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Abstract

The energy of a graph is defined as the sum of the absolute values of its eigenvalues.
Let B(n, d) be the class of bicyclic graphs with n vertices, diameter d and containing
no vertex-disjoint odd cycles of lengths s and [ with s 41 = 2 (mod 4). In this paper,
we characterize the graphs with minimal energy in B(n,d) for 3 < d < n —3. We
also discuss the case d =n — 2.

INTRODUCTION

Let G be a simple graph with n vertices. The characteristic polynomial of G,
denoted by ¢(G, N), is the characteristic polynomial of its adjacency matrix. The
eigenvalues of G, denoted by A, Ag, ..., Ay, are the roots of the equation ¢(G,\) =0
[1]. The energy of G is defined as

E(G) :gnlw.
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Figure 1: Graph B, g with 3 <d <n —3.

In theoretical chemistry, the energy of a graph has been extensively studied since it
can be used to approximate the total 7-electron energy of the molecule [2-5].

A graph whose components are cycles and/or complete graphs with two vertices
is called a Sachs graph. Let ¢(G, ) = i a;(G)A\"~. Sachs theorem [1, 2] says that
fori > 1, =

a; (@) = Z (,1)1)(5)26(5)7

SeL;
where L; denotes the set of Sachs graphs of G with i vertices, p(.S) denotes the number
of components and ¢(S) denotes the number of cycles in S. In addition, ay(G) = 1.

It is known that E(G) can be expressed as the Coulson integral formula (see [2])

1 o da /2l \? (2l 1\

E(G) = */ — log (Z (—1)l02i$21) + (Z (_1)2112i+15152l+1) ) (1)
2m oo x? i=0 i=0

where a; = a;,(G) for i =0,1,...,n.

A connected graph with n vertices and n edges is called a unicyclic graph, and a
connected graph with n vertices and n + 1 edges is called a bicyclic graph.

From a chemical point of view, it is of greatest interest to find the extremal values
of the energy for significant classes of graphs. For instance, Gutman [6] determined
the trees with minimal and maximal energies. Hou [7] determined the unicyclic graphs
with minimal energy. Yan and Ye [8] determined the trees of a given diameter with
minimal energy. Recently, Li and Zhou [9] determined the unicyclic graphs of a given
diameter with minimal energy. More results in this direction can be found in Refs.
[10-19].

Let B(n) be the class of bicyclic graphs with n vertices and containing no vertex-
disjoint odd cycles of lengths s and [ with s+ =2 (mod 4). Let B(n,d) be the class
of bicyclic graphs in B(n) with diameter d, where 2 < d < n—2. By a result of Zhang
and Zhou [15], for n > 6, the graph obtained by attaching n — 4 pendent vertices
to a vertex of degree three of the graph K, — e (the complete graph on four vertices
with one edge deleted) is the unique graph in B(n,2) with minimal energy. In this
paper, we will show that B, 4 is the unique graph in B(n, d) with minimal energy for
3 < d < n— 3, where the graph B,, 4 is shown in Figure 1. We also discuss the case
d=n-—2.



-323-

PRELIMINARIES

For two graphs G and H, G = H means G and H are isomorphic, and G 2 H
means G contains a subgraph that is isomorphic to H. For u € V(G), T'¢(u) denotes
the set of neighbors of u in G and the degree of v in G is degq(u) = [T'¢(u)|. Let Py,
S, and C), be respectively the path, star and cycle on n vertices.

For a graph G with n vertices, let b;(G) = |a;(G)| for i = 0,1,...,n. Obviously,
bo(G) = 1, b1(G) = 0 and be(G) equals the number of edges of G. Let b;(G) = 0 if
1<0ori>n.

Let Q(n) be the class of graphs with n vertices whose components are (i) all trees
except at most one being either a unicyclic graph or a bicyclic graph in B(m) with
4 < m < n, or (i) all trees except two being unicyclic graphs whose union is a
subgraph of some graph in B(m) with 7 <m < n.

A quasi-order relation can be introduced in Q(n): Let G1, G2 € Q(n). If b;(Gy) >
b;i(Gy) for i = 0,1,...,n, then we write G; = Go. If G; = Gy and there exists a k
such that by(G1) > br(G2), then we write G; > Go.

Note that for any bipartite graph G, az41(G) = 0 (see [1, 2]), and that for any
G € 9(n), (—1)'ayu(G) > 0 (see [1, 7, 15]), and moreover, if G O K, — e, then
(—1)’as;11(G) > 0 (see [15]). Thus for graphs G1,Gs € Q(n), if G is bipartite or if
G1,G9 2 K4 — e, then from (1), we have the following increasing property on E:

G = Gy = E(Gl) > E(Gg) (2)
Lemma 1. Let G be a graph in Q(n).
(a) If uv is a cut edge of G, then

b2i(G) = boi (G — uv) + bey—o(G — u — v).

(b) Suppose that G contains either a unique cycle Cy or exactly two cycles Cs and
C and that wv is an edge on Cs. If s 0 (mod 4), then

le(G) = bzl(G — ’U/U) + bQi,Q(G —u— U) + szi,S(G — 05)7
and if s =0 (mod 4), then
b21(G) = bzl(G - UU) + b2i72(G —Uu— ’U) — QbQi,S(G — CS)

(¢) Suppose that G contains three cycles Cs, C; and C, and that uv is a common

edge of Cs and C,. If s,1 Z 0 (mod 4), then

bQ,(G) = sz(G — UU) + bz,',z(G —Uu— 'U) + szifs(G — CS) + 2b2i,l(G — 01)7
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if s £ 0 (mod 4) and I =0 (mod 4), then
sz(G) = le(G — ’ILU) + b2i72(G —u— ’U) + 2b21‘,5(G — Cs) — 2b2i,l(G — 01)7
and if s,1 =0 (mod 4), then
bgl(G) = bg,(G — ’LL’U) + bgi,g(G —UuU— U) — 2b2i,5(G — Cé) — 2b2,,j,l(G — Cl)
(d) If u is a vertex outside any cycle of G, then
bgl(G) = bgt(G - u) + Z bgi,z(G —Uu— u/),
u'€lg(u)
and if G contains three cycles Cs, C; and C,. and u is a common vertex of them,
where s,l,r =0 (mod 4), then
bQZ(G) = sz(G - ’lt) + Z bzi,Q(G —u— ’U/) - 2b2i,S(G — CS)
welg(u)

2y (G = C)) = 2by_ (G — ).

