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Abstract
Let G = (V,E) be a simple graph of order n with V (G) = {v1, v2, . . . , vn}

and degree sequence d1, d2, . . . , dn. Let ρ(G) be the largest eigenvalue of adja-
cency matrix of G, and let E(G) be the energy of G. Denote (αt)i =

∑
i∼j dα

j

and (αm)i = (αt)i/dα
i , where α is a real number. In this paper, we obtain

two sharp bounds on ρ(G) in terms of (αm)i or (αt)i, respectively. Also, we
present some sharp bounds on the energy E(G). From which, we can derive
some known results.

1. Introduction

Let G = (V, E) be a simple graph of order n. Let V (G) = {v1, v2, . . . , vn}. For

any two vertices vi, vj ∈ V (G), we will use the symbol i ∼ j to denote the edge vivj.

For vi ∈ V (G), NG(vi) denotes the neighbors of vi. The degree of vi, written by d(vi)

or di, is the number of edges incident with vi. The 2-degree of vi [2] is the sum of

the degrees of the vertices adjacent to vi and denoted by ti, and the average-degree

of vi is mi = ti
di

. Here we define

(αt)i =
∑
i∼j

dα
j and (αm)i =

∑
i∼j dα

j

dα
i

,
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where α is a real number. Note that di = (0t)i = (0m)i, ti = (1t)i and mi = (1m)i.

Let A(G) = (aij) be the adjacency matrix of G with aij = 1 if vi is adjacent to

vj, and aij = 0 otherwise. It follows immediately that if G is a simple graph, then

A(G) is a symmetric (0, 1) matrix in which every diagonal entry is zero. Since A(G)

is real and symmetric, its eigenvalues are real. The spectral radius of G, denoted by

ρ(G), is the largest eigenvalue of A(G). Note that if G is connected, then A(G) is

irreducible, and so by the Perron-Frobenius theory of non-negative matrices, ρ(G)

has multiplicity one and there exists a unique positive unit eigenvector (also called

Perron-eigenvector) corresponding to ρ(G).

The energy of G, denoted by E(G), is defined as E(G) =
n∑

i=1

|λi|, where ρ(G) =

λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of the adjacency matrix of G.

Up to now, many bounds for ρ(G) and E(G) were given (see for example, [1]–[11],

[16]–[24]).

In this paper, we present two sharp upper and lower bounds on the spectral radius

of a graph G, and give an upper bound for the energy of G by using this new lower

bound of spectral radius. From which, we can derive some known results.

2. Upper Bounds for the Spectral Radius of Graphs

Throughout this section, let G be a simple graph of order n with degree sequence

(d1, d2, . . . , dn). Let A(G) be the adjacency matrix of G. Let D̃ = diag(dα
1 , . . . , dα

n).

Lemma 2.1 [12]. Let M = (mij) be an n × n irreducible nonnegative matrix

with spectral radius ρ(M), and let Ri(M) be the ith row sum of M , i.e., Ri(M) =∑n
j=1 mij. Then

min{Ri(M) : 1 ≤ i ≤ n} ≤ ρ(M) ≤ max{Ri(M) : 1 ≤ i ≤ n}.

Moreover, if the row sums of M are not all equal, then the both inequalities in the

above are strict.

Now, we give our main result of this section.

Theorem 2.2. Let G be a connected graph. Then

ρ(G) ≤ min
α

max
i∼j

{√
(αm)i(αm)j

}
. (1)

Moreover, the equality holds in (1) for a particular value of α if and only if (αm)1 =

(αm)2 = · · · = (αm)n or G is a bipartite graph with the partition {v1, . . . , vn1} ∪
{vn1+1, . . . , vn} and (αm)1 = · · · = (αm)n1, (αm)n1+1 = · · · = (αm)n.
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Proof. Note that ρ(G) = ρ(A) = ρ(D̃−1AD̃). Now, the (i, j)th element of

D̃−1AD̃ is {
dα

j

dα
i

if i ∼ j,

0 otherwise.

