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Abstract

The energy of a graph is defined as the sum of the absolute values of its eigenvalues.

Let B(n, d) be the class of bicyclic graphs with n vertices, diameter d and containing

no vertex-disjoint odd cycles of lengths s and l with s+ l ≡ 2 (mod 4). In this paper,

we characterize the graphs with minimal energy in B(n, d) for 3 ≤ d ≤ n − 3. We

also discuss the case d = n − 2.

INTRODUCTION

Let G be a simple graph with n vertices. The characteristic polynomial of G,

denoted by φ(G, λ), is the characteristic polynomial of its adjacency matrix. The

eigenvalues of G, denoted by λ1, λ2, . . . , λn, are the roots of the equation φ(G, λ) = 0

[1]. The energy of G is defined as

E(G) =
n∑

i=1

|λi|.
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Figure 1: Graph Bn,d with 3 ≤ d ≤ n − 3.

In theoretical chemistry, the energy of a graph has been extensively studied since it

can be used to approximate the total π-electron energy of the molecule [2–5].

A graph whose components are cycles and/or complete graphs with two vertices

is called a Sachs graph. Let φ(G, λ) =
n∑

i=0
ai(G)λn−i. Sachs theorem [1, 2] says that

for i ≥ 1,

ai(G) =
∑

S∈Li

(−1)p(S)2c(S),

where Li denotes the set of Sachs graphs of G with i vertices, p(S) denotes the number

of components and c(S) denotes the number of cycles in S. In addition, a0(G) = 1.

It is known that E(G) can be expressed as the Coulson integral formula (see [2])

E(G) =
1

2π

∫ +∞

−∞
dx

x2
log

⎡⎢⎣
⎛⎝
n/2�∑

i=0

(−1)ia2ix
2i

⎞⎠2

+

⎛⎝
n/2�∑
i=0

(−1)ia2i+1x
2i+1

⎞⎠2
⎤⎥⎦, (1)

where ai = ai(G) for i = 0, 1, . . . , n.

A connected graph with n vertices and n edges is called a unicyclic graph, and a

connected graph with n vertices and n + 1 edges is called a bicyclic graph.

From a chemical point of view, it is of greatest interest to find the extremal values

of the energy for significant classes of graphs. For instance, Gutman [6] determined

the trees with minimal and maximal energies. Hou [7] determined the unicyclic graphs

with minimal energy. Yan and Ye [8] determined the trees of a given diameter with

minimal energy. Recently, Li and Zhou [9] determined the unicyclic graphs of a given

diameter with minimal energy. More results in this direction can be found in Refs.

[10–19].

Let B(n) be the class of bicyclic graphs with n vertices and containing no vertex-

disjoint odd cycles of lengths s and l with s + l ≡ 2 (mod 4). Let B(n, d) be the class

of bicyclic graphs in B(n) with diameter d, where 2 ≤ d ≤ n−2. By a result of Zhang

and Zhou [15], for n ≥ 6, the graph obtained by attaching n − 4 pendent vertices

to a vertex of degree three of the graph K4 − e (the complete graph on four vertices

with one edge deleted) is the unique graph in B(n, 2) with minimal energy. In this

paper, we will show that Bn,d is the unique graph in B(n, d) with minimal energy for

3 ≤ d ≤ n − 3, where the graph Bn,d is shown in Figure 1. We also discuss the case

d = n − 2.
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PRELIMINARIES

For two graphs G and H, G = H means G and H are isomorphic, and G ⊇ H

means G contains a subgraph that is isomorphic to H. For u ∈ V (G), ΓG(u) denotes

the set of neighbors of u in G and the degree of u in G is degG(u) = |ΓG(u)|. Let Pn,

Sn and Cn be respectively the path, star and cycle on n vertices.

For a graph G with n vertices, let bi(G) = |ai(G)| for i = 0, 1, . . . , n. Obviously,

b0(G) = 1, b1(G) = 0 and b2(G) equals the number of edges of G. Let bi(G) = 0 if

i < 0 or i > n.

Let Q(n) be the class of graphs with n vertices whose components are (i) all trees

except at most one being either a unicyclic graph or a bicyclic graph in B(m) with

4 ≤ m ≤ n, or (ii) all trees except two being unicyclic graphs whose union is a

subgraph of some graph in B(m) with 7 ≤ m ≤ n.

A quasi-order relation can be introduced in Q(n): Let G1, G2 ∈ Q(n). If bi(G1) ≥
bi(G2) for i = 0, 1, . . . , n, then we write G1 � G2. If G1 � G2 and there exists a k

such that bk(G1) > bk(G2), then we write G1 � G2.

Note that for any bipartite graph G, a2i+1(G) = 0 (see [1, 2]), and that for any

G ∈ Q(n), (−1)ia2i(G) ≥ 0 (see [1, 7, 15]), and moreover, if G ⊇ K4 − e, then

(−1)ia2i+1(G) ≥ 0 (see [15]). Thus for graphs G1, G2 ∈ Q(n), if G2 is bipartite or if

G1, G2 ⊇ K4 − e, then from (1), we have the following increasing property on E:

G1 � G2 ⇒ E(G1) > E(G2). (2)

Lemma 1. Let G be a graph in Q(n).

(a) If uv is a cut edge of G, then

b2i(G) = b2i(G − uv) + b2i−2(G − u − v).

(b) Suppose that G contains either a unique cycle Cs or exactly two cycles Cs and

Cl and that uv is an edge on Cs. If s �≡ 0 (mod 4), then

b2i(G) = b2i(G − uv) + b2i−2(G − u − v) + 2b2i−s(G − Cs),

and if s ≡ 0 (mod 4), then

b2i(G) = b2i(G − uv) + b2i−2(G − u − v) − 2b2i−s(G − Cs).

(c) Suppose that G contains three cycles Cs, Cl and Cr and that uv is a common

edge of Cs and Cl. If s, l �≡ 0 (mod 4), then

b2i(G) = b2i(G − uv) + b2i−2(G − u − v) + 2b2i−s(G − Cs) + 2b2i−l(G − Cl),
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if s �≡ 0 (mod 4) and l ≡ 0 (mod 4), then

b2i(G) = b2i(G − uv) + b2i−2(G − u − v) + 2b2i−s(G − Cs) − 2b2i−l(G − Cl),

and if s, l ≡ 0 (mod 4), then

b2i(G) = b2i(G − uv) + b2i−2(G − u − v) − 2b2i−s(G − Cs) − 2b2i−l(G − Cl).

(d) If u is a vertex outside any cycle of G, then

b2i(G) = b2i(G − u) +
∑

u′∈ΓG(u)

b2i−2(G − u − u′),

and if G contains three cycles Cs, Cl and Cr and u is a common vertex of them,

where s, l, r ≡ 0 (mod 4), then

b2i(G) = b2i(G − u) +
∑

u′∈ΓG(u)
b2i−2(G − u − u′) − 2b2i−s(G − Cs)

−2b2i−l(G − Cl) − 2b2i−r(G − Cr).