Proof. For a graph G € Q(n), let C(uv) and C(u) denote respectively the sets of all
cycles C' containing the edge uv and the vertex w in G. Then [1, 2]

(G, AN) = (G —uv,\) — ¢(G —u—v,\) —2 Z (G —C,\), (3)
CeC(uv)
HG N =2(G—u )= Y HG-u—u,A)=2 Y o(G-CN. (4)
w' €l (u) ceC(u)

In particular, if uv is a cut edge of GG, then
QS(G: )‘) = ¢)(G —uv, >\) - ¢(G —u—-v, >‘)7 (5)
and if u is a vertex outside any cycle of G, then

#(GN) =2(G—u,N)— > ¢(G—u—1N). (6)
weTg ()

Bearing in mind the facts (—1)%aq;(G) > 0if G € Q(n) [1, 7, 15] and (—1)%ag;1(G)
> 0 (resp. <0) for s =3 (mod 4) (resp. s =1 (mod 4)) if G is a unicyclic graph
whose unique cycle has length s [7], and equating coefficients of A"~ on both sides
of identities on characteristic polynomials above, we have (a) from (5), (b) and (c)

from (3), and (d) from (6) and (4). O
By Lemma 1 (a) and Sachs theorem, Lemmas 2 and 3 follow easily.

Lemma 2. Let e be a cut edge of G € Q(n). Then by(G) > by (G — e).
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Lemma 3. Let G be a unicyclic graph with n vertices or a bicyclic graph in B(n).
Then G = S,.

Lemma 4. [2] Forn>2, P, > P,UP, ;= PLUP, ;.

Let 7 (n,d) be the class of trees with n > 2 vertices and diameter d, where
1<d<n—-1 KT e Tnl),then T =PF. For2 <d<n—1,let T,q4
denote the graph obtained by attaching n — d pendent vertices to an end vertex of
P,. Obviously, T;,» = S, is the unique tree in 7 (n,2) and T}, ,—1 = P, is the unique
tree in 7 (n,n — 1).

Lemma 5. [6] For3<d<n-—2, P, = T, 4> S,.
Lemma 6. [8] Let T € T(n,d) with3<d<n—2. Then T = T, 4.
Lemma 7. [9] For3<dy<d<n—2,T,4> T,q,-

Lemma 8. For2 < d; <ny—2, we have Ty, g, UT = T 4no—1,d1+dy, Where T =T, 4,
if2<dy<mg—1, and Py if no =2 and dy = 1.

Proof. For 2 < dy < mny— 1, we have (ny —dy)(ng — da) > ny+ns —dy —dy — 1, and
by Lemmas 1 (a) and 4,

bai(Tnyay U Tnyay) = 02i(Toy 1.0y U Ty y) + baico(Pay—1 U Ty ay)
= boi(Pyy UTpya,) + (1 — di)boi—a(Pay—1 U Ty a,)
= boi(Py, U Py,) + (ng — da)bai—o( Py, U Pyy_q)
+(n1 — di)bai—2(Pay—1 U Pay)
+(ny — d1)(ng — da)bai—s(Pay—1 U Pyy—1)
boi(Pryvay—1) + (n1 + ng — dy — d2)bai_o(Pay1dy—2)
+(ny 4 ny — di — do = 1)bai—a(Py +a,—3)

v

= bZi(Tm +n2—1,d1+d2 )-,

which implies T3, 4, U Thp0 = Thy4no—1,di4ds- 1t is easy to see that T, 4 U Py =

To4t,a+1- O

Let U(n, d) be the class of unicyclic graphs with n vertices and diameter d, where
1<d<n—-2 UUeU(n,1), then U= Cs. For 3 <d <n-—2,let U,q be the graph
obtained respectively by attaching n —d — 1 pendent vertices and a path P;_3 to two

non-adjacent vertices of a quadrangle.
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Lemma 9. [9] Let U € U(n,d) with3 <d <n—2. ThenU = U, 4.
Lemma 10. For3<d<n—2,Uyq > Tpa.
Proof. By Lemmas 1 (a) and (b),

byi(Una) = bai(Tna) 4 bai—a(Pa—s U Sn_at1) — 2boi—a(Pa—s)
= by(Tha) + bai—a(Pa—s U Sp_g_1) > b (T} a).

It is easy to see that by(Una) > ba(Thg). Thus Upg > Tha. O

Lemma 11. For3<dy<d<n—2,U,q = Uy,gq,.

Proof. If d = 4, then it can be checked that U, 4 = U, 3 by Sachs theorem. If d > 5,
then by Lemmas 1 (a), 2 and 10,

b?i(Un,d)

b2i(Un—1,d-1) + b2i—2(Un—2,4—2)
boi(Up—1,4-1) + boi—2(Th—2,4-2)
b2i(Un-1,4-1) + bai—2(Ti-1,4-3)
= b(Una-1),

and so Un,d t Un,dfl t e t Un,dn- g

(Y

v

Similarly, we have

Lemma 12. For 3 <dy<d<n-—3, Byq>= Bpg,-

MAIN RESULTS

For a graph G € B(n), it has either two or three distinct cycles. If G has three
cycles, then any two cycles must have at least one edge in common, and we may
choose two cycles of lengths of a and b with ¢ common edges such that a —¢ > ¢
and b —t > t. If G has exactly two cycles, suppose that the lengths of them are a
and b respectively. Then, in any case, we choose two cycles C, and Cj in G. For
convenience, let C, = vgvy ... 04 109 and Cy = uguy ... up_jug. If Cy and Cy, have no
common edges, then C, and C, are connected by a unique path P, say from vy to
up. Let I(G) be the length of P. If C, and C}, have exactly ¢ (> 1) common edges,
and thus have exactly ¢t + 1 common vertices, say, vo = ug, V1 = U1, ...,V = U, then
Ce = UpUp_1 - - - U1 1 UV 1V 42 - . . Va1 18 the third cycle of G, where ¢ = b+ a — 2t.
If we write wy = ug, w1 = Up_1,...,We1 = Vq_1, then C. = wowy ... w._1wy. Let

d(G) be the diameter of G.
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Figure 2: Graphs in B(7,4) except By 4.

bRk B

Lemma 13. Let G € B(n,n — 3) withn > 6 and G # B, ,—3. Then G > By, _3.