Let X = (x1, x2, . . . , xn)T be the eigenvector corresponding to the eigenvalue

ρ(G) of D̃−1AD̃. We can assume that one eigencomponent, say xi, is equal to 1 and

the other eigencomponents are less than or equal to 1 in magnitude, that is, xi = 1

and |xk| ≤ 1 for vk ∈ V (G). Let xj = max
i∼k

{xk}.
Since

D̃−1AD̃X = ρ(A)X,

we have

ρ(G)xi =
∑
k∼i

dα
k

dα
i

xk ≤ (αm)ixj (2)

ρ(G)xj =
∑
k∼j

dα
k

dα
j

xk ≤ (αm)j (3)

Eliminating xj from (2) and (3), we obtain

ρ(G) ≤
√

(αm)i(αm)j. (4)

Now suppose that equality in (1) holds for a particular value of α. Then all

inequalities in the above argument must be equalities. In particular, we have, from

(2), that xk = xj for k ∼ i. Also from (3) that xk = 1 for k ∼ j. Let U = {vk ∈
V (G) : xk = 1}. Then vi ∈ U .

If xj = 1, then we will show U = V (G). Otherwise, if U �= V (G), there exist

vertices va, vb ∈ U , vc �∈ U such that a ∼ b, b ∼ c since G is connected. Therefore,

from

ρ(G)xa =
∑
k∼a

dα
k

dα
a

xk ≤ (αm)a

and

ρ(G)xb =
∑
k∼b

dα
k

dα
b

xk < (αm)b,

we have ρ(G) <
√

(αm)a(αm)b, which contradicts that the equality holds in (1).

Thus U = V (G) and (αm)1 = (αm)2 = · · · = (αm)n = ρ(G).

If xj < 1. Let W = {vk ∈ V (G) : xk = xj}. So NG(vj) ⊆ U and NG(vi) ⊆ W .

Now we show that NG(NG(vi)) ⊆ U . Let vr ∈ NG(NG(vi)), there exists a vertex vp
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such that i ∼ p and r ∼ p. Therefore, xp = xj and ρ(G)xp =
∑
w∼p

dα
w

dα
p
xw ≤ (αm)p.

Using (2), we obtain ρ2(G) ≤ (αm)i(
αm)p. Note that ρ2(G) ≥ (αm)i(

αm)p, and

hence ρ2(G) = (αm)i(
αm)p, which shows that xr = 1. Hence NG(NG(vi)) ⊆ U . By a

similar argument, we can show that NG(NG(vj)) ⊆ W . Continuing the procedure, it

is easy to see, since G is connected, that V = U ∪W and that the subgraphs induced

by U, W are empty. Hence G is bipartite. Moreover, (αm)p are the same for vp ∈ U

and (αm)q are the same for vq ∈ W .

Conversely, if G is a graph with (αm)1 = (αm)2 = · · · = (αm)n, then the equality

in (1) is satisfied. Let G be a bipartite graph with bipartition V = U ∪ W and

(αm)i = a for va ∈ U , (αm)i = b for vb ∈ W . Let M = K̃−1(D̃−1AD̃)K̃, where

K̃ = diag{
√

(αm)1, . . . ,
√

(αm)n}. Note that the (i, j)th element of M is⎧⎪⎪⎨⎪⎪⎩
√

b
a

dα
j

dα
i

if i ∼ j, vi ∈ U,√
a
b

dα
j

dα
i

if i ∼ j, vi ∈ W,

0 otherwise.

Using Lemma 2.1 on M , we have ρ(G) = ρ(M) =
√

ab.

Note 2.3. If α = 0, then the inequality (1) is the Berman and Zhang’s bound

(see [1]); If α = 1, then the inequality (1) is the Das and Kummer’s bound (Theorem

2.3, [5]). It was shown that in [5] Das and Kummer’s bound is better than Berman

and Zhang’s bound. Here, we give an example to show that (1) is better than the

Das and Kummer’s bound in some case. Let G be a graph shown in Fig. 1. Then

the bound (6) is
√

6 when α = 0.5, and the Das and Kummer’s bound is 2.5. Thus

in that case, (1) is better than the Das and Kummer’s bound.

