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1. Introduction

All graphs in this paper are finite, undirected and simple. Let G be a graph on n vertices.

We denote the number of vertices in G by |G|, the number of edges in G by ||G||, and the

diameter of G by d(G). The characteristic polynomial of G, denoted here by P (G, x), is

defined as P (G, x) = det(xI − A), where I is the identity matrix of order n and A(G) is

the adjacency matrix of G. The eigenvalues x1, x2, . . . , xn of the adjacency matrix of G

are called the eigenvalues of G. The energy of G, denoted by E(G), is defined as

E(G) =
n∑

i=1

|xi|.

Historically chemists used the model in which the experimental heats of formation of

conjugated hydrocarbons are closely related to the total π-electron energy. Today such a

model is over-simplistic, but nevertheless HMO has some value as it points to that part of

the experimental heats of formation of conjugated hydrocarbons that can be viewed as due

to molecular connectivity (molecular topology). The calculation of the total π-electron

energy in a conjugated hydrocarbon can be reduced (within the framework of the HMO

approximation; see e. g., [10, 11]) to E(G) of the corresponding graph G. There are

numerous results on E(G) (e.g., see, [1, 3, 5-10, 12-24, 26-31, 33-38]), including on graphs

with extremal energies [3,6,15,16,19,22-24,28,29,31,33-37,40-43].

For a graph G, let m(G, k) be the number of the k-matchings of G, k � 1, and define

m(G, 0) = 1. If G is an acyclic graph on n vertices, then the energy of G can be expressed

in terms of the Coulson integral formula [11] as

E(G) =
2
π

∫ +∞

0

1
x2

ln

⎛⎝
n/2�∑
k=0

m(G, k)x2k

⎞⎠ dx, (1.1)

where

P (G, x) = xn − m(G, 1)xn−2 + m(G, 2)xn−4 − · · · + (−1)km(G, k)xn−2k (1.2)

is the characteristic polynomial of the corresponding acyclic graph G and n is the number

of vertices in G.
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Thus, by (1.1), E(G) is a strictly monotonically increasing function of m(G, k), k =

1, . . . , �n/2�. This observation led Gutman [6] to define a quasi-order over the set of all

acyclic graphs: if G1 and G2 are two acyclic graphs, then

G1 � G2 ⇔ m(G1, k) � m(G2, k) for all k � 1.

If G1 � G2, and there is a j such that m(G1, j) > m(G2, j), then we write G1 � G2.

Therefore,

G1 � G2 ⇒ E(G1) > E(G2).

If neither G1 � G2 nor G2 � G1, then G1 and G2 are said to be incomparable. This

increasing property of energy has been used in the study of extremal values of energy

over some significant classes of graphs. For instance, Gutman [6] determined trees with

minimal, second-minimal, third-minimal and fourth-minimal energies, Zhang and Li char-

acterized the trees with minimal energy [33] and maximal energy [34], respectively, among

the trees with perfect matchings. Hou determined the graphs with minimal energy among

all the trees with a given size of perfect matching [16] and all unicyclic graphs [15], re-

spectively. Zhang et al. determined the graphs with maximal energy [35] and minimal

energy [36], respectively, among the hexagonal chains. Yan and Ye characterized the tree

with maximal energy among the trees with order n and at least
⌊

n+2
2

⌋
pendent vertices

[29]. Lin et al. [24] determined the tree with maximal energy among the trees with order

n and maximum degree Δ(3 � Δ � n − 2) and the tree with minimal energy among the

trees with order n and maximum degree Δ(
⌈

n+1
3

⌉
� Δ � n − 2). Recently, Yu and Lv

[31] characterized the tree with minimal energy among the trees with k pendent vertices.

Some most recent results along these lines are found in [40-43].

9X 9Y 9Z 9W

Figure 1: X9, Y9, Z9, and W9.
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Let Pn denote the path with n vertices, where the vertices 1, 2, . . . , n are labelled

so that the vertices 1 and n are the terminal and the vertices j and j + 1 are adjacent

(j = 1, 2, . . . , n − 1), Pn(i)m denote the graph obtained by joining the terminal vertex of

Pm to the i-th vertex of Pn, where 1 � i � �n
2 �. For convenience we denote Pn(i)m in

an abbreviated manner as n(i)m. Let Tn be the collection of all trees with (exactly) n

vertices. Gutman [6] proved that

E(Xn) < E(Yn) < E(Zn) < E(Wn) < E(T ) < E(n − 2(3)2) < E(Pn)

for any tree T ∈ Tn and T �= Xn, Yn, Zn,Wn, n − 2(3)2, Pn, where Xn is the star K1,n−1, Yn

is the graph obtained by attaching a pendent edge to a pendent vertex of K1, n−2, Zn by

attaching two pendent edges to a pendent vertex of K1, n−3, and Wn by attaching a P3

to a pendent vertex of K1, n−3. Figure 1 shows X9, Y9, Z9, and W9. A pendent vertex is

a vertex of degree one, and a pendent edge is an edge incident with a pendent vertex.