Proof. We prove this lemma by induction on n.

If n = 6, then by a result of [15] or by direct check, we have G > Bg .

If n =7, then @ is isomorphic to one of the graphs in Figure 2. By Sachs theorem,
for i > 3, we have by(G) > by(Br4) = 7 and by;(Br4) = 0. Thus G > Bra4.

Suppose that n > 8 and it is true for all graphs in B(n—1,n—4) and B(n—2,n—5).
Now suppose that G € B(n,n — 3) and G # B, ,_s.

Suppose that there is a pendent vertex u in G such that the degree of its neighbor
vistwo. Then G—u € B(n—1,n—4) and G—u—v € B(n—2,n—>5). Note that G #
Bpn-3. S0 G —u# By_1p-4 ot G—u—v# B,_5, 5. By the induction hypothesis,
we have either G —u > B,_1,-sand G —u—v > B,_5, -5 0r G —u = B,_1,4 and
G—u—v> By_g,5 Thus G > B, 3.

Vg Ug Ug Us Vs U3 Ug Us Vg Ug U Vg Ug Us
H, Hy Hj Hy

Figure 3: Graphs H;, j =1,...,4.

Suppose that the neighbor of any pendent vertex has degree at least three or there
is no pendent vertex. Then G is isomorphic to some Hj in Figure 3, j = 1,...,4, or
G contains one quadrangle which has at most one common vertex with another cycle
that is a triangle or a quadrangle. For n = 8,9, it can be checked by Sachs theorem
that G > B, ,_3. Suppose that n > 10. Choose C, and Cj, as above. Let b > a. Note
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that by(G) > by(Bpn—3). If G = H3 or Hy, then and by Lemmas 1 (a), (b) and (c), 2
and 0,

ng(G) = bzl(G - Uoug) + bgi,g(G — Up — Ug)
+2b21_3(G — Uy — Uy — UQ) - ngi_4(G — Uy — Uy — Uy — Uz)

Y

bQI(G — UpUg — ’LL()’UQ) + bQi,Q(G — Up — ’UQ)
-‘rbgi,Q(G — Uy — ug) - 2b2i,4(G — Uy — UL — U — ’1)2)
= bzi(G’ — UpUg — U(]UQ) =+ ij_Q(G’ — Up — V2 — Ul’u,g)
+b2i,2(G — Uy — U — U11}2)
> boi(Tnn—3) + 2b2i—2(Pr_6) = bai(Bnn—3),
implying G > B, ,—3. Otherwise, by Lemmas 1 (a) and (b), 2, 9 and 10,
bQZ(G) = bzl(G — UpU1 — Ul’LLQ) + b2i_2(G — U — Uz — Ug’uo)
+b2i,2(G — Uy — Uy — UQU3)

b2i(Un—1,n—3) + b2i—a(Up—5,n—7 U Ps) + bai—2(Un—4,n—)
> boi(Un—1,—3) + bai—o(Th—5.n—7 U P2) + bai—2(Tp—a.n—s),

\Y

while by Lemma 1 (a) and (c),
boi(Bnn—3) = boi(Un—1n—3) + bai_a(Pr—g U Py) + bai—o(P,_5),
and so, by Lemma 2, we have by;(G) > bo;(Bpn—3) and then G > By, ,,—3. O

Lemma 14. Let G € B(n,d) with 2 < d < n—4. If G contains no pendent vertices,
then G > By q41.

Proof. We choose C,,Cy, in G and if there exists the third cycle, then we choose C.
and t as above. Let b > a. Since d < n — 4, we have b > 5.

Case 1. C, and C, have no common edges. Then d = |a/2| + [b/2] + I(G).
Subcase 1.1. b £ 0 (mod 4). Then d(G — wuz) = |a/2] + b+ 1(G) —2 > d + 1,
d(G —uy —ug) > dand d > 3. By Lemmas 1 (b), 9, 10 and 11,

b2i(G)

%

bgl(G — uﬂm) + bQifz(G —U; — UQ)
02i(Un,g41) + boi—a(Un—2,4)
b2i(Un,at1) + bai—2(Th—24),

(Y

\%
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and by Lemma 1 (c),
boi(Bn,at1) = b2i(Unas1) + baio(FPu—2 U Sp—q) — 4bai—a(Pa-2). (7)

Hence, by Lemma 2, by;(G) > bai(Bp.as1)-
Subcase 1.2. b =0 (mod 4). Then b > 8. Hence d(G — ujug — uguz) = |a/2] + b+
(G)=3>d+1,d(G—uy—us—uguz) > d—1, d(G—uy —ug —uguqg) > dand d > 5.
By Lemmas 1 (a) and (b), 9, 10 and 11,
byi(G) = (G — ugug — ugug) + bai—o(G — ug — ug)
+boi—o(G — uy — uz) — 2b9; (G — Cy)
b2i (G — uyus — ugugz) + bai—o(G — ug — uz — ugus)
+boi—2(G — uy — uy — uguy)
boi(Un—1,a41) + bai—2(Un—3.4-1) + b2i—a(Up—3.4)
2 bai(Un-1a11) + baia(Th-3,0-1) + bai-2(Th-3.4),

Y

and by Lemma 1 (a) and (c),
b2i(Bn,a41) = b2i(Un—1,a41) + bai—a (P2 U Sp_q—2) + bai_a(Pa-1). (8)

Hence, by Lemma 2, by;(G) > bai( B dt1)-
Case 2. C, and (), have at least one common edge. Note that a —t > ¢, b—1t > t,
where ¢ > 1. Then ¢ > b and d = [¢/2] = |[(a +b)/2] —t.
Subcase 2.1. b,¢ # 0 (mod 4). Then d(G — wowy) = |a/2] +b—t—1>d+1,
d(G —wo—w) >c—3>dand d> 2. By Lemmas 1 (¢), 6, 7,9 and 11,

b2i(G) > bei(G — wowr) + bai—a(G — wo — wy) > bei(Upav1) + bai—a(Th—2,4),

which, together with (7) and Lemma 2, implies by;(G) > bo;(B, dat1)-

Subcase 2.2. b # 0 (mod 4) and ¢ = 0 (mod 4). If b = 5, then it can be checked
by Sachs theorem that by;(G) > boi(Byar1). Otherwise, d(G — wow; — wiws) =
la/2]+b—t—2 > d+1, d(G—w—ws—wswy) > d—1, d(G—wo—w; —wows) > c—4 > d
and d > 4. By Lemmas 1 (a), (b) and (¢), 6, 7, 9, 10 and 11,

boi(G) > bei(G — wowy — wiws) + bey_2(G — wy — wy — w3wy)
+boi_o(G — wy — w1 — wows)

boi(Un—1,a+1) + b2i—2(Upn—3,4-1) + b2i—2(Ty—3.4)
boi(Un—1,a+1) + baia(Tnsa—1) + bai—o(Th-3.4),