G
Fig. 1

From Theorem 2.2, we have the following result.

Corollary 2.4. Let G be a connected graph. Then

ρ(G) ≤ min
α

max
1≤i≤n

{(αm)i} . (5)

Moreover, the equality holds for a particular value of α if and only if (αm)1 = (αm)2 =

· · · = (αm)n.

Note 2.5. If α = 1, then the bound (5) is the Favaron et.al’s bound (see [6]).
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3. Lower Bounds for the Spectral Radius of Graphs

In this section, we give a lower bound for the largest eigenvalue of the adjacent

matrix of a graph. Now we define a sequence

N
(1)
i , N

(2)
i , . . . , N

(k)
i , . . . ,

with N
(1)
i = dα

i , N
(2)
i =

∑
i∼j N

(1)
j and N

(k)
i =

∑
i∼j N

(k−1)
j for k ≥ 3, where α is a

real number. Note that (αt)i = N
(2)
i .

First we state the following lemma.

Lemma 3.1 [11]. Let A be a nonnegative symmetric matrix and x be a unit

vector of Rn. If ρ(G) = xT Ax, then Ax = ρ(A)x.

Theorem 3.2. Let G be a connected graph of order n with degree sequence

d1, . . . , dn. Then

ρ(G) ≥ max
k

max
α∈	

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√√√√√√√

n∑
i=1

(
N

(k+1)
i

)2

n∑
i=1

(
N

(k)
i

)2
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6)

Moreover, the equality holds in (6) for a particular values of α and k if and only

if
N

(k+1)
1

N
(k)
1

=
N

(k+1)
2

N
(k)
2

= · · · = N
(k+1)
n

N
(k)
n

or G is a bipartite graph with the partition

{v1, . . . , vn1} ∪ {vn1+1, . . . , vn} and
N

(k+1)
1

N
(k)
1

= · · · =
N

(k+1)
n1

N
(k)
n1

,
N

(k+1)
n1+1

N
(k)
n1+1

= · · · = N
(k+1)
n

N
(k)
n

.

Proof. Let X = (x1, x2, . . . , xn)T be the unit positive eigenvector of A corre-

sponding to ρ(A). Take

C =

√√√√√ 1
n∑

i=1

(
N

(k)
i

)2
(N

(k)
1 , N

(k)
2 , . . . , N (k)

n )T .

Then

ρ(G) =
√

ρ(A2) =
√

XT A2X ≥
√

CT A2C.

Since

AC =

√√√√√ 1
n∑

i=1

(
N

(k)
i

)2

(
n∑

j=1

a1jN
(k)
j ,

n∑
j=1

a2jN
(k)
j , . . . ,

n∑
j=1

anjN
(k)
j

)T

=

√√√√√ 1
n∑

i=1

(
N

(k)
i

)2

(
N

(k+1)
1 , N

(k+1)
2 , . . . , N (k+1)

n

)T

,
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we have

ρ(G) ≥

√√√√√√√
n∑

i=1

(
N

(k+1)
i

)2

n∑
i=1

(
N

(k)
i

)2
. (7)

If the equality holds, then ρ(A2) = CT A2C. By Lemma 3.1, A2C = ρ(A2)C. If

the multiplicity of ρ(A2) is one, then X = C, which implies N
(k+1)
i = ρ(G)N

(k)
i (1 ≤

i ≤ n). Hence
N

(k+1)
i

N
(k)
i

= ρ(G). Otherwise, the multiplicity of ρ(A2) = (ρ(A))2 is

two, which implies that −ρ(A) is also an eigenvalue of G. Then G is a connected

bipartite graph (see Theorem 3.4 in [4]). Without loss of generality, we assume

A =

(
0 B

BT 0

)
, where B = (bi,j) is an n1 × n2 matrix with n1 + n2 = n. Let

X = (X1, X2)
T and C =

√
1∑n

i=1(N
(k)
i )2

(C1, C2)
T , where X1 = (x1, . . . , xn1)

T and X2 =

(xn1+1, . . . , xn)T , C1 = (N
(k)
1 , N

(k)
2 , . . . , N

(k)
n1 )T and C2 = (N

(k)
n1+1, N

(k)
n1+2, . . . , N

(k)
n )T .