Proof. For a graph G ∈ Q(n), let C(uv) and C(u) denote respectively the sets of all

cycles C containing the edge uv and the vertex u in G. Then [1, 2]

φ(G, λ) = φ(G − uv, λ) − φ(G − u − v, λ) − 2
∑

C∈C(uv)

φ(G − C, λ), (3)

φ(G, λ) = λφ(G − u, λ) −
∑

u′∈ΓG(u)

φ(G − u − u′, λ) − 2
∑

C∈C(u)

φ(G − C, λ). (4)

In particular, if uv is a cut edge of G, then

φ(G, λ) = φ(G − uv, λ) − φ(G − u − v, λ), (5)

and if u is a vertex outside any cycle of G, then

φ(G, λ) = λφ(G − u, λ) −
∑

u′∈ΓG(u)

φ(G − u − u′, λ). (6)

Bearing in mind the facts (−1)ia2i(G) ≥ 0 if G ∈ Q(n) [1, 7, 15] and (−1)ia2i+1(G)

≥ 0 (resp. ≤ 0) for s ≡ 3 (mod 4) (resp. s ≡ 1 (mod 4)) if G is a unicyclic graph

whose unique cycle has length s [7], and equating coefficients of λn−2i on both sides

of identities on characteristic polynomials above, we have (a) from (5), (b) and (c)

from (3), and (d) from (6) and (4). �

By Lemma 1 (a) and Sachs theorem, Lemmas 2 and 3 follow easily.

Lemma 2. Let e be a cut edge of G ∈ Q(n). Then b2i(G) ≥ b2i(G − e).
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Lemma 3. Let G be a unicyclic graph with n vertices or a bicyclic graph in B(n).

Then G � Sn.

Lemma 4. [2] For n ≥ 2, Pn � Pi ∪ Pn−i � P1 ∪ Pn−1.

Let T (n, d) be the class of trees with n ≥ 2 vertices and diameter d, where

1 ≤ d ≤ n − 1. If T ∈ T (n, 1), then T = P2. For 2 ≤ d ≤ n − 1, let Tn,d

denote the graph obtained by attaching n − d pendent vertices to an end vertex of

Pd. Obviously, Tn,2 = Sn is the unique tree in T (n, 2) and Tn,n−1 = Pn is the unique

tree in T (n, n − 1).

Lemma 5. [6] For 3 ≤ d ≤ n − 2, Pn � Tn,d � Sn.

Lemma 6. [8] Let T ∈ T (n, d) with 3 ≤ d ≤ n − 2. Then T � Tn,d.

Lemma 7. [9] For 3 ≤ d0 < d ≤ n − 2, Tn,d � Tn,d0.

Lemma 8. For 2 ≤ d1 ≤ n1−2, we have Tn1,d1∪T � Tn1+n2−1,d1+d2, where T = Tn2,d2

if 2 ≤ d2 ≤ n2 − 1, and P2 if n2 = 2 and d2 = 1.

Proof. For 2 ≤ d2 ≤ n2 − 1, we have (n1 − d1)(n2 − d2) ≥ n1 + n2 − d1 − d2 − 1, and

by Lemmas 1 (a) and 4,

b2i(Tn1,d1 ∪ Tn2,d2) = b2i(Tn1−1,d1 ∪ Tn2,d2) + b2i−2(Pd1−1 ∪ Tn2,d2)

= b2i(Pd1 ∪ Tn2,d2) + (n1 − d1)b2i−2(Pd1−1 ∪ Tn2,d2)

= b2i(Pd1 ∪ Pd2) + (n2 − d2)b2i−2(Pd1 ∪ Pd2−1)

+(n1 − d1)b2i−2(Pd1−1 ∪ Pd2)

+(n1 − d1)(n2 − d2)b2i−4(Pd1−1 ∪ Pd2−1)

≥ b2i(Pd1+d2−1) + (n1 + n2 − d1 − d2)b2i−2(Pd1+d2−2)

+(n1 + n2 − d1 − d2 − 1)b2i−4(Pd1+d2−3)

= b2i(Tn1+n2−1,d1+d2),

which implies Tn1,d1 ∪ Tn2,d2 � Tn1+n2−1,d1+d2 . It is easy to see that Tn1,d1 ∪ P2 �
Tn1+1,d1+1. �

Let U(n, d) be the class of unicyclic graphs with n vertices and diameter d, where

1 ≤ d ≤ n− 2. If U ∈ U(n, 1), then U = C3. For 3 ≤ d ≤ n− 2, let Un,d be the graph

obtained respectively by attaching n− d− 1 pendent vertices and a path Pd−3 to two

non-adjacent vertices of a quadrangle.
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Lemma 9. [9] Let U ∈ U(n, d) with 3 ≤ d ≤ n − 2. Then U � Un,d.

Lemma 10. For 3 ≤ d ≤ n − 2, Un,d � Tn,d.

Proof. By Lemmas 1 (a) and (b),

b2i(Un,d) = b2i(Tn,d) + b2i−2(Pd−3 ∪ Sn−d+1) − 2b2i−4(Pd−3)

= b2i(Tn,d) + b2i−2(Pd−3 ∪ Sn−d−1) ≥ b2i(Tn,d).

It is easy to see that b2(Un,d) > b2(Tn,d). Thus Un,d � Tn,d. �

Lemma 11. For 3 ≤ d0 < d ≤ n − 2, Un,d � Un,d0.

Proof. If d = 4, then it can be checked that Un,4 � Un,3 by Sachs theorem. If d ≥ 5,

then by Lemmas 1 (a), 2 and 10,

b2i(Un,d) = b2i(Un−1,d−1) + b2i−2(Un−2,d−2)

≥ b2i(Un−1,d−1) + b2i−2(Tn−2,d−2)

≥ b2i(Un−1,d−1) + b2i−2(Td−1,d−3)

= b2i(Un,d−1),

and so Un,d � Un,d−1 � · · · � Un,d0 . �

Similarly, we have

Lemma 12. For 3 ≤ d0 < d ≤ n − 3, Bn,d � Bn,d0.

MAIN RESULTS

For a graph G ∈ B(n), it has either two or three distinct cycles. If G has three

cycles, then any two cycles must have at least one edge in common, and we may

choose two cycles of lengths of a and b with t common edges such that a − t ≥ t

and b − t ≥ t. If G has exactly two cycles, suppose that the lengths of them are a

and b respectively. Then, in any case, we choose two cycles Ca and Cb in G. For

convenience, let Ca = v0v1 . . . va−1v0 and Cb = u0u1 . . . ub−1u0. If Ca and Cb have no

common edges, then Ca and Cb are connected by a unique path P , say from v0 to

u0. Let l(G) be the length of P . If Ca and Cb have exactly t (≥ 1) common edges,

and thus have exactly t + 1 common vertices, say, v0 = u0, v1 = u1, . . . , vt = ut, then

Cc = u0ub−1 . . . ut+1utvt+1vt+2 . . . va−1v0 is the third cycle of G, where c = b + a − 2t.

If we write w0 = u0, w1 = ub−1, . . . , wc−1 = va−1, then Cc = w0w1 . . . wc−1w0. Let

d(G) be the diameter of G.

- 326 -



� � � � ��� ��

� �

� � � � �������

� �

� � � � ���

��

��

���

�

� � � � ���

��

��

���

�

� � � � ���

��

��

���

�

� � � � ���
� �

� � � � ���
� �

� � � � �����

� �

� � � � �����

� �

� � � � ��� ��

� �

� � � � �����

� �

� � � � �
����

� �

� � � � ���

���

�

� � � � ���

���

�

� � � � ���
� �

� � � � ��� �� �� ��
� �

� � � � �����

� �

� � � � �����

� �

� � � � �����

� �

� � � � �����

� �

� � � � ��� �� ��
� �

� � � � �����
� �

� � � � �����
� �

� � � � ����� ��
� �

� � � � �������

� �

Figure 2: Graphs in B(7, 4) except B7,4.

Lemma 13. Let G ∈ B(n, n − 3) with n ≥ 6 and G �= Bn,n−3. Then G � Bn,n−3.

Proof. We prove this lemma by induction on n.

If n = 6, then by a result of [15] or by direct check, we have G � B6,3.