(Y

v
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which, together with (8) and Lemma 2, implies by;(G) > bo;(B, dt1)-

Subcase 2.3. b = 0 (mod 4) and ¢ # 0 (mod 4). Then ¢ > b > 8. By similar

arguments as those in Subcase 2.2, by;(G) > boi(Bp.g+1)-

Subcase 2.4. b,c = 0 (mod 4). Then a = 0 (mod 2) and ¢ > b > 8. If a =
2 (mod 4), then a > 6, and by similar arguments as those in Subcase 2.2, by;(G)
b2i(Bya+1). Suppose that a = 0 (mod 4). Obviously, n =a+b—t—1, d(G — ug) =
c—2>d+2,d=|(a+b)/2] —t >4, and n — 5 > d. By Lemmas 1 (a) and (d), 4,
5,6 and 7,

(\Y

b2i(G) > bai(G — ug) + boi—o(G — up — up—1 — uy)

+boi—o(G — upg — up — wy) + boi_o(G — upg — Va1 — uy)
b2i(Tn—1,d+2) + bai—2(Pa—t—1 U Pyy—2 U Pry)

+b2i—2(Pa—t—1 U Pyy—1 U Py_s) 4 boj—o(Py—y—2a U Py_y—1 U P,_y)
boi(Th-1,a+1) + 3b2i—2(Patb—t—6)

> boi(Th—1,a+1) + baima(Prs) + 202i—2(Th—s5.4-1),

v

and by Lemma 1 (a), (b) and (c),
boi(Bn,at1) = boi(Tn—1,a41) + bai—a(Pa) + 2b2i—o(Py—o U Sp_a—3). (9)

By Lemma 2, by;i(G) > byi(Bn,dt1)-
Combining Cases 1 and 2, we have by;(G) > by(Bpat1). Note that by(G) >
by(Bnd+1). Thus we have G > B, 4y1. O

Lemma 15. Let G € B(n,d) with 3 < d <n —4. If G contains exactly one pendent
vertex u on all diametrical paths of G such that G — u contains no pendent vertices,
then G > Bn,d+1-

Proof. We choose C,,Cy, in G and if there exists the third cycle, then we choose C.
and t as above. Let b > a. Since d < n — 4, we have b > 5. Let v be the neighbor of

u.
Case 1. C, and C, have no common edges. Then d = |a/2] + |[b/2] + I(G) + 1.

Subcase 1.1. b #£ 0 (mod 4). If b > 7, then d(G—uqug) > |a/2]+b+1(G)—2 > d+1.
If b= 5,6, and v lies on Cy, then d(G —uwus) = |a/2] +b+1(G)—1=d+1. Ifa =5,
b = 6, and v lies on Cj, then d(G — viv2) = |b/2] +a +1(G) —1 =d + 1. In these
cases, by similar arguments as those in Subcase 1.1 of Lemma 14, by;(G) > boi( By, 441)-
Otherwise, a = 3,4, b = 5,6, and v lies on Cj. If [(G) = 0, then it can be checked by



-331-

Sachs theorem that by;(G) > ba;(Bp,d11). Suppose that {(G) > 1. If a = 3, then by
Lemmas 1 (a) and (b), 6 and 9,

(\Y

bgl(G — UO'Ul) + bgi,g(G — Uy — V1 — uoul)
b2i(Up,av1) + bai—a(Th-3,4-1)
= b9(Un—1,a41) + baico(Tus1,a-1) + bai—a(Th—34-1),

[\

which, together with (8) and Lemma 2, implies by;(G) > by;i(Bpar1). If a = 4, then
n —4 =d, and by Lemmas 1 (a) and (b), 6 and 8,

bZi(G) > bQi(G — VU1 — U1V — U0U1) + b27’,—2(G — VoV — V1V — Up — Ul)
+boi—2(G — vo — v1 — Vav3 — UgUs) + bai—2(G — V1 — vy — V3vy — Ugll1)
boi(T—1,4+1) + b2i—2(Pr—p—2 U Tp_1 p—3)
Fbaio(Thn-a,d-2) + b2i—2(Th-34-1)
> boi(Th-t1,a41) + boi—a (T an-6) + b2i—o(Th-s4-2) + boi—a(Th—34-1),

Y

which, together with (9) and Lemma 2, implies by;(G) > bo;(B, dat1)-

Subcase 1.2. b =0 (mod 4). If b > 12, then d(G —ujus —uguz) > |a/2] +b+1(G) —
3>d+2. If b=8and v lies on Cy, then d(G —ujus — usus) = |a/2] +b+1(G) -2 =
d + 1. In these cases, by similar arguments as those in Subcase 1.2 of Lemma 14,
b2i(G) > byi(Bnat1). If a =5,6,7, b = 8, and v lies on (, by similar arguments
as those in Subcase 1.1 of Lemma 14, by;(G) > by;(Bpa+1). Otherwise, a = 3,4,
b =38, and v lies on Cy. If {(G) < 2, then it can be checked by Sachs theorem that
b2i(G) > bgi(By,at1). Suppose that [(G) > 3. By Lemmas 1 (a) and (b), 8, 9 and 10,

boi(G) > boi(G — upuy — ugug) + bai—o(G — ug — ug — uzuy)
+boi—o(G — ug — ug — ugug)

b2i(Un—1,4+1) + b2i—2(Up—3.4) + bai—2(Upn—9,4-6 U T.4)
b2i(Un—1,d+1) + bai—a(Th—3,4) + bai— ( —9,a-6 UTs4)
)

boi(Un—1,a41) + bai—a(Th-3.4) + bai—o(Th—1.4-2),

v

,d
d

Y

\Y

which, together with (8) and Lemma 2, implies by;(G) > bo;(Bp at1)-

Case 2. C, and C}, have at least one common edge. Then d = |¢/2| +1 = [(a +
b)/2] —t+ 1. Since b > 5, assume that wp, wy # v.