A caterpillar is a tree in which a removal of all pendent vertices makes a path. Let

T (n, d; n1, . . . , nd−1) ∈ Tn,d be a caterpillar obtained from a path v0, v1, . . . , vd by adding

ni(ni � 0) pendent edges to vi(i = 1, . . . , d − 1). And in this paper, if T1 and T2 are

isomorphic, we denote it by T1 = T2. Let Tn,d denote the set of trees on n vertices and

diameter d, where 2 � d � n − 1. Obviously, T ∈ Tn,2 is a star K1,n−1, while T ∈ Tn,n−1

is a path Pn. So we assume in the following that 3 � d � n − 2.

Yan and Ye [28] proved that T (n, d;n−d−1, 0, . . . , 0) is the unique tree with minimal

energy in Tn,d. Zhou and Li [37] proved that the trees with the second-minimal energy in

Tn,d are T (n, d; 0, 0, n−d−1, 0, . . . , 0) if d � 6, T (n, 3; 1, n−5) if d = 3, T (n, 4; 1, 0, n−6)

or T (n, 4; 0, n− 5, 0) if d = 4, (n � 7), T (n, 5; 1, 0, 0, n− 7) or T (n, 5; 0, n− 6, 0, 0) if d = 5

(n � 8), and they also proposed the following conjecture

Conjecture 1.1. T (n, 4; 1, 0, n− 6) (n � 7) and T (n, 5; 0, n− 6, 0, 0) (n � 9) achieve the

second-minimal energy in the class of trees on n vertices and diameter d for d = 4 and

d = 5, respectively.

In this paper, we show that the Conjecture 1.1 is true for d = 4; while for d = 5 we

has showed that the conjecture is also true [23].
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Let G be a graph and st an edge of G, we denote by G − st (respectively, G − s) the

graph obtained from G by deleting the edge st (respectively, by deleting the vertex s and

the edges incident with it).

Lemma 1.2 ([6]). Let T be a tree with n vertices and uv an edge of T . Then

m(T, k) = m(T − uv, k) + m(T − u − v, k − 1),

especially, if v is a pendent vertex of T with pendent edge uv, then m(T, k) = m(T −v, k)+

m(T − u − v, k − 1), where k = 1, 2, . . . , �n
2 �.

Lemma 1.3 ([6]). n − 1(i)1 ≺ n − 1(3)1, if i �= 1, 3 and 1 � i � �n−1
2 �.

Lemma 1.4 ([6]). Pl � P2 ∪ Pl−2 � · · · � P2k ∪ Pl−2k � P2k+1 ∪ Pl−2k−1 � P2k−1 ∪

Pl−2k+1 � · · · � P1 ∪ Pl−1, where l = 4k + r, 0 � r � 3.

Lemma 1.5 ([6]). If T is a tree with n vertices and T �= Xn, Yn, Zn,Wn, Pn−2(3)2, Pn,

then E(Xn) < E(Yn) < E(Zn) < E(Wn) < E(T ) < E(Pn−2(3)2) < E(Pn). Furthermore,

Xn ≺ Yn ≺ Zn ≺ Wn ≺ T ≺ Pn−2(3)2 ≺ Pn.

It is easy to see that m(Xn, 1) = m(Yn, 1) = m(Zn, 1) = m(Wn, 1) = n−1, m(Xn, k) =

0 if k � 2, m(Yn, 2) = n − 3, m(Yn, k) = 0 if k � 3, m(Zn, 2) = 2n − 8, m(Zn, k) = 0 if

k � 3, m(Wn, 2) = 2n − 7, m(Wn, k) = 0 if k � 3.

Lemma 1.6 ([28]). Let G be a forest of order n(n > 1) and G′ be a spanning subgraph

(respectively, a proper spanning subgraph) of G, then G � G′ (respectively, G � G′).

This paper is organized as follows. In Section 1 we give the introduction and prelim-

inary results. In Section 2 we determine the trees with n vertices having fifth-minimal,

sixth-minimal, seventh-minimal energies and show that Conjecture 1.1 is true for d = 4.

In Section 3 we characterize the tree with n vertices having the third-maximal energy. In

the last section we study the trees with n vertices having extremal Hosoya index.
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2. Trees with minimal energy

In this section we determine the trees in Tn with fifth-minimal, sixth-minimal, and seventh-

minimal energies.

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs with V1
⋂

V2 = ∅. If G is obtained by

joining a vertex u of G1 to a vertex v of G2 by an edge, we denote it by G = G1u : vG2,

that is to say, G = (V,E) for V = V1∪V2 and E = E1∪E2∪{uv}. We denote the star of n

vertices by K1,n−1 and denote the degree of a vertex v in G by dG(v). If e is an edge of the

graph G, we denote it by e ∈ G. Let T be a tree and e ∈ T , then T − e = T ′
e ∪ T ′′

e , where

T ′
e and T ′′

e are the two components of T − e. Let ||T ′
e|| = ae and ||T ′′

e || = be. Without loss

of generality, we always assume that ae � be, e = uv, u ∈ T ′
e and v ∈ T ′′

e .

Theorem 2.1. Among trees with n (n � 6) vertices, the graph with the fifth-minimal

energy is Dn, where Dn = K1,n−5u : vK1,3; see Figure 2.

Proof. By Lemma 1.2, we have

m(Dn, k) = m(Dn − uv, k) + m(Dn − u − v, k − 1)

= m(K1,n−5 ∪ K1,3, k) + m((n − 2)P1, k − 1)

= m(K1,n−5 ∪ K1,3, k).