If n = 7, then G is isomorphic to one of the graphs in Figure 2. By Sachs theorem,

for i ≥ 3, we have b4(G) > b4(B7,4) = 7 and b2i(B7,4) = 0. Thus G � B7,4.

Suppose that n ≥ 8 and it is true for all graphs in B(n−1, n−4) and B(n−2, n−5).

Now suppose that G ∈ B(n, n − 3) and G �= Bn,n−3.

Suppose that there is a pendent vertex u in G such that the degree of its neighbor

v is two. Then G−u ∈ B(n−1, n−4) and G−u−v ∈ B(n−2, n−5). Note that G �=
Bn,n−3. So G − u �= Bn−1,n−4 or G − u − v �= Bn−2,n−5. By the induction hypothesis,

we have either G− u � Bn−1,n−4 and G− u− v � Bn−2,n−5 or G− u � Bn−1,n−4 and

G − u − v � Bn−2,n−5. Thus G � Bn,n−3.

� � � � � ��� ��

� �

H1

v2 u0 u4 u3

u1 u2

� � � � � �������

� �

H2

v2 v3 u0 u3

u1 u2

� � �� � � � � �����

� �

H3

v2 u0 u2

u1

� � �� � � � � �����

� �

H4

v2 u0 u2

u1

Figure 3: Graphs Hj, j = 1, . . . , 4.

Suppose that the neighbor of any pendent vertex has degree at least three or there

is no pendent vertex. Then G is isomorphic to some Hj in Figure 3, j = 1, . . . , 4, or

G contains one quadrangle which has at most one common vertex with another cycle

that is a triangle or a quadrangle. For n = 8, 9, it can be checked by Sachs theorem

that G � Bn,n−3. Suppose that n ≥ 10. Choose Ca and Cb as above. Let b ≥ a. Note
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that b4(G) > b4(Bn,n−3). If G = H3 or H4, then and by Lemmas 1 (a), (b) and (c), 2

and 6,

b2i(G) = b2i(G − u0u2) + b2i−2(G − u0 − u2)

+2b2i−3(G − u0 − u1 − u2) − 2b2i−4(G − u0 − u1 − u2 − v2)

≥ b2i(G − u0u2 − u0v2) + b2i−2(G − u0 − v2)

+b2i−2(G − u0 − u2) − 2b2i−4(G − u0 − u1 − u2 − v2)

= b2i(G − u0u2 − u0v2) + b2i−2(G − u0 − v2 − u1u2)

+b2i−2(G − u0 − u2 − u1v2)

≥ b2i(Tn,n−3) + 2b2i−2(Pn−6) = b2i(Bn,n−3),

implying G � Bn,n−3. Otherwise, by Lemmas 1 (a) and (b), 2, 9 and 10,

b2i(G) = b2i(G − u0u1 − u1u2) + b2i−2(G − u1 − u2 − u3u0)

+b2i−2(G − u0 − u1 − u2u3)

≥ b2i(Un−1,n−3) + b2i−2(Un−5,n−7 ∪ P2) + b2i−2(Un−4,n−6)

≥ b2i(Un−1,n−3) + b2i−2(Tn−5,n−7 ∪ P2) + b2i−2(Tn−4,n−6),

while by Lemma 1 (a) and (c),

b2i(Bn,n−3) = b2i(Un−1,n−3) + b2i−2(Pn−6 ∪ P2) + b2i−2(Pn−5),

and so, by Lemma 2, we have b2i(G) ≥ b2i(Bn,n−3) and then G � Bn,n−3. �

Lemma 14. Let G ∈ B(n, d) with 2 ≤ d ≤ n− 4. If G contains no pendent vertices,

then G � Bn,d+1.

Proof. We choose Ca, Cb in G and if there exists the third cycle, then we choose Cc

and t as above. Let b ≥ a. Since d ≤ n − 4, we have b ≥ 5.

Case 1. Ca and Cb have no common edges. Then d = �a/2� + �b/2� + l(G).

Subcase 1.1. b �≡ 0 (mod 4). Then d(G − u1u2) = �a/2� + b + l(G) − 2 ≥ d + 1,

d(G − u1 − u2) ≥ d and d ≥ 3. By Lemmas 1 (b), 9, 10 and 11,

b2i(G) ≥ b2i(G − u1u2) + b2i−2(G − u1 − u2)

≥ b2i(Un,d+1) + b2i−2(Un−2,d)

≥ b2i(Un,d+1) + b2i−2(Tn−2,d),
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and by Lemma 1 (c),

b2i(Bn,d+1) = b2i(Un,d+1) + b2i−2(Pd−2 ∪ Sn−d) − 4b2i−4(Pd−2). (7)

Hence, by Lemma 2, b2i(G) ≥ b2i(Bn,d+1).

Subcase 1.2. b ≡ 0 (mod 4). Then b ≥ 8. Hence d(G − u1u2 − u2u3) = �a/2� + b +

l(G)− 3 ≥ d+1, d(G−u2 −u3 −u4u5) ≥ d− 1, d(G−u1 −u2 −u3u4) ≥ d and d ≥ 5.

By Lemmas 1 (a) and (b), 9, 10 and 11,

b2i(G) = b2i(G − u1u2 − u2u3) + b2i−2(G − u2 − u3)

+b2i−2(G − u1 − u2) − 2b2i−b(G − Cb)

≥ b2i(G − u1u2 − u2u3) + b2i−2(G − u2 − u3 − u4u5)

+b2i−2(G − u1 − u2 − u3u4)

≥ b2i(Un−1,d+1) + b2i−2(Un−3,d−1) + b2i−2(Un−3,d)

≥ b2i(Un−1,d+1) + b2i−2(Tn−3,d−1) + b2i−2(Tn−3,d),

and by Lemma 1 (a) and (c),

b2i(Bn,d+1) = b2i(Un−1,d+1) + b2i−2(Pd−2 ∪ Sn−d−2) + b2i−2(Pd−1). (8)

Hence, by Lemma 2, b2i(G) ≥ b2i(Bn,d+1).

Case 2. Ca and Cb have at least one common edge. Note that a − t ≥ t, b − t ≥ t,

where t ≥ 1. Then c ≥ b and d = �c/2� = �(a + b)/2� − t.

Subcase 2.1. b, c �≡ 0 (mod 4). Then d(G − w0w1) = �a/2� + b − t − 1 ≥ d + 1,

d(G − w0 − w1) ≥ c − 3 ≥ d and d ≥ 2. By Lemmas 1 (c), 6, 7, 9 and 11,

b2i(G) ≥ b2i(G − w0w1) + b2i−2(G − w0 − w1) ≥ b2i(Un,d+1) + b2i−2(Tn−2,d),

which, together with (7) and Lemma 2, implies b2i(G) ≥ b2i(Bn,d+1).

Subcase 2.2. b �≡ 0 (mod 4) and c ≡ 0 (mod 4). If b = 5, then it can be checked

by Sachs theorem that b2i(G) ≥ b2i(Bn,d+1). Otherwise, d(G − w0w1 − w1w2) =

�a/2�+b−t−2 ≥ d+1, d(G−w1−w2−w3w4) ≥ d−1, d(G−w0−w1−w2w3) ≥ c−4 ≥ d

and d ≥ 4. By Lemmas 1 (a), (b) and (c), 6, 7, 9, 10 and 11,

b2i(G) ≥ b2i(G − w0w1 − w1w2) + b2i−2(G − w1 − w2 − w3w4)

+b2i−2(G − w0 − w1 − w2w3)

≥ b2i(Un−1,d+1) + b2i−2(Un−3,d−1) + b2i−2(Tn−3,d)

≥ b2i(Un−1,d+1) + b2i−2(Tn−3,d−1) + b2i−2(Tn−3,d),
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which, together with (8) and Lemma 2, implies b2i(G) ≥ b2i(Bn,d+1).