If b,c #0 (mod 4) and b > 6, then d(G — wow;) > |a/2]| +b—t—1>d+1 and
dG—wy—wy) >c—3>d—1. Ifb# 0 (mod 4), c =0 (mod 4) and b > 9, then
d(G — wowy —wywe) > /2] +b—t—2>d+ 1, d(G —w) —wy —wzwy) >d—1
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and d(G —wp —w; —waws) > c—4>d+1. If b=0 (mod 4) and ¢ # 0 (mod 4),
then d(G — wow; — wywy) > d+ 1, d(G — wy — wy — wzwy) > d—1 and d(G —
wy — w; — wawz) > d. If a,b,c =0 (mod 4) and a # 4 or b # 8, then n —d > 7
and d(G —wy) > ¢c—2>d+ 1. If bye =0 (mod 4), a # 0 (mod 4) and a > 10,
then d(G — wowe—1 — We1We—2) > d + 2, d(G — We1 — We—g — We—3We—q) > d and
d(G —wy — We—1 — We—gwe_3) > d+ 1. In these cases, by similar arguments as those
in Subcases 2.1-2.4 of Lemma 14, by;(G) > boi(B, d41)-

If b,c =0 (mod 4) and a = 6, then d(G — w._qwy — wow;) > ¢—2 >d+ 1. By
Lemmas 1 (a), (b) and (c), 6 and 7,

byi(G) > b2i(G — we—rwy — wowr) 4 bai—o(G — wy — w1 — wyws)
+bi—2(G — Wey — wo — wyw2)
> boi(Thas1) + 2b2i—o(Th—a,4-1)-

By Lemma 1 (b) and (c),
bai(Bn,at1) = b2i(Tnat1) + 2b2i2(Pa—2 U Sp_a-3). (10)

Hence, by Lemma 2, we have by;(G) > bo;(By, at1)-

Now we are left with the cases: (i) b,¢ Z 0 (mod 4) and b = 5, (ii) b Z 0 (mod 4),
¢ =0 (mod 4) and b = 5,6,7, or (iii) ¢ = 0 (mod 4), a = 4 and b = 8. It can be
checked directly by Sachs theorem that be;(G) > boi(Bpat1)-

Combining Cases 1 and 2, we have by;(G) > by;(Bnat1). Note that by(G) >
bi(Bn,d+1).- Thus we have G > By, g41. O

Theorem 1. Let G € B(n,d) with 3 < d < n — 3. If there are two vertex-disjoint
cycles in G, then G = B, 4.

Proof. We prove this theorem by induction on n — d.

By Lemma 13, the result holds for n —d = 3. Let h > 4 and suppose that the
result holds for n — d < h. Now suppose that n —d = h and G € B(n, d).
Case 1. There is no pendent vertex in G . By Lemmas 12 and 14, G > B, 4.
Case 2. There is a pendent vertex outside some diametrical path P(G) = xox1 . . . 24.
Let u, adjacent to v, be a pendent vertex outside P(G) in G. Then G—u € B(n—1,d).
By the induction hypothesis, G — u > B,_1 4. By Lemma 1 (a),

b2i(Bna) = bai(Bn-1.4) + bai—a(Tut1,4-2)- (11)

Hence it suffices to show that bo;(H) > boi(Tyy1,a—2), where H = G —u —v. We

choose C, and C} in G as above.
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Subcase 2.1. v lies on some cycle, say C,. Then H D Cj.
First, suppose that P(G) and Cj, have no common vertices. Then H D P,UP,;_,U
Cp. By Lemmas 2, 3, 4 and 5,

boi(H) > boi(Pe U Py UCh) > boi(Py—1 UCh) > boi(Py—1 U S)
> b9i(Py—1 U Ps) > boi(Pay1) > b2i(Tys1,d-2)-

Next, suppose that P(G) and Cj, have common vertices x;, . .. , &4, Where ¢ > 0.
If v lies outside P(G), then H O Gy, where G1 € U(s1,d), s1 > d+ 2. By Lemmas 2,
5, 9 and 10,

boi(H) > b2i(G1) > b9i(Us, q) = b2i(Tsy a) > boi( Pay1) > boi(Tus1,a—2)-

Suppose that v lies on P(G). Then P(G) and C, have common vertices, say
Ly -+ Thyp, Where p >0, k+p < [.

If p=20,then k > 1, H D P,U P, UGy, where Gy € U(s2,d3), s2 > da + 2,
dy>d—k—1>1 If dy =1, then k = d— 2 and Gy = Cj, and by Lemmas 2, 3, 4
and 5,

boi(H) > boi(P2 U Py_g U C3) > boi(Py—1 U P3) > boi(Pas1) > boi(Tur1,a—2)-
If dy =2, then k > d — 3, sy > 4, and by Lemmas 2, 3, 4, 7 and 8,

(Y

bzl(PQUPkUGQ) > bg,(PQUPkUSn) > bzi(PQUPkUT/LQ)
> boi(Pry1 UTuo) > boi(Thranta) = boi(Tar1,a-1) > boi(Tas1,4-2)-

If dy > 3, then by Lemmas 2, 4, 7, 8, 9 and 10,

\Y

boi(H) > byy(PoU P, UUs,a,) > boi(PoU P UTy, 4,) > boi(Teythdytk)
> boi(Tuyrkr2.dyn) > b2i(Tar1,a-1) > b2i(Tas1.d-2)-

Suppose that p = 1. If v = xy, then k > 1, H O P, U G5, where G5 € U(s3,d3),
s3> ds+2,d3 >d—k >3, and by Lemmas 2, 7, 8, 9 and 10,

boi(H) > boi( Py U Usydy) > bai(Pi U Ty a5) = boi( Toyrh—1,ds+h—1) = boi(Tus1,a—2)-

