 4. Suppose that r ≥ 6. Then G − u − v contains Cr ∪ Ps−1 where

{r, s} = {a, b}. By Lemma 2 and Sachs theorem,

b1(G − u − v) ≥ b1(Cr ∪ Ps−1) = r + s − 2 = a + b − 2 ≥ 8,

b2(G − u − v) ≥ b2(Cr ∪ Ps−1) ≥ m(Cr, 2) + r(s − 2)

=
r(r − 3)

2
+ r(s − 2) ≥ 19,

b3(G − u − v) ≥ b3(Cr ∪ Ps−1) ≥ m(Cr ∪ Ps−1, 3)

≥ m(Cr, 2)(s − 2) =
r(r − 3)

2
(s − 2) ≥ 12.

Combining Subcases 2.1 and 2.2, bk−1(G − u − v) ≥ bk−1(P5 ∪ C4) for k = 2, 3, 4.

Therefore bk(G) ≥ bk(B
4
n) for k = 2, 3, 4, and it is strict for k = 3. Now the result

follows. �
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Using the increasing property (2) of energy, and Theorems 1, 2 and 3, we have

Theorem 4. Let G ∈ B(n).

(i) if G ∈ Bθ(n) and G �= B1
n, B2

n, where n ≥ 8, then E(G) > E(B2
n);

(ii) if G ∈ B∞1(n) and G �= B3
n, where n ≥ 10, then E(G) > E(B3

n);

(iii) if G ∈ B∞2(n) and G �= B4
n, where n ≥ 11, then E(G) > E(B4

n).

We list the bk-values, k ≥ 2, for B4
n, B3

n and B2
n in Table 1, from which we have

Lemma 7. B3
9 � B2

9 and B4
n � B3

n � B2
n for n ≥ 10.

G b2(G) b3(G) b4(G) bk(G) for k ≥ 4

B4
n 8n − 41 19n − 139 12n − 98 0

B3
n 6n − 25 11n − 71 6n − 46 0

B2
n 4n − 17 3n − 17 0 0

Table 1. bk-values, k ≥ 2, for graphs B4
n, B3

n and B2
n.

Let G ∈ B(n) and G �= B1
n, B2

n, where n ≥ 8. By Lemma 7 and Theorems 1, 2

and 3, we have G � B2
n. Thus we have

Theorem 5. If G ∈ B(n) and G �= B1
n, B2

n, where n ≥ 8, then E(G) > E(B2
n).

Remark. By direct calculation, we find E(B1
n) < E(B2

n) for 7 ≤ n ≤ 20. However,

for n ≥ 7,

b2(B
1
n) = 5n − 23 > 4n − 17 = b2(B

2
n), b3(B

1
n) = 2n − 11 < 3n − 17 = b3(B

2
n),

and so the relation “�” cannot be used to order B1
n and B2

n.
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