Subcase 2.3. b ≡ 0 (mod 4) and c �≡ 0 (mod 4). Then c > b ≥ 8. By similar

arguments as those in Subcase 2.2, b2i(G) ≥ b2i(Bn,d+1).

Subcase 2.4. b, c ≡ 0 (mod 4). Then a ≡ 0 (mod 2) and c ≥ b ≥ 8. If a ≡
2 (mod 4), then a ≥ 6, and by similar arguments as those in Subcase 2.2, b2i(G) ≥
b2i(Bn,d+1). Suppose that a ≡ 0 (mod 4). Obviously, n = a + b − t − 1, d(G − u0) =

c − 2 ≥ d + 2, d = �(a + b)/2� − t ≥ 4, and n − 5 ≥ d. By Lemmas 1 (a) and (d), 4,

5, 6 and 7,

b2i(G) ≥ b2i(G − u0) + b2i−2(G − u0 − ub−1 − ut)

+b2i−2(G − u0 − u1 − ut) + b2i−2(G − u0 − va−1 − ut)

≥ b2i(Tn−1,d+2) + b2i−2(Pa−t−1 ∪ Pb−t−2 ∪ Pt−1)

+b2i−2(Pa−t−1 ∪ Pb−t−1 ∪ Pt−2) + b2i−2(Pa−t−2 ∪ Pb−t−1 ∪ Pt−1)

≥ b2i(Tn−1,d+1) + 3b2i−2(Pa+b−t−6)

≥ b2i(Tn−1,d+1) + b2i−2(Pn−5) + 2b2i−2(Tn−5,d−1),

and by Lemma 1 (a), (b) and (c),

b2i(Bn,d+1) = b2i(Tn−1,d+1) + b2i−2(Pd) + 2b2i−2(Pd−2 ∪ Sn−d−3). (9)

By Lemma 2, b2i(G) ≥ b2i(Bn,d+1).

Combining Cases 1 and 2, we have b2i(G) ≥ b2i(Bn,d+1). Note that b4(G) >

b4(Bn,d+1). Thus we have G � Bn,d+1. �

Lemma 15. Let G ∈ B(n, d) with 3 ≤ d ≤ n − 4. If G contains exactly one pendent

vertex u on all diametrical paths of G such that G − u contains no pendent vertices,

then G � Bn,d+1.

Proof. We choose Ca, Cb in G and if there exists the third cycle, then we choose Cc

and t as above. Let b ≥ a. Since d ≤ n − 4, we have b ≥ 5. Let v be the neighbor of

u.

Case 1. Ca and Cb have no common edges. Then d = �a/2� + �b/2� + l(G) + 1.

Subcase 1.1. b �≡ 0 (mod 4). If b ≥ 7, then d(G−u1u2) ≥ �a/2�+b+l(G)−2 ≥ d+1.

If b = 5, 6, and v lies on Ca, then d(G−u1u2) = �a/2�+ b+ l(G)−1 = d+1. If a = 5,

b = 6, and v lies on Cb, then d(G − v1v2) = �b/2� + a + l(G) − 1 = d + 1. In these

cases, by similar arguments as those in Subcase 1.1 of Lemma 14, b2i(G) ≥ b2i(Bn,d+1).

Otherwise, a = 3, 4, b = 5, 6, and v lies on Cb. If l(G) = 0, then it can be checked by
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Sachs theorem that b2i(G) ≥ b2i(Bn,d+1). Suppose that l(G) ≥ 1. If a = 3, then by

Lemmas 1 (a) and (b), 6 and 9,

b2i(G) ≥ b2i(G − v0v1) + b2i−2(G − v0 − v1 − u0u1)

≥ b2i(Un,d+1) + b2i−2(Tn−3,d−1)

= b2i(Un−1,d+1) + b2i−2(Td+1,d−1) + b2i−2(Tn−3,d−1),

which, together with (8) and Lemma 2, implies b2i(G) ≥ b2i(Bn,d+1). If a = 4, then

n − 4 = d, and by Lemmas 1 (a) and (b), 6 and 8,

b2i(G) ≥ b2i(G − v0v1 − v1v2 − u0u1) + b2i−2(G − v0v1 − v1v2 − u0 − u1)

+b2i−2(G − v0 − v1 − v2v3 − u0u1) + b2i−2(G − v1 − v2 − v3v0 − u0u1)

≥ b2i(Tn−1,d+1) + b2i−2(Pn−b−2 ∪ Tb−1,b−3)

+b2i−2(Tn−4,d−2) + b2i−2(Tn−3,d−1)

≥ b2i(Tn−1,d+1) + b2i−2(Tn−4,n−6) + b2i−2(Tn−4,d−2) + b2i−2(Tn−3,d−1),

which, together with (9) and Lemma 2, implies b2i(G) ≥ b2i(Bn,d+1).

Subcase 1.2. b ≡ 0 (mod 4). If b ≥ 12, then d(G−u1u2−u2u3) ≥ �a/2�+b+ l(G)−
3 ≥ d+2. If b = 8 and v lies on Ca, then d(G−u1u2−u2u3) = �a/2�+ b+ l(G)−2 =

d + 1. In these cases, by similar arguments as those in Subcase 1.2 of Lemma 14,

b2i(G) ≥ b2i(Bn,d+1). If a = 5, 6, 7, b = 8, and v lies on Cb, by similar arguments

as those in Subcase 1.1 of Lemma 14, b2i(G) ≥ b2i(Bn,d+1). Otherwise, a = 3, 4,

b = 8, and v lies on Cb. If l(G) ≤ 2, then it can be checked by Sachs theorem that

b2i(G) ≥ b2i(Bn,d+1). Suppose that l(G) ≥ 3. By Lemmas 1 (a) and (b), 8, 9 and 10,

b2i(G) ≥ b2i(G − u0u1 − u1u2) + b2i−2(G − u1 − u2 − u3u4)

+b2i−2(G − u0 − u1 − u2u3)

≥ b2i(Un−1,d+1) + b2i−2(Un−3,d) + b2i−2(Un−9,d−6 ∪ T6,4)

≥ b2i(Un−1,d+1) + b2i−2(Tn−3,d) + b2i−2(Tn−9,d−6 ∪ T6,4)

≥ b2i(Un−1,d+1) + b2i−2(Tn−3,d) + b2i−2(Tn−4,d−2),

which, together with (8) and Lemma 2, implies b2i(G) ≥ b2i(Bn,d+1).

Case 2. Ca and Cb have at least one common edge. Then d = �c/2� + 1 = �(a +

b)/2� − t + 1. Since b ≥ 5, assume that w0, w1 �= v.

If b, c �≡ 0 (mod 4) and b ≥ 6, then d(G − w0w1) ≥ �a/2� + b − t − 1 ≥ d + 1 and

d(G − w0 − w1) ≥ c − 3 ≥ d − 1. If b �≡ 0 (mod 4), c ≡ 0 (mod 4) and b ≥ 9, then

d(G − w0w1 − w1w2) ≥ �a/2� + b − t − 2 ≥ d + 1, d(G − w1 − w2 − w3w4) ≥ d − 1
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and d(G − w0 − w1 − w2w3) ≥ c − 4 ≥ d + 1. If b ≡ 0 (mod 4) and c �≡ 0 (mod 4),

then d(G − w0w1 − w1w2) ≥ d + 1, d(G − w1 − w2 − w3w4) ≥ d − 1 and d(G −
w0 − w1 − w2w3) ≥ d. If a, b, c ≡ 0 (mod 4) and a �= 4 or b �= 8, then n − d ≥ 7

and d(G − w0) ≥ c − 2 ≥ d + 1. If b, c ≡ 0 (mod 4), a �≡ 0 (mod 4) and a ≥ 10,

then d(G − w0wc−1 − wc−1wc−2) ≥ d + 2, d(G − wc−1 − wc−2 − wc−3wc−4) ≥ d and

d(G − w0 − wc−1 − wc−2wc−3) ≥ d + 1. In these cases, by similar arguments as those

in Subcases 2.1–2.4 of Lemma 14, b2i(G) ≥ b2i(Bn,d+1).