If v = xp41, then H D Py o UGy, where Gy € U(S4,dy), $4 > dy+2,dy > d—k—2> 1.
Ifdy =1, then k =d — 3, G4 = C3, and by Lemmas 2, 3, 4 and 5,

boi(H) > bai(Py—1 U C3) > by;(Py—1 U P3) > boi(Pay1) > boi(Tus1,a-2)-
If dy =2, then k > d — 4, s4 > 4, and by Lemmas 2, 3, 7 and 8,

boi(H) > boi( Pyro U Ss,) > boi(Prga UTu2) > boy(Tyst1,a—2)-
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If dy > 3, then by Lemmas 2, 7, 8, 9 and 10,
boi(H) > bgi(Prr2 U Usya,) = boi( Peyo U Ty a,) = boi(Tig1,a-2)-

Suppose that p > 2. If v # @, Tpyp, then H D G5, where G5 € U(ss,d), s5 > d+2.
It is casy to show as above that by (H) > boi(Tut1,a—2). If v = zp, then & > 1,
H 2 P, UGs, where Gg € U(sg,dg), s¢ > deg+ 3, dg > d—k —1 > 3, and by Lemmas
2, 8,9 and 10,

boi(H) > boi( Py U Usgdg) = boi( P U T a5) > boi(Tys1,d-2)-
If v = Zj4p, then H D T3 U Gy or Pyypi1 U Gy, where Gr € U(sy,dy), s7 > dr + 2,
d7>d—k—p—-1>1,T1veT(k+p+1k+p—1). Ifd;=1,thenk+p=d—2,
G = (3, and by Lemmas 2, 3, 4, 5, 6, 7 and 8,
boi(H) > boi(Ty—1,a-3 U C3) > boi(Ty-1,4-3 U P3) > boi(Tyy1,4-2),

or
boi(H) > boi(Py—1 U C3) > by (Tus1,4-2)-

If d; =2, then k+p>d—3, s; > 4, and by Lemmas 2, 3, 6, 7 and 8,
boi(H) = boi(Thaps1erp—1 U Ssp) = b2i(Thogprt jorp—1 U Ta2) > boi(Tis1,a-2),

or
boi(H) > boi(Prpt1 U Ss,) > bai(Prgpr1 U Tu2) > boi(Tur1,a—2)-

If d7 > 3, then by Lemmas 2, 6, 7, 8, 9 and 10,

boi(H) > boi(Titpt1 tp—1 YU Usyar) = boi( Tt petp-1 U Torar) > boi(Tus1,a-2),

or
boi(H) > b2i(Prspt1 U Uss ar) > b2i(Prspi1 U Tspa7) > boi(Tarn,a-2)-

Subcase 2.2. v lies outside any cycle. Then H O C, U (.
First, suppose that v lies on P(G) and take v = z. If P(G) and any cycle have
no common vertices, then H O C, U Cy, U P, U P;_. By Lemmas 2, 3, 4 and 5,

boi(H) > b9i(Cq U Cy U P U Py_) > boi(Ps U Py_1) > boi(Pat1) > boi(Tys1,4-2)-

If P(G) and exactly one cycle, say C,, have no common vertices, then H D
C, U P, UGy, where Gy € U(s1,d1), s1 > dy+2,dy >d—k—12>1. By Lemmas 2
and 3,

boi(H) > bei(Cy U P U Gy) > boi(Po U Py U G1) > boi(Tus1,4—2)-
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If P(G) and both cycles have common vertices, then H 2O P, U Gy or G3 U Gy,
where Gy € B(sg,ds), Gs € U(ss,d3), Gy € U(S4,ds), do +3 < s < n—2—k,
do>d—k—1>283>d3+2,dz3>k—1>2 s,>dy+2,dy>d—k—12>1.
Suppose that H 2 P,UG,. Since sy —ds < h and dy > 4, by the induction hypothesis,
G > By, 4,- From (10), b2j(Bs,.4,) > b2j(Ts,,4,) for all j. By Lemmas 2 and 8,

boi(H) > bei(Py U G2) > boi( Py U Bsyay) = b2i(Pr UTsy 4,) > boi(Tus1,a-2)-

Suppose that H D G3UGYy. If d3 =2 and dy = 1, then d = 5, s3 > 4, and by Lemmas
2,3, 7 and 8§,

boi(H) > b9i(Ssy, U C3) > boi(Tuo U Ps) > boi(To4) > boi(Tyr1,4-2)-
If d3 =2, dy =2, then d <6, s3 >4, s4 >4, and by Lemmas 2, 3 and 8§,
bai(H) > bai(Ssy U Ssy) > bai(Tu2 U Ty2) > boi(Tra) > boiTa1,a-2)-
If d3 > 3, dy = 1, then d3 > d — 3, and by Lemmas 2, 3, 7, 8, 9 and 10,
byi(H) 2 b2i(Usyay U Cs) = bai( Ty a5 U Ps) 2 boi(Tisr.a-1) 2 b2i(Tarr,a—2)-
If d3 > 3, dy =2, then d3 > d — 4, s4 > 4, and by Lemmas 2, 3, 8, 9 and 10,
boi(H) > boi(Usyds U Ssy) > boi(Tsy a5 UT2) > boi(Tyi1,4-2)-
If d3 > 3, dy > 3, then d3 + dy > d — 2, and by Lemmas 2, 8, 9 and 10,

boi(H) > b9i(Usydy U Usyay) = boi(Togay U Ty ay) > boi(Tys1,4-2)-

Next, suppose that v lies outside P(G). Then G 2 C, U, U P(G), C, UG, or
Go, where Gy € U(s1,d) with s; > d+ 2 and Gy € B(se,d) with d+3 < s <n—2.
It is casy to show as above that by;(H) > bo;(Tys1,4-2)-

Case 3. Any diametrical path of G contains all pendent vertices. Let P(G) =
ZoT1 ... Tq be a diametrical path of G. Suppose that yoy; ...,y, is a path whose
internal vertices y1,ya, . .., yp—1 all have degree two and y, is a pendent vertex. Then

we say that it is a pendent path, denoted by (yo, yp)-

Subcase 3.1. There are exactly two pendent vertices, xy and z4. Suppose that
degq(xy), degg(x;) > 3 and that (x, ) and (z;,x4) are distinct pendent paths. Let
s=1—k.