Since A2 =

(
BBT 0

0 BBT

)
, we have BBT C1 = ρ(A2)C1, BT BC2 = ρ(A2)C2 and

BBT X1 = ρ(A2)X1, BT BX2 = ρ(A2)X2. Noting that BBT and BT B have the same

nonzero eigenvalues, ρ(A2) is the spectral radius of BBT and its multiplicity is one.

So X1 = p1C1 (p1 is a constant), which implies
N

(k+1)
1

N
(k)
1

= · · · =
N

(k+1)
n1

N
(k)
n1

. Similarly,

X2 = p2C2 (p2 is a constant), which implies
N

(k+1)
n1+1

N
(k)
n1+1

= · · · = N
(k+1)
n

N
(k)
n

.

Conversely, if
N

(k+1)
1

N
(k)
1

=
N

(k+1)
2

N
(k)
2

= · · · = N
(k+1)
n

N
(k)
n

= p, then AC = pC. It is known that

for any positive eigenvector of a nonnegative matrix, the corresponding eigenvalue is

the spectral radius of that matrix. Hence ρ(G) = p =

√√√√ n∑
i=1

(
N

(k+1)
i

)2

n∑
i=1

(
N

(k)
i

)2 .

Now assume that G is a a bipartite graph with the partition {v1, . . . , vn1} ∪
{vn1+1, . . . , vn} and its adjacency matrix

A =

(
0 B

BT 0

)
,

N
(k+1)
1

N
(k)
1

= · · · =
N

(k+1)
n1

N
(k)
n1

= p1,
N

(k+1)
n1+1

N
(k)
n1+1

= · · · = N
(k+1)
n

N
(k)
n

= p2, where

B = (bi,j) is an n1 × n2 matrix with n1 + n2 = n. Let C1 = (N
(k)
1 , N

(k)
2 , . . . , N

(k)
n1 )T

and C2 = (N
(k)
n1+1, N

(k)
n1+2, . . . , N

(k)
n )T . Then for each i (1 ≤ i ≤ n1), the ith element

of BBT C1 is

ri(BBT C1) =

n1∑
j=1

n2∑
l=1

bilbjlN
(k)
j =

n2∑
l=1

bil

n1∑
j=1

bjlN
(k)
j
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=

n2∑
l=1

bilp2N
(k)
n1+l = p1p2N

(k)
i .

Similarly, rj(B
T BC2) = p1p2N

(k)
n1+j for j (n1 + 1 ≤ j ≤ n). Hence A2C = p1p2C,

where C =
√

1∑n
i=1(N

(k)
i )2

(N
(k)
1 , N

(k)
2 , . . . , N

(k)
n )T . It is known that for any positive

eigenvector of a nonnegative matrix, the corresponding eigenvalue is the spectral ra-

dius of that matrix. So ρ(A2) = p1p2 = CT A2C. It follows that ρ(G) =
√

CT A2C =

√
p1p2 =

√√√√ n∑
i=1

(
N

(k+1)
i

)2

n∑
i=1

(
N

(k)
i

)2 .

Note 3.3. If α = 1, then the bound (6) is the Hou et.al’s bound (Theorem

5, [13]). If α = 1 and k = 2, then the bound (6) is the Hong and Zhang’s bound

(Theorem 3.1, [11]).

Note that (αt)i = N
(2)
i and (αm)i = (αt)i

dα
i

=
N

(2)
i

N
(1)
i

, and hence we have the following

result by Theorem 3.2.