If b, c ≡ 0 (mod 4) and a = 6, then d(G − wc−1w0 − w0w1) ≥ c − 2 ≥ d + 1. By

Lemmas 1 (a), (b) and (c), 6 and 7,

b2i(G) ≥ b2i(G − wc−1w0 − w0w1) + b2i−2(G − w0 − w1 − w2w3)

+b2i−2(G − wc−1 − w0 − w1w2)

≥ b2i(Tn,d+1) + 2b2i−2(Tn−4,d−1).

By Lemma 1 (b) and (c),

b2i(Bn,d+1) = b2i(Tn,d+1) + 2b2i−2(Pd−2 ∪ Sn−d−3). (10)

Hence, by Lemma 2, we have b2i(G) ≥ b2i(Bn,d+1).

Now we are left with the cases: (i) b, c �≡ 0 (mod 4) and b = 5, (ii) b �≡ 0 (mod 4),

c ≡ 0 (mod 4) and b = 5, 6, 7, or (iii) c ≡ 0 (mod 4), a = 4 and b = 8. It can be

checked directly by Sachs theorem that b2i(G) ≥ b2i(Bn,d+1).

Combining Cases 1 and 2, we have b2i(G) ≥ b2i(Bn,d+1). Note that b4(G) >

b4(Bn,d+1). Thus we have G � Bn,d+1. �

Theorem 1. Let G ∈ B(n, d) with 3 ≤ d ≤ n − 3. If there are two vertex-disjoint

cycles in G, then G � Bn,d.

Proof. We prove this theorem by induction on n − d.

By Lemma 13, the result holds for n − d = 3. Let h ≥ 4 and suppose that the

result holds for n − d < h. Now suppose that n − d = h and G ∈ B(n, d).

Case 1. There is no pendent vertex in G . By Lemmas 12 and 14, G � Bn,d.

Case 2. There is a pendent vertex outside some diametrical path P (G) = x0x1 . . . xd.

Let u, adjacent to v, be a pendent vertex outside P (G) in G. Then G−u ∈ B(n−1, d).

By the induction hypothesis, G − u � Bn−1,d. By Lemma 1 (a),

b2i(Bn,d) = b2i(Bn−1,d) + b2i−2(Td+1,d−2). (11)

Hence it suffices to show that b2i(H) ≥ b2i(Td+1,d−2), where H = G − u − v. We

choose Ca and Cb in G as above.
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Subcase 2.1. v lies on some cycle, say Ca. Then H ⊇ Cb.

First, suppose that P (G) and Cb have no common vertices. Then H ⊇ Pk∪Pd−k∪
Cb. By Lemmas 2, 3, 4 and 5,

b2i(H) ≥ b2i(Pk ∪ Pd−k ∪ Cb) ≥ b2i(Pd−1 ∪ Cb) ≥ b2i(Pd−1 ∪ Sb)

≥ b2i(Pd−1 ∪ P3) ≥ b2i(Pd+1) ≥ b2i(Td+1,d−2).

Next, suppose that P (G) and Cb have common vertices xl, . . . , xl+q, where q ≥ 0.

If v lies outside P (G), then H ⊇ G1, where G1 ∈ U(s1, d), s1 ≥ d + 2. By Lemmas 2,

5, 9 and 10,

b2i(H) ≥ b2i(G1) ≥ b2i(Us1,d) ≥ b2i(Ts1,d) ≥ b2i(Pd+1) ≥ b2i(Td+1,d−2).

Suppose that v lies on P (G). Then P (G) and Ca have common vertices, say

xk, . . . , xk+p, where p ≥ 0, k + p < l.

If p = 0, then k ≥ 1, H ⊇ P2 ∪ Pk ∪ G2, where G2 ∈ U(s2, d2), s2 ≥ d2 + 2,

d2 ≥ d − k − 1 ≥ 1. If d2 = 1, then k = d − 2 and G2 = C3, and by Lemmas 2, 3, 4

and 5,

b2i(H) ≥ b2i(P2 ∪ Pd−2 ∪ C3) ≥ b2i(Pd−1 ∪ P3) ≥ b2i(Pd+1) ≥ b2i(Td+1,d−2).

If d2 = 2, then k ≥ d − 3, s2 ≥ 4, and by Lemmas 2, 3, 4, 7 and 8,

b2i(H) ≥ b2i(P2 ∪ Pk ∪ G2) ≥ b2i(P2 ∪ Pk ∪ Ss2) ≥ b2i(P2 ∪ Pk ∪ T4,2)

≥ b2i(Pk+1 ∪ T4,2) ≥ b2i(Tk+4,k+2) ≥ b2i(Td+1,d−1) ≥ b2i(Td+1,d−2).

If d2 ≥ 3, then by Lemmas 2, 4, 7, 8, 9 and 10,

b2i(H) ≥ b2i(P2 ∪ Pk ∪ Us2,d2) ≥ b2i(P2 ∪ Pk ∪ Ts2,d2) ≥ b2i(Ts2+k,d2+k)

≥ b2i(Td2+k+2,d2+k) ≥ b2i(Td+1,d−1) ≥ b2i(Td+1,d−2).

Suppose that p = 1. If v = xk, then k ≥ 1, H ⊇ Pk ∪ G3, where G3 ∈ U(s3, d3),

s3 ≥ d3 + 2, d3 ≥ d − k ≥ 3, and by Lemmas 2, 7, 8, 9 and 10,

b2i(H) ≥ b2i(Pk ∪ Us3,d3) ≥ b2i(Pk ∪ Ts3,d3) ≥ b2i(Ts3+k−1,d3+k−1) ≥ b2i(Td+1,d−2).

If v = xk+1, then H ⊇ Pk+2∪G4, where G4 ∈ U(s4, d4), s4 ≥ d4+2, d4 ≥ d−k−2 ≥ 1.

If d4 = 1, then k = d − 3, G4 = C3, and by Lemmas 2, 3, 4 and 5,

b2i(H) ≥ b2i(Pd−1 ∪ C3) ≥ b2i(Pd−1 ∪ P3) ≥ b2i(Pd+1) ≥ b2i(Td+1,d−2).

If d4 = 2, then k ≥ d − 4, s4 ≥ 4, and by Lemmas 2, 3, 7 and 8,

b2i(H) ≥ b2i(Pk+2 ∪ Ss4) ≥ b2i(Pk+2 ∪ T4,2) ≥ b2i(Td+1,d−2).

- 333 -



If d4 ≥ 3, then by Lemmas 2, 7, 8, 9 and 10,

b2i(H) ≥ b2i(Pk+2 ∪ Us4,d4) ≥ b2i(Pk+2 ∪ Ts4,d4) ≥ b2i(Td+1,d−2).

Suppose that p ≥ 2. If v �= xk, xk+p, then H ⊇ G5, where G5 ∈ U(s5, d), s5 ≥ d+2.