So, m(Dn, 1) = n− 1, m(Dn, 2) = 3n− 15 and m(Dn, k) = 0 if k � 3. Similarly, we have

m(Hn, 1) = n − 1,m(Hn, 2) = 2n − 7,m(Hn, 3) = n − 5 and m(Hn, k) = 0 if k � 4,

(2.1)

where Hn = Xn−2u : vP2; see Figure 2. At first we show that if T �= Xn, Yn, Zn ,

Wn, Dn, Hn, then either E(T ) > E(Dn) or E(T ) > E(Hn). Finally, we will compare

the energy of Dn and Hn. We distinguish between the following three cases to show

E(T ) > E(Dn) or E(T ) > E(Hn).

Case 1. There exists an edge e ∈ T such that be � 3. Note that ae + be = n− 2 for all

e ∈ T , and each edge in T ′
e with an edge in T ′′

e form a 2-matching of T . Then

m(T, 2) � 3(n − 5) = 3n − 15 = m(Dn, 2).
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Figure 2: Dn and Hn

Since T �= Dn, if m(T, 2) = m(Dn, 2), then either T ′
e �= K1,n−5 or T ′′

e �= K1,3. So we

have m(T, 3) > m(Dn, 3). Then T � Dn follows easily, therefore E(T ) > E(Dn), and

E(T ) = E(Dn) if and only if T = Dn.

Case 2. There exists an edge e = uv ∈ T such that be = 2, i.e., T ′′
e = P3. In order to

prove the theorem in this case, we distinguish between the following two subcases.

Subcase 2.1. T ′
e �= K1,n−4. By Lemma 1.5, we have m(T ′

e, k) � m(Yn−3, k) and m(T ′
e −

u, k) � m(P2, k) for all k and for any u ∈ T ′
e.

If dT ′′
e
(v) = 1, then by Lemma 1.1, we have

m(T, k) = m(T − e, k) + m(T − u − v, k − 1)

= m(T ′
e ∪ T ′′

e , k) + m((T ′
e − u) ∪ (T ′′

e − v), k − 1)

=
k∑

j=0

m(T ′
e, j)m(P3, k − j) +

k−1∑
j=0

m(T ′
e − u, j)m(P2, k − 1 − j)

�
k∑

j=0

m(Yn−3, j)m(P3, k − j) +
k−1∑
j=0

m(P2, j)m(P2, k − 1 − j)

= m(An, k),

where An = Yn−3u : vP3, dYn−3(u) = n−5 and dP3(v) = 1. So T � An and E(T ) � E(An).

Note that m(An, 1) = n − 1, m(An, 2) = 3n − 12, m(An, 3) = 2n − 11, and m(An, k) = 0

if k � 4. Then m(Hn, k) � m(An, k), together with m(Hn, 2) < m(An, 2). So it follows

easily that Hn ≺ An. Namely that E(T ) � E(An) > E(Hn).

Similarly, if dT ′′
e
(v) = 2, then we have E(T ) � E(Bn), where Bn = Yn−3u : vP3,
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dYn−3(u) = n − 5 and dP3(v) = 2. So we have

m(Bn, k) =
k∑

j=0

m(Yn−3, j)m(P3, k − j) + m(P2, k − 1).

Then it follows easily that m(Bn, 1) = n− 1, m(Bn, 2) = 3n− 13, m(Bn, 3) = 2n− 12 and

m(Bn, k) = 0 if k � 4. Hence Hn ≺ Bn, and it is easy to see that Bn ≺ An, therefore

E(T ) � E(Bn) > E(Hn) and E(An) > E(Bn).

Subcase 2.2. T ′
e = K1,n−4. Note that T �= Zn, Wn. Then u is a pendent vertex of

K1,n−4. Let v′ be the center vertex of K1,n−4, it is easy to see that buv′ = 3. Similar to

Case 1, we have E(T ) � E(Dn) and E(T ) = E(Dn) if and only if T = Dn.

Case 3. There exists an edge e = uv ∈ T such that be = 1. That is to say, T ′′
e = P2.

Note that T �= Yn, Zn, then T ′
e �= K1,n−3. By Lemma 1.5, we have m(T ′

e, k) � m(Yn−2, k)

and m(T ′
e − u, k) � m(P2, k) for all k and for any u ∈ T ′

e. Then we have

m(T, k) = m(T − e, k) + m(T − u − v, k − 1)

= m(T ′
e ∪ T ′′

e , k) + m(T ′
e − u, k − 1)

=
k∑

j=0

m(T ′
e, j)m(T ′′

e , k − j) + m(T ′
e − u, k − 1)

�
k∑

j=0

m(Yn−2, j)m(P2, k − j) + m(P2, k − 1)

= m(Hn, k).

Hence E(T ) > E(Hn), if T �= Hn.

It is not difficult to calculate the spectra of the trees Dn and Hn. Then we get

E(Dn) = 2
√

n − 1 +
√

12n − 60, E(Hn) = 2 + 2
√

n − 2 +
√

4n − 20.

¿From these formulas it is immediate to show that

E(Dn) < E(Hn)

holds for all n � 5. Hence, the fifth-minimal tree is Dn.
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Theorem 2.2. Among trees with n (n � 14) vertices, the graph of the sixth smallest

energy is Un, where Un = K1,n−5u : vK1,3; see Figure 3.