Corollary 3.4. Let G be a connected bipartite graph of order n with degree

sequence d1, . . . , dn. Then

ρ(G) ≥ max
α∈	

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√√√√√√√

n∑
i=1

(αt)2
i

n∑
i=1

d2α
i

.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (8)

Moreover, the equality holds for a particular value of α if and only if (αm)1 = (αm)2 =

· · · = (αm)n or G is a bipartite graph with the partition {v1, . . . , vn1}∪{vn1+1, . . . , vn}
and (αm)1 = · · · = (αm)n1, (αm)n1+1 = · · · = (αm)n.

Note 3.5. If α = 1
2
, then the inequality (8) is the Shi’s bound (Theorem 2.3,

[19]); if α = 1, then the inequality (8) is the Yu et.al’s bound (Theorem 4, [22]); if

α = 0, then the inequality (8) is the Hofmeister’s bound [7] (also see Corollary 6,

[22]).

Theorem 3.6. Let G be a connected graph of order n and

f(k) =

√√√√√√√
n∑

i=1

(
N

(k+1)
i

)2

n∑
i=1

(
N

(k)
i

)2
, for k ≥ 1.

Then

ρ(G) = lim
k→∞

f(k). (9)
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Proof. Let A(G) = (aij) be the adjacent matrix of G. By Cauchy-Schwaryz’s

inequality, we have(
n∑

i=1

(
N

(k+1)
i

)2
)(

n∑
i=1

(
N

(k−1)
i

)2
)

≥
(

n∑
i=1

N
(k+1)
i N

(k−1)
i

)2

=

(
n∑

i=1

n∑
j=1

aijN
(k)
i N

(k−1)
i

)2

=

(
n∑

j=1

(
n∑

i=1

aijN
(k−1)
i

)
N

(k)
i

)2

=

(
n∑

j=1

(
N

(k)
i

)2
)2

with equality if and only if

N
(k+1)
1

N
(k)
1

=
N

(k+1)
2

N
(k)
2

= · · · =
N

(k+1)
n

N
(k)
n

.

Hence
n∑

i=1

(
N

(k+1)
i

)2

n∑
i=1

(
N

(k)
i

)2
≥

n∑
i=1

(
N

(k)
i

)2

n∑
i=1

(
N

(k−1)
i

)2
. (10)

That is, f(k + 1) ≥ f(k) for k ≥ 1.

Since the sequence f(k) is monotonically increasing and has an upper bound

ρ(G), the limit lim
k→∞

f(k) must exist. In order to show the limit it suffices to prove

ρ(G) = lim
k→∞

f(2k).

Let ρ(G) = λ1 > λ2 ≥ · · · ≥ λn be all the eigenvalues of G and X1, X2, . . . , Xn

be unit eignevectors corresponding to these eigenvalues of G. Then X1, X2, . . . , Xn

consist of a orthonormal basis of Rn. Thus XT
i Xj = 1 if i = j and XT

i Xj =

0 if i �= j. In order to show that ρ(G) = lim
k→∞

f(2k), it suffices to prove C∗ =

1√
n∑

i=1
(N

(2k)
i )2

(N
(2k)
1 , N

(2k)
2 , . . . , N

(2k)
n )T approaches a unit eigenvector corresponding to

the eigenvalue ρ2(G) of A2(G) when k → ∞. Denote J∗ = (dα
1 , dα

2 , . . . , dα
n)T . Note

that the inner product 〈A2kJ∗, A2kJ∗〉 =
n∑

i=1

(N
(2k)
i )2. Thus

C∗ =
A2kJ∗√

〈A2kJ∗, A2kJ∗〉
.
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Assume that J∗ =
∑n

i=1 θiXi. Then θi = (J∗)T Xi, i = 1, 2, . . . , n. Thus

A2kJ∗ = A2k

n∑
i=1

θiXi =
n∑

i=1

θi(A
2kXi) =

n∑
i=1

θiλ
2k
i Xi,

and hence
n∑

i=1

(N
(2k)
i )2 = 〈A2kJ∗, A2kJ∗〉 =

n∑
i=1

θ2
i λ

4k
i .