It is easy to show as above that b2i(H) ≥ b2i(Td+1,d−2). If v = xk, then k ≥ 1,

H ⊇ Pk ∪G6, where G6 ∈ U(s6, d6), s6 ≥ d6 + 3, d6 ≥ d− k − 1 ≥ 3, and by Lemmas

2, 8, 9 and 10,

b2i(H) ≥ b2i(Pk ∪ Us6,d6) ≥ b2i(Pk ∪ Ts6,d6) ≥ b2i(Td+1,d−2).

If v = xk+p, then H ⊇ T1 ∪ G7 or Pk+p+1 ∪ G7, where G7 ∈ U(s7, d7), s7 ≥ d7 + 2,

d7 ≥ d − k − p − 1 ≥ 1, T1 ∈ T (k + p + 1, k + p − 1). If d7 = 1, then k + p = d − 2,

G7 = C3, and by Lemmas 2, 3, 4, 5, 6, 7 and 8,

b2i(H) ≥ b2i(Td−1,d−3 ∪ C3) ≥ b2i(Td−1,d−3 ∪ P3) ≥ b2i(Td+1,d−2),

or

b2i(H) ≥ b2i(Pd−1 ∪ C3) ≥ b2i(Td+1,d−2).

If d7 = 2, then k + p ≥ d − 3, s7 ≥ 4, and by Lemmas 2, 3, 6, 7 and 8,

b2i(H) ≥ b2i(Tk+p+1,k+p−1 ∪ Ss7) ≥ b2i(Tk+p+1,k+p−1 ∪ T4,2) ≥ b2i(Td+1,d−2),

or

b2i(H) ≥ b2i(Pk+p+1 ∪ Ss7) ≥ b2i(Pk+p+1 ∪ T4,2) ≥ b2i(Td+1,d−2).

If d7 ≥ 3, then by Lemmas 2, 6, 7, 8, 9 and 10,

b2i(H) ≥ b2i(Tk+p+1,k+p−1 ∪ Us7,d7) ≥ b2i(Tk+p+1,k+p−1 ∪ Ts7,d7) ≥ b2i(Td+1,d−2),

or

b2i(H) ≥ b2i(Pk+p+1 ∪ Us7,d7) ≥ b2i(Pk+p+1 ∪ Ts7,d7) ≥ b2i(Td+1,d−2).

Subcase 2.2. v lies outside any cycle. Then H ⊇ Ca ∪ Cb.

First, suppose that v lies on P (G) and take v = xk. If P (G) and any cycle have

no common vertices, then H ⊇ Ca ∪ Cb ∪ Pk ∪ Pd−k. By Lemmas 2, 3, 4 and 5,

b2i(H) ≥ b2i(Ca ∪ Cb ∪ Pk ∪ Pd−k) ≥ b2i(P3 ∪ Pd−1) ≥ b2i(Pd+1) ≥ b2i(Td+1,d−2).

If P (G) and exactly one cycle, say Ca, have no common vertices, then H ⊇
Ca ∪ Pk ∪ G1, where G1 ∈ U(s1, d1), s1 ≥ d1 + 2, d1 ≥ d − k − 1 ≥ 1. By Lemmas 2

and 3,

b2i(H) ≥ b2i(Ca ∪ Pk ∪ G1) ≥ b2i(P2 ∪ Pk ∪ G1) ≥ b2i(Td+1,d−2).
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If P (G) and both cycles have common vertices, then H ⊇ Pk ∪ G2 or G3 ∪ G4,

where G2 ∈ B(s2, d2), G3 ∈ U(s3, d3), G4 ∈ U(s4, d4), d2 + 3 ≤ s2 ≤ n − 2 − k,

d2 ≥ d − k − 1 ≥ 2, s3 ≥ d3 + 2, d3 ≥ k − 1 ≥ 2, s4 ≥ d4 + 2, d4 ≥ d − k − 1 ≥ 1.

Suppose that H ⊇ Pk∪G2. Since s2−d2 < h and d2 ≥ 4, by the induction hypothesis,

G2 � Bs2,d2 . From (10), b2j(Bs2,d2) ≥ b2j(Ts2,d2) for all j. By Lemmas 2 and 8,

b2i(H) ≥ b2i(Pk ∪ G2) ≥ b2i(Pk ∪ Bs2,d2) ≥ b2i(Pk ∪ Ts2,d2) ≥ b2i(Td+1,d−2).

Suppose that H ⊇ G3∪G4. If d3 = 2 and d4 = 1, then d = 5, s3 ≥ 4, and by Lemmas

2, 3, 7 and 8,

b2i(H) ≥ b2i(Ss3 ∪ C3) ≥ b2i(T4,2 ∪ P3) ≥ b2i(T6,4) ≥ b2i(Td+1,d−2).

If d3 = 2, d4 = 2, then d ≤ 6, s3 ≥ 4, s4 ≥ 4, and by Lemmas 2, 3 and 8,

b2i(H) ≥ b2i(Ss3 ∪ Ss4) ≥ b2i(T4,2 ∪ T4,2) ≥ b2i(T7,4) ≥ b2i(Td+1,d−2).

If d3 ≥ 3, d4 = 1, then d3 ≥ d − 3, and by Lemmas 2, 3, 7, 8, 9 and 10,

b2i(H) ≥ b2i(Us3,d3 ∪ C3) ≥ b2i(Ts3,d3 ∪ P3) ≥ b2i(Td+1,d−1) ≥ b2i(Td+1,d−2).

If d3 ≥ 3, d4 = 2, then d3 ≥ d − 4, s4 ≥ 4, and by Lemmas 2, 3, 8, 9 and 10,

b2i(H) ≥ b2i(Us3,d3 ∪ Ss4) ≥ b2i(Ts3,d3 ∪ T4,2) ≥ b2i(Td+1,d−2).

If d3 ≥ 3, d4 ≥ 3, then d3 + d4 ≥ d − 2, and by Lemmas 2, 8, 9 and 10,

b2i(H) ≥ b2i(Us3,d3 ∪ Us4,d4) ≥ b2i(Ts3,d3 ∪ Ts4,d4) ≥ b2i(Td+1,d−2).

Next, suppose that v lies outside P (G). Then G ⊇ Ca ∪ Cb ∪ P (G), Ca ∪ G1 or

G2, where G1 ∈ U(s1, d) with s1 ≥ d + 2 and G2 ∈ B(s2, d) with d + 3 ≤ s2 ≤ n − 2.

It is easy to show as above that b2i(H) ≥ b2i(Td+1,d−2).

Case 3. Any diametrical path of G contains all pendent vertices. Let P (G) =

x0x1 . . . xd be a diametrical path of G. Suppose that y0y1 . . . , yp is a path whose

internal vertices y1, y2, . . . , yp−1 all have degree two and yp is a pendent vertex. Then

we say that it is a pendent path, denoted by (y0, yp).

Subcase 3.1. There are exactly two pendent vertices, x0 and xd. Suppose that

degG(xk), degG(xl) ≥ 3 and that (xk, x0) and (xl, xd) are distinct pendent paths. Let

s = l − k.

Suppose that s = 0, i.e. xk = xl. Then k ≥ 3 and l ≤ d − 3. Hence it suffices

to prove that G1, G2 � Bn−d+3,3, G3, G4 � Sn−d+2, where G1 = G − (xk−3, x0) −
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(xl+2, xd), G3 = G − (xk−3, x0) − (xl+1, xd), G2 = G − (xk−2, x0) − (xl+3, xd) and

G4 = G − (xk−2, x0) − (xl+2, xd). By Lemma 3, G3, G4 � Sn−d+2. Let d1 = d(G1).