Proof. Note that Un = K1,n−5u : vK1,3, where u is the center vertex of K1,n−5 and v is

the pendent vertex of K1,3. Thus we have

m(Un, k) = m(Un − uv, k) + m(Un − u − v, k − 1)

= m(K1,n−5 ∪ K1,3, k) + m(P3, k − 1).

Then m(Un, 1) = n − 1, m(Un, 2) = 3n − 13, and m(Un, k) = 0 if k � 3.

At first, we will show that if T ∈ Tn and T �= Xn, Yn, Zn,Wn, Dn, Hn, Un, then E(T ) >

E(Un). We distinguish between the following three cases to prove it.

���
��

�

�
�

�
�

�

�

�
�

�
�

�

�

�

�
�

1
2

3

n − 5

u v

Figure 3: Un

Case 1. There exists an edge e ∈ T such that be = 1. Note that T �= Yn,Wn, then

T ′
e �= Xn−2. We distinguish between the following two subcases in order to prove our

result.

Subcase 1.1. T ′
e = Yn−2. If dT ′

e
(u) = n − 4, then T = Hn. Otherwise, we have

m(T ′
e − u, k) � m(K1,n−5, k) for all k and for any u ∈ T ′

e. So,

m(T, k) = m(T − e, k) + m(T − u − v, k − 1)

= m(Yn−2 ∪ P2, k) + m(T ′
e − u, k − 1)

� m(Yn−2 ∪ P2, k) + m(K1,n−5, k − 1)

= m(Ln, k),

where Ln = Yn−2u : vP2 and dYn−2(u) = 2. Therefore, m(Ln, 1) = n − 1, m(Ln, 2) =

3n − 13, m(Ln, 3) = n − 5 and m(Ln, k) = 0 if k � 4. It is easy to see that Un ≺ Ln � T ,

hence E(Un) < E(Ln) � E(T ).
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Subcase 1.2. T ′
e �= Yn−2. By Lemma 1.5, we have m(T ′

e, k) � m(Zn−2, k) for all k and

m(T ′
e − u, k) � m(P3, k) for any u ∈ T ′

e. Therefore

m(T, k) = m(T − e, k) + m(T − u − v, k − 1)

= m(T ′
e ∪ T ′′

e , k) + m((T ′
e − u) ∪ (T ′′

e − v), k − 1)

=
k∑

j=0

m(T ′
e, j)m(P2, k − j) + m(T ′

e − u, k − 1)

�
k∑

j=0

m(Zn−2, j)m(P2, k − j) + m(P3, k − 1)

= m(Rn, k),

where Rn = Zn−2u : vP2, and dZn−2(u) = n − 5. It is easy to see that m(Rn, 1) = n − 1,

m(Rn, 2) = 3n− 13, m(Rn, 3) = 2n− 12, and m(Rn, k) = 0 if k � 4. Hence Rn � Un and

E(Rn) > E(Un).

Case 2. There exists an edge e ∈ T such that be = 2, i.e., T ′′
e = P3.

If T ′
e �= K1,n−4, then, by the proof of Subcase 2.1 in Theorem 2.1, we have E(T ) �

E(Bn) for T �= Xn, Yn, Zn,Wn, Dn and Hn. It is easy to see that Bn � Un, then E(T ) �

E(Bn) > E(Un).

If T ′
e = K1,n−4, according to T �= Zn, Wn, then u is a pendent vertex of K1,n−4.

Furthermore, if dT ′′
e
(v) = 2, then T = Un; otherwise, dT ′′

e
(v) = 1, and we denote the

resulting graph by T̃ . Then

m(T̃ , k) = m(T̃ − e, k) + m(T̃ − u − v, k − 1)

= m(K1,n−4 ∪ P3, k) + m(K1,n−5 ∪ P2, k − 1)

=
k∑

j=0

m(K1,n−4, j)m(P3, k − j) +
k−1∑
j=0

m(K1,n−5, j)m(P2, k − 1 − j).

Then, m(T̃ , 1) = n − 1, m(T̃ , 2) = 3n − 12, m(T̃ , 3) = n − 5 and m(T̃ , k) = 0 if k � 4.

Hence T̃ � Un and E(T̃ ) > E(Un).
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Case 3. There exists an edge e ∈ T such that be = 3. Then T ′′
e is either P4 or K1,3.

By Lemma 1.2, we have

m(T, k) = m(T − e, k) + m(T − u − v, k − 1)

= m(T ′
e ∪ T ′′

e , k) + m((T ′
e − u) ∪ (T ′′

e − v), k − 1)

=
k∑

j=0

m(T ′
e, j)m(T ′′

e , k − j) + m((T ′
e − u) ∪ (T ′′

e − v), k − 1)

�
k∑

j=0

m(K1,n−5, j)m(K1,3, k − j) + m((T ′
e − u) ∪ (T ′′

e − v), k − 1).