Suppose that s = 0, i.e. xx = ;. Then k£ > 3 and [ < d — 3. Hence it suffices
to prove that G1,Gs > By_gi33, G3,G4 > Sp_go, where Gy = G — (z-3,%0) —
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(Tr42,24), G3 = G — (zp—3,20) — (T141,%d), G2 = G — (Tp—2,%0) — (T143,%4) and
Gy = G — (Tg—2,20) — (X142, 2q). By Lemma 3, G3,Gy = Sy_ar2. Let di = d(Gy).
Since d; > 4, n —d+ 3 —d; < h. By the induction hypothesis and Lemma 12,
G1 > Bn_gys.d, = Br—ayss. Similarly, Go > B,_g433-

If s =1 or 2, then by similar arguments as above, we have the desired result.

Suppose that s > 3. We need only consider the case £ > 2 and [ < d—2. It
suffices to prove that G5, Gs > Bn_dts+1,s+1, G7 = Bu_darsto,s+2 and Gg = By_giss,
where G5 = G — (zg-2,%0) — (@111, 2a), Gr = G — (Tp—2,T0) — (132, 7q), Gs =
G — (Tr-1,20) — (X1, 2a) and G = G — (w4—1,T0) — (T142,%4). Let d; = d(G;) and
n; = |V(G,)|, where j = 5,6,7,8. Then d; > 4. If n; —d; < h, then by the induction
hypothesis and Lemma 12, we have the desired result.

Suppose that n; —d; = h. If 24—y lies on all diametrical paths of G5, then by
Lemmas 12 and 15, G5 > Bp_gist1,5+1. Otherwise, by similar arguments as those
in Case 2, we also have G5 > By_gys+1541. oimilarly, Gs > By_gist1,s41. By
Lemmas 12 and 14, Gs > B,_gy4ss. I there exists some diametrical path P(G7)
such that zx_1 or z;4; lies outside P(G7), then by similar arguments as those in
Case 2, G7 = By_gysi2s42. Otherwise, by Lemmas 1 (a), 2, 9, 10, 11 and 15,
G7 =21 > Bn_aysyisr2, Gr— o1 — Tk = Un—drss = Thodyss = Teys, and then

G7 - B’n,—d+3+2,s+2 .

Subcase 3.2. There is only one pendent vertex. By similar arguments as those in

Subcase 3.1, we have the desired result. O

Theorem 2. Let G € B(n,d) with3 < d <n—3 and G # Bng4. If there is no

vertex-disjoint cycles, then G > B, 4.

Proof. We prove this theorem by induction on n — d.
By Lemma 13, the result holds for n — d = 3. Let h > 4 and suppose that the
result holds for n — d < h. Now suppose that n —d = h and G € B(n,d).

Case 1. There is no pendent vertex in G. By Lemmas 12 and 14, G > B, 4.

Case 2. There is a pendent vertex outside some diametrical path P(G) = zox; . .. z4.
Let u, adjacent to v, be a pendent vertex outside P(G). Then G —u € B(n — 1,d).
If G —u = B,_14, then it can be checked that G —u —v > Ty ,4-2 (or Tyo if d = 3)
and thus from (11), we have G > B, 4. Otherwise, by the induction hypothesis,
G —u > By_1,4. So it suffices to show bo;(H) > bo;(Tus1,a—2) (or Tus if d = 3), where
H =G — u—v. We choose Cy, Cy, as above in G and if there exists the third cycle,

we denote it by C..
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Subcase 2.1. v lies on some cycle, say C,. Obviously, if v = ug or u;, then H
contains no cycles. Otherwise, H D C} or C..

First, suppose that v = ug or u;. If v lies outside P(G), then H O P(G). By
Lemmas 2 and 5, bo;(H) > bo;(Pyy1) > boi(Tus1,a—2)-

Suppose that v lies on P(G), take v = x. If C, and C} have exactly one common
vertex, then H D P,UP,U P, U Py, PUP,U Py i1, BUPUTY, Pepy U Py gy,
Py UTy or TYUTy, where Ty € T(d—k+1,d—k—1), Ty € T(k+1,k—1). If C, and
Cy have at least two common vertices, then H O P3sU P, U Py, P U Py_gy0, P UTs3,
P,UTyor P(G), where T, € T(d—k+2,d—k—1), Ty €e T(d—k+2,d— k). If
H D P,UP,UPU Py, PUPLU Py i1, Post UPa_p1, PLUPUPLy, PoUPy_iio
or P(G), then by Lemmas 2, 4 and 5,

boi(H) > b2i(Pas1) > boi(Tit1,d—2)-
If HDO P,UP,UT)| or Pyyy UTY, then by Lemmas 2, 4, 6, 7 and 8,
boi(H) > b2i(Pry1 U Ty—py1.a-k-1) = boi(Tur1,a-1) > boi(Tut1,a—2)-

If H 2 Ty UT,, then by Lemmas 2, 6 and 8,

boi(H) > boi(Tht1 -1 U Tu—pr1,a—k—1) = boi(Tus1,4—2)-
If H D P, UTs, then by Lemmas 2, 6 and 8,

boi(H) > boi(Py U Ty ps2.d-k-1) > boi(Tus1,a-2)-
If H O P, UT,, the by Lemmas 2, 6, 7 and 8§,
boi(H) > boi(Pp U Ty_pr2.4-1) > boi(Tar1,a-1) > b2i(Tas1,a-2)-

Next, suppose that v # ug and ;. If v lies outside P(G), then H O Gy or
P(G)U Cs, where G1 € U(s1,d), s1 > d+2,s=borc. If HD Gy, then by Lemmas
2, 5,9 and 10,

boi(H) > b2i(G1) > b9;(Us, q) > b2i(Tsy.q) = boi( Pay1) > boi(Tug1,4—2)-
If H D P(G) Uy, then by Lemmas 2, 3 and 5,
boi(H) > boi(Pyy1 U Ss) > bai(Pay1) > boi(Tus1,a-2)-