Since d1 ≥ 4, n − d + 3 − d1 < h. By the induction hypothesis and Lemma 12,

G1 � Bn−d+3,d1 � Bn−d+3,3. Similarly, G2 � Bn−d+3,3.

If s = 1 or 2, then by similar arguments as above, we have the desired result.

Suppose that s ≥ 3. We need only consider the case k ≥ 2 and l ≤ d − 2. It

suffices to prove that G5, G6 � Bn−d+s+1,s+1, G7 � Bn−d+s+2,s+2 and G8 � Bn−d+s,s,

where G5 = G − (xk−2, x0) − (xl+1, xd), G7 = G − (xk−2, x0) − (xl+2, xd), G8 =

G − (xk−1, x0) − (xl+1, xd) and G6 = G − (xk−1, x0) − (xl+2, xd). Let dj = d(Gj) and

nj = |V (Gj)|, where j = 5, 6, 7, 8. Then dj ≥ 4. If nj − dj < h, then by the induction

hypothesis and Lemma 12, we have the desired result.

Suppose that nj − dj = h. If xk−1 lies on all diametrical paths of G5, then by

Lemmas 12 and 15, G5 � Bn−d+s+1,s+1. Otherwise, by similar arguments as those

in Case 2, we also have G5 � Bn−d+s+1,s+1. Similarly, G6 � Bn−d+s+1,s+1. By

Lemmas 12 and 14, G8 � Bn−d+s,s. If there exists some diametrical path P (G7)

such that xk−1 or xl+1 lies outside P (G7), then by similar arguments as those in

Case 2, G7 � Bn−d+s+2,s+2. Otherwise, by Lemmas 1 (a), 2, 9, 10, 11 and 15,

G7 − xk−1 � Bn−d+s+1,s+2, G7 − xk−1 − xk � Un−d+s,s � Tn−d+s,s � Ts+3,s, and then

G7 � Bn−d+s+2,s+2.

Subcase 3.2. There is only one pendent vertex. By similar arguments as those in

Subcase 3.1, we have the desired result. �

Theorem 2. Let G ∈ B(n, d) with 3 ≤ d ≤ n − 3 and G �= Bn,d. If there is no

vertex-disjoint cycles, then G � Bn,d.

Proof. We prove this theorem by induction on n − d.

By Lemma 13, the result holds for n − d = 3. Let h ≥ 4 and suppose that the

result holds for n − d < h. Now suppose that n − d = h and G ∈ B(n, d).

Case 1. There is no pendent vertex in G. By Lemmas 12 and 14, G � Bn,d.

Case 2. There is a pendent vertex outside some diametrical path P (G) = x0x1 . . . xd.

Let u, adjacent to v, be a pendent vertex outside P (G). Then G − u ∈ B(n − 1, d).

If G− u = Bn−1,d, then it can be checked that G− u− v � Td+1,d−2 (or T4,2 if d = 3)

and thus from (11), we have G � Bn,d. Otherwise, by the induction hypothesis,

G − u � Bn−1,d. So it suffices to show b2i(H) ≥ b2i(Td+1,d−2) (or T4,2 if d = 3), where

H = G − u − v. We choose Ca, Cb as above in G and if there exists the third cycle,

we denote it by Cc.
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Subcase 2.1. v lies on some cycle, say Ca. Obviously, if v = u0 or ut, then H

contains no cycles. Otherwise, H ⊇ Cb or Cc.

First, suppose that v = u0 or ut. If v lies outside P (G), then H ⊇ P (G). By

Lemmas 2 and 5, b2i(H) ≥ b2i(Pd+1) ≥ b2i(Td+1,d−2).

Suppose that v lies on P (G), take v = xk. If Ca and Cb have exactly one common

vertex, then H ⊇ P2 ∪ P2 ∪ Pk ∪ Pd−k, P2 ∪ Pk ∪ Pd−k+1, P2 ∪ Pk ∪ T1, Pk+1 ∪ Pd−k+1,

Pk+1∪T1 or T1∪T2, where T1 ∈ T (d−k+1, d−k−1), T2 ∈ T (k+1, k−1). If Ca and

Cb have at least two common vertices, then H ⊇ P3 ∪Pk ∪Pd−k, Pk ∪Pd−k+2, Pk ∪T3,

Pk ∪ T4 or P (G), where T3 ∈ T (d − k + 2, d − k − 1), T4 ∈ T (d − k + 2, d − k). If

H ⊇ P2 ∪P2 ∪Pk ∪Pd−k, P2 ∪Pk ∪Pd−k+1, Pk+1 ∪Pd−k+1, P3 ∪Pk ∪Pd−k, Pk ∪Pd−k+2

or P (G), then by Lemmas 2, 4 and 5,

b2i(H) ≥ b2i(Pd+1) ≥ b2i(Td+1,d−2).

If H ⊇ P2 ∪ Pk ∪ T1 or Pk+1 ∪ T1, then by Lemmas 2, 4, 6, 7 and 8,

b2i(H) ≥ b2i(Pk+1 ∪ Td−k+1,d−k−1) ≥ b2i(Td+1,d−1) ≥ b2i(Td+1,d−2).

If H ⊇ T1 ∪ T2, then by Lemmas 2, 6 and 8,

b2i(H) ≥ b2i(Tk+1,k−1 ∪ Td−k+1,d−k−1) ≥ b2i(Td+1,d−2).

If H ⊇ Pk ∪ T3, then by Lemmas 2, 6 and 8,

b2i(H) ≥ b2i(Pk ∪ Td−k+2,d−k−1) ≥ b2i(Td+1,d−2).

If H ⊇ Pk ∪ T4, the by Lemmas 2, 6, 7 and 8,

b2i(H) ≥ b2i(Pk ∪ Td−k+2,d−k) ≥ b2i(Td+1,d−1) ≥ b2i(Td+1,d−2).

Next, suppose that v �= u0 and ut. If v lies outside P (G), then H ⊇ G1 or

P (G) ∪ Cs, where G1 ∈ U(s1, d), s1 ≥ d + 2, s = b or c. If H ⊇ G1, then by Lemmas

2, 5, 9 and 10,

b2i(H) ≥ b2i(G1) ≥ b2i(Us1,d) ≥ b2i(Ts1,d) ≥ b2i(Pd+1) ≥ b2i(Td+1,d−2).

If H ⊇ P (G) ∪ Cs, then by Lemmas 2, 3 and 5,

b2i(H) ≥ b2i(Pd+1 ∪ Ss) ≥ b2i(Pd+1) ≥ b2i(Td+1,d−2).

Suppose that v lies on P (G). Then P (G) and Ca have vertices, say xk, . . . , xk+p,

in common, where p ≥ 0.
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If p = 0, then k ≥ 1, H ⊇ Pk ∪ Pd−k ∪ Cs, where s = b or c, and by Lemmas 2, 3,

4 and 5,

b2i(H) ≥ b2i(Pk ∪ Pd−k ∪ Ss) ≥ b2i(Pd−1 ∪ P3) ≥ b2i(Pd+1) ≥ b2i(Td+1,d−2).

Suppose that p ≥ 1. If v �= xk, xk+p, then H ⊇ G2, where G2 ∈ U(s2, d), s2 ≥ d+2.