Subcase 3.1. T ′′
e = K1,3 and T ′

e = K1,n−5. In this subcase if dT ′
e
(u) = n − 5, then

T = Dn or T = Un. So we may assume that dT ′
e
(u) = 1, thus

m(T, k) = m(T − e, k) + m(T − u − v, k − 1)

=
k∑

j=0

m(T ′
e, j)m(T ′′

e , k − j) + m((T ′
e − u) ∪ (T ′′

e − v), k − 1)

�
k∑

j=0

m(K1,n−5, j)m(K1,3, k − j) + m(K1,n−6, k − 1)

= m(Mn, k),

where Mn = K1,n−5u : vK1,3, dK1,n−5(u) = 1 and dK1,3(v) = 3. Since m(Mn, 1) = n − 1,

m(Mn, 2) = 4n − 21, and m(Mn, k) = 0 if k � 3, we have Un ≺ Mn � T and E(Un) <

E(Mn) � E(T ).

Subcase 3.2. T ′′
e = K1,3 and T ′

e �= K1,n−5. Then by Lemma 1.5, we have m(T ′
e, k) �

m(Yn−4, k) and m(T ′
e − u, k) � m(P2, k) for all k and for any u ∈ T ′

e. Thus

m(T, k) = m(T − e, k) + m(T − u − v, k − 1)

=
k∑

j=0

m(T ′
e, j)m(T ′′

e , k − j) + m((T ′
e − u) ∪ (T ′′

e − v), k − 1)

�
k∑

j=0

m(Yn−4, j)m(K1,3, k − j) + m(P2, k − 1)

= m(Rn, k),

where Rn = Yn−4u : vK1,3, dYn−4(u) = n − 6 and dK1,3(v) = 3. Since m(Rn, 1) = n − 1,
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m(Rn, 2) = 4n − 21 and m(Rn, k) = 0 if k � 3, we have Un ≺ Rn � T , then E(Un) <

E(Rn) � E(T ).

Subcase 3.3. T ′′
e = P4 and dT ′′

e
(v) = 2. Denote the tree with the minimal energy in

this case by Q′
n. Then Q′

n = K1,n−5u : vP4; see Figure 4. So,

m(Q′
n, k) =

k∑
j=0

m(K1,n−5, j)m(P4, k − j) + m(P2, k − 1).

Hence, we have

m(Q′
n, 1) = n − 1,m(Q′

n, 2) = 3n − 13,m(Q′
n, 3) = n − 5 and m(Q′

n, k) = 0 if k � 4.

(2.2)

Obviously, Un ≺ Q′
n and E(Un) < E(Q′

n).

Subcase 3.4. T ′′
e = P4 and dT ′′

e
(v) = 1. Denote the tree with the minimal energy in

this case by In. Then In = K1,n−5u : vP4, where dK1,n−5(u) = n − 5 and dP4(v) = 1. So,

m(In, k) =
k∑

j=0

m(K1,n−5, j)m(P4, k − j) + m(P3, k − 1).

Therefore m(In, 1) = n − 1, m(In, 2) = 3n − 12, m(In, 3) = n − 5 and m(In, k) = 0 if

k � 4. Hence, Un ≺ In and E(Un) < E(In).

Case 4. There exists an edge e ∈ T such that be � 4. Since ae + be = n − 2, we have

m(T, 2) � 4(n − 2 − 4) = 4n − 24 > 3n − 11, if n > 13. Note that m(T, 3) � 0. Then

T � Un, hence E(T ) > E(Un).

On the other hand, we have to demonstrate that E(Un) < E(Hn). In fact, the spectrum

of Un can be calculated, resulting in

E(Un) = 2
√

n − 1 +
√

12n − 52.

Knowing this, the fact E(Un) < E(Hn) is immediate. Thus our result holds.

Theorem 2.3 ([37]). Let T ∈ Tn,4 with n � 7, If T �= T (n, 4;n− 5, 0, 0), T (n, 4; 1, 0, n−

6), T (n, 4; 0, n − 5, 0), then T � T (n, 4; 1, 0, 6).

In the following we show that Conjecture 1.1 is true for d = 4 , namely that the

following holds:
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Theorem 2.4. T (n, 4; 1, 0, n− 6)(n � 7) achieves the second-minimal energy in the class

of trees on n vertices and diameter d for d = 4.

Proof. Note that the fact d(Xn) = 2, d(Yn) = d(Zn) = 3, d(Wn) = 4, d(Dn) = d(Hn) = 3,

dUn = 4. Hence, by Lemma 1.2, Theorems 2.1, 2.2, we obtain that for n � 14, Un =

T (n, 4;n − 6, 0, 1) is the tree with the second-minimal energy of a prescribed diameter

d = 4. So, by Theorem 2.3, it suffices to show that if 7 � n � 13, E(T (n, 4;n− 6, 0, 1)) <

E(T (n, 4; 0, n − 5, 0)). By direct calculation (rounded to three decimal places), we have

E(T (7, 4; 0, 2, 0)) = 7.596, E(T (7, 4; 1, 0, 1)) = 6.828,

E(T (8, 4; 0, 3, 0)) = 8.152, E(T (8, 4; 2, 0, 1)) = 7.384,

E(T (9, 4; 0, 4, 0)) = 8.632, E(T (9, 4; 3, 0, 1)) = 7.870,

E(T (10, 4; 0, 5, 0)) = 9.064, E(T (10, 4; 4, 0, 1)) = 8.306,

E(T (11, 4; 0, 6, 0)) = 8.899, E(T (11, 4; 5, 0, 1)) = 8.705,

E(T (12, 4; 0, 7, 0)) = 9.292, E(T (11, 4; 6, 0, 1)) = 9.076,

E(T (13, 4; 0, 8, 0)) = 9.657, E(T (13, 4; 7, 0, 1)) = 9.423.