Suppose that v lies on P(G). Then P(G) and C, have vertices, say Zy, . .., Trip,

in common, where p > 0.
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If p=0,then k> 1, H D P,U P, UCy, where s =0 or ¢, and by Lemmas 2, 3,
4 and 5,

boi(H) > boi(Py U Py_, U Ss) > boi(Py—1 U P3) > bo;(Pay1) > boi(Tus1,a-2)-

Suppose that p > 1. If v # xy, Tg4p, then H D Go, where Gy € U(sz,d), s > d+2.
It is easy to show as above that bg;(H) > bo;(Tyi1,4-2). Otherwise, for v = z; or
UV = Tpip, Say U = T, and then k > 1, H D P, U Gs, P, UGy or P, UG', where
Gs € U(ss,d3), Gy € U(sg,dy), 53 > ds+3,d3 >d—k—12>2 s4 > dy+2
dy > d—Fk>2and G is the graph obtained by attaching a path P;_p_» to a vertex
of C, = C3. Suppose that H O P, UGs. If d3 = 2, then k = d — 3, s3 > 5, and by
Lemmas 2, 3 and 8,

boi(H) > boi (P U Ssy) > boi(Pr U Ts2) > boi(Tr1,a—2)-
If d3 > 3, then by Lemmas 2, 8, 9 and 10,
boi(H) > boi( Py U Usy dy) > boi(Pr U Ty ) > boi(Tys1,4-2)-

Suppose that H O P, UGy. If dy = 2, then k = d — 2, s4, > 4, and by Lemmas 2, 3,
7 and 8,

boi(H) > bgi (P U Ss,) > boi(Pe UTy2) > boi(Tys1,a-1) = bai(Tur1,d-2)-
If dy > 3, then by Lemmas 2, 7, 8, 9 and 10,
boi(H) > boi(Py U Usyd,) = boi (P U Ty a,) > b2i(Tyrr,a-1) > boi(Tys1,4-2)-

Suppose that H 2 P,UG'. If d — k —2 =0, then £ = d — 2, and by Lemmas 2, 7
and 8§,

boi(H) > bei(Py U C5) > boi(Py UTy2) > boi(Tys1.a-1) > boi(Tus1,a—2),

since it can be checked that by;(Cs) > byj(Ty2). If d — k — 2 > 1, then by Lemmas 1
(a) and (b), 2 and 4,

le(H) Pk UG — ltoul) +b22 (Pk UG — U *ul)
PoU Ty ji1,d-k—1) + baima(Pr U Py_p_1)
Py U Py 1) +2by;—o(Pp U Pyg—2) + baj—o( P U Py_g—1)

Py_) + 3b2i—2(Pi—3) = bai(Tus1,4-2)-

= 1)22
= b22
>

bai
(
(
bai

Subcase 2.2. v lies outside any cycle. Then H contains two cycles C,, C, with at least
one common vertex. Let C, - C}, denote the subgraph of G induced by V(C,) UV (Cy).
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First, suppose that v lies on P(G), take v = xy. If vertices on P(G) lie outside
any cycle, then H O C, - C, U Py U Py_j. By Lemmas 2, 3, 4 and 5,

boi(H) > b9i(Cy - Cpy U Py U Py_y) > boy(Ps U Py U Py_y) > boy(Tus1,4-2).

If some vertex of P(G) lies on one cycle, then H O P, UGy, where Gy € B(s1,d1),
di+2<s<n—2—k,d >max{d—k—1,2}. Suppose that s; > d; +3. If d; = 2,
then k > d — 3, s; > 5, and by Lemmas 2, 3 and 8,

boi(H) > boi(Py U Ss,) > boi( Py U Ts9) > boi(Tyr1,a-2)-

Otherwise, dy > 3, sy —dy < h, and by the induction hypothesis, G; = By, 4,. Hence
by Lemmas 2 and 8 and bearing in mind (10),

boi(H) > b2i(Pp U G1) > boi(Py U Bsyay) = b2i(Py Uy, a,) > boi(Tis1,a—2)-

Now suppose that s; = d; + 2. Then G; is obtained by attaching respectively paths
P, and Py, _;—» to the two non-adjacent vertices in Ky —e. If d; =2, then k > d — 3,
and by Lemmas 2 and 8,

bzl(H) Z b21(P/c ] K4 — 6) Z bgl(f)/C U T572) Z b?i(TdJrl,de)

since it can be checked that by;j(K4 —€) > byj(T52). If dy > 3, then by Lemmas 1 (a)
and (c), 2, 4, 9 and 10,

boi(H) > boi(Py UGy — uguy) + bay—a(Pr UGy — ug — up)
> bi(PyUUsy a,) + boj—o(Pr U Py U Py y_q)
> boi(Pr U Typer1,a-k-1) + baio (P U Py—g—2)
> boi(Tat1,4-2)

Next, suppose that v lies outside P(G). Then G 2 C, - C, U P(G) or Gy, where
Gh € B(s,d) with d+2 < s < n—2. It is easy to show as above that by;(H) >
boi(Tgs1,d-2)-
Case 3. Any diametrical path of G contains all pendent vertices. By similar argu-

ments as those in Case 3 of Theorem 1, G >~ B, 4. O

Combining Theorems 1 and 2, and using the increasing property (2), we obtain

the following main result of this paper.

Theorem 3. Let G € B(n,d) with 3 < d <n—3 and G # B,q. Then E(G) >
E(Bp.a)-
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Figure 4: Graph B with 0 < s < [n/2] —2.

Finally we discuss the case d =n — 2. Any graph G in B(n,n — 2) is of the form
B:, which is shown in Figure 4, where 0 < s < [n/2] — 2. By direct calculation of

the eigenvalues, we find
Conjecture 1. Forn > 6, let

1 if n=1,3 (mod 4),
s(n)=1{ n/2-3 if n=2 (mod 4),
n/2—2 4f n=0 (mod 4).

Then for 0 < s < |n/2| — 2 and s # s(n), E(B2) > BE(B:™).

However, from the the characteristic polynomials, we cannot use the relation “>~”
to deduce E(B2) > E(B:™) for s # s(n), as may be seen in Table 1 for 6 <n < 9.

Table 1: Characteristic polynomials and energies of B with 0 < s < [n/2] — 2 and
6<n<9.

coefficients

" s as ay as ag ar as ag E(B;)
0=s(6) | —4 8 6 0 7.73240

6 1 —4 7 4 -1 7.80642
0 —4 14 10 -3 -2 9.25165

7 1=s(7)| —4 13 8 -4 =2 9.21222
0 -4 21 14 -11 =8 0 10.32058
8 1 -4 20 12 —-11 -6 1 10.37466
2=5(8)| -4 20 12 —-12 -8 0 10.29253
0 -4 29 18 =25 —-18 3 2 11.78220
9 1=s9)| —4 28 16 —-24 —-14 5 2 11.73846
2 -4 28 16 =25 —-16 4 2 11.74918
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