It is easy to show as above that b2i(H) ≥ b2i(Td+1,d−2). Otherwise, for v = xk or

v = xk+p, say v = xk, and then k ≥ 1, H ⊇ Pk ∪ G3, Pk ∪ G4 or Pk ∪ G′, where

G3 ∈ U(s3, d3), G4 ∈ U(s4, d4), s3 ≥ d3 + 3, d3 ≥ d − k − 1 ≥ 2, s4 ≥ d4 + 2,

d4 ≥ d − k ≥ 2 and G′ is the graph obtained by attaching a path Pd−k−2 to a vertex

of Cb = C3. Suppose that H ⊇ Pk ∪ G3. If d3 = 2, then k = d − 3, s3 ≥ 5, and by

Lemmas 2, 3 and 8,

b2i(H) ≥ b2i(Pk ∪ Ss3) ≥ b2i(Pk ∪ T5,2) ≥ b2i(Td+1,d−2).

If d3 ≥ 3, then by Lemmas 2, 8, 9 and 10,

b2i(H) ≥ b2i(Pk ∪ Us3,d3) ≥ b2i(Pk ∪ Ts3,d3) ≥ b2i(Td+1,d−2).

Suppose that H ⊇ Pk ∪ G4. If d4 = 2, then k = d − 2, s4 ≥ 4, and by Lemmas 2, 3,

7 and 8,

b2i(H) ≥ b2i(Pk ∪ Ss4) ≥ b2i(Pk ∪ T4,2) ≥ b2i(Td+1,d−1) ≥ b2i(Td+1,d−2).

If d4 ≥ 3, then by Lemmas 2, 7, 8, 9 and 10,

b2i(H) ≥ b2i(Pk ∪ Us4,d4) ≥ b2i(Pk ∪ Ts4,d4) ≥ b2i(Td+1,d−1) ≥ b2i(Td+1,d−2).

Suppose that H ⊇ Pk ∪ G′. If d − k − 2 = 0, then k = d − 2, and by Lemmas 2, 7

and 8,

b2i(H) ≥ b2i(Pk ∪ C3) ≥ b2i(Pk ∪ T4,2) ≥ b2i(Td+1,d−1) ≥ b2i(Td+1,d−2),

since it can be checked that b2j(C3) ≥ b2j(T4,2). If d − k − 2 ≥ 1, then by Lemmas 1

(a) and (b), 2 and 4,

b2i(H) ≥ b2i(Pk ∪ G′ − u0u1) + b2i−2(Pk ∪ G′ − u0 − u1)

= b2i(Pk ∪ Td−k+1,d−k−1) + b2i−2(Pk ∪ Pd−k−1)

= b2i(Pk ∪ Pd−k−1) + 2b2i−2(Pk ∪ Pd−k−2) + b2i−2(Pk ∪ Pd−k−1)

≥ b2i(Pd−2) + 3b2i−2(Pd−3) = b2i(Td+1,d−2).

Subcase 2.2. v lies outside any cycle. Then H contains two cycles Ca, Cb with at least

one common vertex. Let Ca ·Cb denote the subgraph of G induced by V (Ca)∪V (Cb).
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First, suppose that v lies on P (G), take v = xk. If vertices on P (G) lie outside

any cycle, then H ⊇ Ca · Cb ∪ Pk ∪ Pd−k. By Lemmas 2, 3, 4 and 5,

b2i(H) ≥ b2i(Ca · Cb ∪ Pk ∪ Pd−k) ≥ b2i(P3 ∪ Pk ∪ Pd−k) ≥ b2i(Td+1,d−2).

If some vertex of P (G) lies on one cycle, then H ⊇ Pk ∪G1, where G1 ∈ B(s1, d1),

d1 + 2 ≤ s1 ≤ n− 2− k, d1 ≥ max{d− k− 1, 2}. Suppose that s1 ≥ d1 + 3. If d1 = 2,

then k ≥ d − 3, s1 ≥ 5, and by Lemmas 2, 3 and 8,

b2i(H) ≥ b2i(Pk ∪ Ss1) ≥ b2i(Pk ∪ T5,2) ≥ b2i(Td+1,d−2).

Otherwise, d1 ≥ 3, s1 − d1 < h, and by the induction hypothesis, G1 � Bs1,d1 . Hence

by Lemmas 2 and 8 and bearing in mind (10),

b2i(H) ≥ b2i(Pk ∪ G1) ≥ b2i(Pk ∪ Bs1,d1) ≥ b2i(Pk ∪ Ts1,d1) ≥ b2i(Td+1,d−2).

Now suppose that s1 = d1 + 2. Then G1 is obtained by attaching respectively paths

Pl and Pd1−l−2 to the two non-adjacent vertices in K4 − e. If d1 = 2, then k ≥ d − 3,

and by Lemmas 2 and 8,

b2i(H) ≥ b2i(Pk ∪ K4 − e) ≥ b2i(Pk ∪ T5,2) ≥ b2i(Td+1,d−2),

since it can be checked that b2j(K4 − e) ≥ b2j(T5,2). If d1 ≥ 3, then by Lemmas 1 (a)

and (c), 2, 4, 9 and 10,

b2i(H) ≥ b2i(Pk ∪ G1 − u0u1) + b2i−2(Pk ∪ G1 − u0 − u1)

≥ b2i(Pk ∪ Us1,d1) + b2i−2(Pk ∪ Pl+1 ∪ Pd1−l−1)

≥ b2i(Pk ∪ Td−k+1,d−k−1) + b2i−2(Pk ∪ Pd−k−2)

≥ b2i(Td+1,d−2).

Next, suppose that v lies outside P (G). Then G ⊇ Ca · Cb ∪ P (G) or G1, where

G1 ∈ B(s, d) with d + 2 ≤ s ≤ n − 2. It is easy to show as above that b2i(H) ≥
b2i(Td+1,d−2).

Case 3. Any diametrical path of G contains all pendent vertices. By similar argu-

ments as those in Case 3 of Theorem 1, G � Bn,d. �

Combining Theorems 1 and 2, and using the increasing property (2), we obtain

the following main result of this paper.

Theorem 3. Let G ∈ B(n, d) with 3 ≤ d ≤ n − 3 and G �= Bn,d. Then E(G) >

E(Bn,d).
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︸ ︷︷ ︸
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︸ ︷︷ ︸
n−s−4

Figure 4: Graph Bs
n with 0 ≤ s ≤ �n/2� − 2.

Finally we discuss the case d = n − 2. Any graph G in B(n, n − 2) is of the form

Bs
n, which is shown in Figure 4, where 0 ≤ s ≤ �n/2� − 2. By direct calculation of

the eigenvalues, we find

Conjecture 1. For n ≥ 6, let

s(n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if n ≡ 1, 3 (mod 4),

n/2 − 3 if n ≡ 2 (mod 4),

n/2 − 2 if n ≡ 0 (mod 4).

Then for 0 ≤ s ≤ �n/2� − 2 and s �= s(n), E(Bs
n) > E(Bs(n)

n ).

However, from the the characteristic polynomials, we cannot use the relation “�”

to deduce E(Bs
n) > E(Bs(n)

n ) for s �= s(n), as may be seen in Table 1 for 6 ≤ n ≤ 9.

Table 1: Characteristic polynomials and energies of Bs
n with 0 ≤ s ≤ �n/2� − 2 and

6 ≤ n ≤ 9.

coefficients
n s

a3 a4 a5 a6 a7 a8 a9
E(Bs

n)

0 = s(6) −4 8 6 0 7.73240
6

1 −4 7 4 −1 7.80642

0 −4 14 10 −3 −2 9.25165
7

1 = s(7) −4 13 8 −4 −2 9.21222

0 −4 21 14 −11 −8 0 10.32058

1 −4 20 12 −11 −6 1 10.37466
8

2 = s(8) −4 20 12 −12 −8 0 10.29253

0 −4 29 18 −25 −18 3 2 11.78220

1 = s(9) −4 28 16 −24 −14 5 2 11.73846
9

2 −4 28 16 −25 −16 4 2 11.74918
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