Thus, our result holds.

Remark. In fact, Conjecture 1.1 for d = 5 is also true; see [23].

Theorem 2.5. Among trees with n (n � 14) vertices, the graph of the seventh smallest

energy is either Qn or Q′
n, where Qn = K1,n−6u : vK1,4, and Q′

n = K1,n−5u : vP4; see

Figure 4. Furthermore, Qn and Q′
n are incomparable.

Proof. It is easy to see that m(Qn, 1) = n − 1, m(Qn, 2) = 4n − 24 and m(Qn, k) = 0 if
k � 3. By (2.2), we have Qn and Q′

n are incomparable. For any tree T ∈ Tn and
T �= Xn, Yn, Zn,Wn, Dn, Hn, Un, We distinguish between the following three cases to
show our result.

Case 1. There exists an edge e ∈ T such that be � 4. Similar to the proof of
Case 1 in Theorem 2.1, we have E(T ) � E(Qn), and

E(T ) = E(Qn) ⇔ T = Qn.

Case 2. There exists an edge e ∈ T such that be = 3. By the proof of Case 3 in
Theorem 2.2, we have E(T ) � E(Qn) and

E(T ) = E(Qn) ⇔ T = Qn,

or E(T ) � E(Q′
n), and

E(T ) = E(Q′
n) ⇔ T = Q′

n.
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n

Case 3. There exists an edge e ∈ T such that be � 2. By the proof of Cases 1
and 2 in Theorem 2.2, we have

E(T ) > E(Q′
n).

Finally we must demonstrate that E(Qn) < E(Hn) and E(Q′
n) < E(Hn). In fact,

the spectrum of Qn can be calculated, resulting in E(Qn) = 2
√

n − 1 + 4
√

n − 6.
Knowing this, the fact E(Qn) < E(Hn) is immediate. On the other hand, by (2.1)
and (2.2), we have E(Q′

n) < E(Hn). Thereby, the theorem follows.

3. The third maximal energy among all n-vertex trees

In this section we determine the tree in Tn with the third-maximal energy.

Lemma 3.1. n − 1(i)1 ≺ n − 2(5)2, if i �= 1, n − 1.

Proof. By Lemma 1.3, it suffices to prove that n−1(3)1 ≺ n−2(5)2. It is easy to see that

m(n − 2(4)2, k) = m(n − 2(4)1, k) + m(Pn−2, k − 1),

m(n − 2(5)2, k) = m(n − 2(5)1, k) + m(Pn−2, k − 1).

Since m(n − 2(4)1, k) = m(Pn−2, k) + m(P3 ∪ Pn−6, k − 1), while m(n − 2(5)1, k) =

m(Pn−2, k)+m(P4∪Pn−7, k−1), by Lemma 1.4 we have m(n−2(4)1, k) � m(n−2(5)1, k).

Thus

n − 2(4)2 ≺ n − 2(5)2. (3.1)
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Since

m(n − 1(3)1, k) = m(P2 ∪ (n − 3(3)1), k) + m(n − 4(3)1, k − 1),

m(n − 2(4)2, k) = m(P2 ∪ (n − 3(3)1), k) + m(Pn−3, k − 1).

Hence by Lemma 1.5, m(n − 1(3)1, k) � m(n − 2(4)2, k). Therefore,

n − 1(3)1 ≺ n − 2(4)2. (3.2)

By Inequalities (3.1) and (3.2), we have n− 1(3)1 ≺ n− 2(5)2. Thus our results hold.
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· · ·

�

�
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v1 v2 v3

vvn−2
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vn−4 vn−3

T1 T2

T3

� � � � � �

�

. . .

v1 v2 v3 v5v4 v6 vn−2

�

�� �

� �� � � �� �
· · ·

�
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�

�

v1 v2 v3

vvn−2

vn−1

vn−5 vn−4 vn−3

Figure 5: T1, T2 and T3

Lemma 3.2. Let T1, T2 and T3 be as in Figure 5. Then T1 ≺ T2 ≺ T3 for n � 9.

Proof. By Lemma 1.2, we have

m(T1, k) = m(T1 − vn−4v, k) + m(T1 − vn−4 − v, k − 1)

= m(n − 3(3)2, k) + m(n − 5(3)2, k − 1)

= m(n − 3(3)2, k) + m(n − 6(3)2, k − 1) + m(n − 7(3)2, k − 2),

while

m(T2, k) = m(T2 − vn−5v, k) + m(T2 − vn−5 − v, k − 1)

= m(n − 3(3)2, k) + m(P2 ∪ (n − 6(3)2), k − 1)

= m(n − 3(3)2, k) + m(n − 6(3)2, k − 1) + m(n − 6(3)2, k − 2). (3.3)
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Note that n−7(5)2 is a proper subgraph of n−6(3)2. By Lemma 1.6, n−7(3)2 ≺ n−6(3)2,

then we have m(T1, k) � m(T2, k). Hence, T1 ≺ T2. On the other hand,

m(T3, k) = m(T3 − v2v3, k) + m(T3 − v2 − v3, k − 1)

= m(P2 ∪ (n − 4(3)2), k) + m(n − 5(2)2, k)

= m(n − 4(3)2, k) + m(n − 4(3)2, k − 1) + m(n − 5(2)2, k − 1)

= m(n − 4(3)2, k) + m(n − 4(3)2, k − 1) + m(n − 6(2)2, k − 1)

+ m(n − 7(2)2, k − 2).

By Eq. (3.3), we have

m(T2, k) = m(n − 4(3)2, k) + m(n − 5(3)2, k − 1) + m(n − 6(3)2, k − 1)

+ m(n − 6(3)2, k − 2)

= m(n − 4(3)2, k) + m(n − 4(3)2, k − 1) + m(n − 6(3)2, k − 1)

= m(n − 4(3)2, k) + m(n − 4(3)2, k − 1) + m(n − 7(2)2, k − 1)

+ m(Pn−8, k − 2).

By Lemma 1.6, we have n− 7(2)2 ≺ n− 6(2)2 and Pn−8 ≺ n− 7(2)2. Hence T2 ≺ T3, and

the Lemma thus follows.

Lemma 3.3. Let |T | > 8 and v be a pendent vertex of T , where T �= Pn, n − 2(3)2, n −

2(5)2, and T − v = n − 3(3)2. Then T � n − 2(5)2, and E(T ) = E(n − 2(5)2) ⇔ T =

n − 2(5)2.

Proof. We prove it by induction on |T |. Let T − v := T1 − v; see Figure 5. If n = 8, 9,

the result can be checked by comparing the characteristic polynomial of T and n− 2(5)2.

Assume that the result holds for 9 � |T | < n, and we consider the case |T | = n. Note that

T �= n− 2(3)2. Then v is not adjacent to the vertex vn−3, hence vn−3 is a pendent vertex

of T . By Lemma 1.2 we have

m(T, k) = m(T − vn−3, k) + m(T − vn−3 − vn−4, k − 1),

m(n − 2(5)2, k) = m(n − 3(5)2, k) + m(n − 4(5)2, k − 1).
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Case 1. T − vn−3 = n − 3(3)2. In this case, T = T1; see Figure 5. Then by Lemma

3.2, we have T ≺ n − 2(5)2.

Case 2. T − vn−3 − vn−4 = n − 4(3)2. In this case, T = T2; see Figure 5. Then by

Lemma 3.2, we have T ≺ n − 2(5)2.

Case 3. T −vn−3 �= n−3(3)2 and T −vn−3−vn−4 �= n−4(3)2. Note that both T −vn−3

and n−3(5)2 have the same order n−1 (respectively, both T − vn−3 − vn−4 and n−4(5)2

have the same order n − 2), and T − vn−3 − v = n − 4(3)2, T − vn−3 �= Pn−1, n − 3(3)2

(respectively, T − vn−3 − vn−4 − v = m − 5(3)2, T − vn−3 − vn−4 �= Pn−2, n − 4(3)2). By

the induction assumption, we have T − vn−3 � n − 3(5)2, and

E(T − vn−3) = E(n − 3(5)2) ⇔ T − vn−3 = n − 3(5)2.

(Respectively, we have T − vn−3 − vn−4 � n − 4(5)2, and

E(T − vn−3 − vn−4) = E(n − 4(5)2) ⇔ T − vn−3 − vn−4 = n − 4(5)2.)

Therefore, T � n − 2(5)2, and E(T ) = E(n − 2(5)2) if and only if T = n − 2(5)2. Thus

our result follows.

Lemma 3.4. Let T4, T5 be as in Figure 6. Then T4 ≺ 8(5)2, and T5 ≺ 9(5)2.

Proof. By Lemma 1.2, we have

m(T4, k) = m(T4 − v5v, k) + m(T4 − v5 − v, k − 1)

= m(P2 ∪ 6(5)2, k) + m(P2 ∪ P4, k − 1),

while m(8(5)2, k) = m(P2 ∪ 6(5)2, k) + m(P7, k − 1). By Lemma 1.6, we get P2 ∪ P4 ≺

P6 ≺ P7. Then, T4 ≺ 8(5)2. Similarly, we have

m(T5, k) = m(T5 − v5v, k) + m(T4 − v5 − v, k − 1)

= m(P2 ∪ 7(5)2, k) + m(2P2 ∪ P4, k-1), while

m(9(5)2, k) = m(P2 ∪ 7(5)2, k)+m(6(5)2, k− 1). Note that 2P2 ∪P4 is a proper subgraph

of 6(5)2. Then by Lemma 1.6, we have 2P2 ∪ P4 ≺ 6(5)2. Hence, T5 ≺ 9(5)2.
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Lemma 3.5. Let vw be a pendent edge of T with pendent vertex v, where T �= Pn, n−2(3)2,

and T−v−w = n−4(5)2. Then T � n−2(5)2, and E(T ) = E(n−2(5)2) ⇔ T = n−2(5)2.

Proof. We show it by induction on |T |. Let T − v − w = T6; see Figure 6. If n = 8, 9,

the result follows easily. Assume that the result holds for |T | = 8, 9, 10, . . . , n − 1, and

consider the case |T | = n. Since T �= n − 2(5)2, w is not adjacent to vn−4, so vn−4 is a

pendent vertex of T . By Lemma 1.2, we get

m(T, k) = m(T − vn−4, k) + m(T − vn−5 − vn−4, k − 1),

m(n − 2(5)2, k) = m(n − 3(5)2, k) + m(n − 4(5)2, k − 1).

(i) T − vn−4 = n − 3(3)2. In this case, n = 10 and T = T4; see Figure 6. By Lemma 3.4,

T ≺ n − 2(5)2.

(ii) T − vn−4 − vn−5 = n − 4(3)2. In this case, n = 11 and T = T5; see Figure 6. By

Lemma 3.4, T ≺ n − 2(5)2.

(iii) T − vn−4 �= n− 3(3)2 and T − vn−4 − vn−5 �= n− 4(3)2. Note that both T − vn−4 and

n − 3(5)2 have the same order n − 1 (respectively, both T − vn−5 − vn−4 and n − 4(5)2

have the same order n − 2), and T − vn−4 − v − w = n − 5(5)2, T − vn−4 �= Pn−1, n −

3(3)2, T − vn−5 − vn−4 �= Pn−2, n − 4(3)2 (respectively, T − vn−5 − vn−4 − v − w =

n − 6(5)2). By the induction hypothesis, we have m(T − vn−5vn−4, k) � m(n − 3(5)2, k)

and m(T − vn−5 − vn−4, k − 1) � m(n − 4(5)2, k − 1). Therefore, T � n − 2(5)2 and

E(T ) = E(n − 2(5)2) if and only if T = n − 2(5)2. Hence the result follows.
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Theorem 3.6. Let T ∈ Tn, and T �= Pn, n − 2(3)2, n − 2(5)2, then n − 2(5)2 � T .

Proof. For |T | = 8, 9, the result can be checked and suppose the result holds for all |T | =

8, 9, . . . , n−1. Now let |T | = n, we show that n−2(5)2 � T if T �= Pn, n−2(3)2, n−2(5)2.

Let v be a pendent vertex of T , being adjacent to w. By Lemma 1.2, we have

m(T, k) = m(T − v, k) + m(T − v − w, k − 1),

m(n − 2(5)2, k) = m(n − 3(5)2, k) + m(n − 4(5)2, k − 1).

If T −v = Pn−1, i.e., T = n−1(i)1, where i �= 1, n−1, then by Lemma 3.1, T ≺ n−2(5)2.

If T − v = n − 3(3)2, then by Lemma 3.3, T ≺ n − 2(5)2. So, we assume that T − v �=

Pn−1, n − 3(3)2. Note that the order of T − v is n − 1, then by the induction hypothesis,

if T − v �= n − 3(5)2 then we have n − 3(5)2 � T − v .

If T −v−w = Pn−2, then T = n−2(i)2, and it is easy to see that n−2(5)2 � T , since

T �= Pn, n−2(3)2. If T − v−w = n− 4(5)2, by Lemma 3.5, we have T ≺ n−2(5)2. So we

assume that T − v −w �= Pn−2, n− 4(5)2. Note that the order of T − v −w is n− 2, then

by the induction hypothesis, if T − v−w �= n− 4(5)2 then we have n− 4(5)2 � T − v−w.

Note that if T − v = n− 3(5)2, and T − v−w = n− 4(5)2, then T = n−2(5)2. Therefore,

the theorem holds.

4. Inequalities for topological index of Hosoya

Hosoya [17] introduced the topological index Z = Z(G), which is by definition

Z(G) = 1 + m(G, 1) + m(G, 2) + · · · + m(G, k),

where, as before, m(G, j) is the number of ways in which j non-incident edges can be

selected in a graph G.

Hence, as shown already in [6], T1 � T2 implies also Z(T1) > Z(T2), unless T1 and

T2 are cospectral (when, of course, it is Z(T1) = Z(T2)). Every relation between trees
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which has been derived in the present paper results in a corresponding inequality for the

topological index. We list such inequalities which generalize those of Gutman in [6].

For sufficient large n, if T ∈ Tn and T �= Xn, Yn, Zn,Wn, Dn, Qn, Q′
n, Un, n − 2(5)2,

n − 2(3)2, and Pn, then by Lemma 1.4 and Theorems 2.1, 2.2, 2.5 and 3.6 we have

Z(Xn) < Z(Yn) < Z(Zn) < Z(Wn) < Z(Dn) < Z(Un) < Z(Qn) < Z(T ) < Z(n − 2(5)2)

< Z(n − 2(3)2) < Z(Pn),

or

Z(Xn) < Z(Yn) < Z(Zn) < Z(Wn) < Z(Dn) < Z(Un) < Z(Q′
n) < Z(T ) < Z(n − 2(5)2)

< Z(n − 2(3)2) < Z(Pn).
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[1] D. Babić, I. Gutman, More lower bounds for the total π-electron energy of alternant

hydrocarbons, MATCH Commun. Math. Comput. Chem. 32 (1995) 7-17.

[2] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Macmillan, New York,

1976.

[3] A. Chen, A. Chang, W. C. Shiu, Energy ordering of unicyclic graphs, MATCH Com-

mun. Math. Comput. Chem. 55 (2006) 95-102.
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