If G is nonbipartite, then θ1 > 0 and λ1 > |λi| for all i = 2, 3, . . . , n. Thus the

vector
θiλ

2k
i Xi√∑n

i=1 θ2
i λ4k

i

approaches X1 if i = 1; 0 if i = 2, 3, . . . , n when k → ∞. Therefore

the eigenvector C∗ approached X1, and the result follows.

If G is bipartite, then θ1 > 0 and λ1 > |λi| for all i = 2, 3, . . . , n − 1, λn = −λ1.

Thus the vector
θiλ

2k
i Xi√∑n

i=1 θ2
i λ4k

i

approaches θ1X1√
θ2
1+θ2

n

if i = 1; 0 if i = 2, 3, . . . , n − 1;

θnXn√
θ2
1+θ2

n

if i = n when k → ∞. Therefore, when k → ∞, the eigenvector C∗

approached θ1X1+θnXn√
θ2
1+θ2

n

, which is a unit eigenvector corresponding to the eigenvalue

ρ2(G) of A2(G) and the result follows.

By Theorem 3.2, we have the following corollary.

Corollary 3.7. (i) Let G be a graph of order n with
N

(k+1)
i

N
(k)
i

= p, 1 ≤ i ≤ n. Then

ρ(G) = p;

(i) Let G be a bipartite graph of order n with the bipartition (X,Y ), where X =

{v1, . . . , vn1} and Y = {vn1+1, . . . , vn}. If
N

(k+1)
i

N
(k)
i

= p1, 1 ≤ i ≤ n1, and
N

(k+1)
j

N
(k)
j

=

p2, n1 ≤ j ≤ n. Then ρ(G) =
√

p1p2.

4. The Energy of a (Bipartite) Graph

In this section, we give some upper bounds for the energy of a (bipartite) graph

and characterize those graphs for which these bounds are best possible. Recall that

N
(1)
i = dα

i , N
(2)
i =

∑
i∼j N

(1)
j and N

(k)
i =

∑
i∼j N

(k−1)
j for k ≥ 3, where α is a real

number.

Theorem 4.1. Let G be a nonempty simple connected graph with n vertices and

e edges. Then

E(G) ≤ min
k

min
α∈	

⎧⎪⎪⎨⎪⎪⎩
√√√√√√
∑n

i=1

(
N

(k+1)
i

)2

∑n
i=1

(
N

(k)
i

)2 +

√√√√√√(n − 1)

⎛⎜⎝2e −
∑n

i=1

(
N

(k+1)
i

)2

∑n
i=1

(
N

(k)
i

)2

⎞⎟⎠.

⎫⎪⎪⎬⎪⎪⎭
(11)
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Equality holds for a particular value of α if and only if G ∼= Kn or G is a non-bipartite

connected graph satisfying
N

(k+1)
1

N
(k)
1

= · · · = N
(k+1)
n

N
(k)
n

and has three distinct eigenvalues(
p,
√

2e−p2

n−1
, −

√
2e−p2

n−1

)
, where p =

N
(k+1)
i

N
(k)
i

>
√

2e
n
, 1 ≤ i ≤ n.

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of G. By the Cauchy-

Schwartz inequality, we have

E(G) ≤ λ1 +
n∑

i=2

|λi| ≤ λ1 +

√√√√(n − 1)
n∑

i=2

λ2
i = λ1 +

√
(n − 1)(2e − λ2

1).

By Theorem 3.2 and (10), we have

λ1(G) ≥ max
α

f(k) ≥ max
α=1

f(k) ≥

√√√√√√√
(

n∑
i=1

ti

)2

n
n∑

i=1

d2
i

=

√√√√ 1

n

n∑
i=1

di
2 ≥

√
2e

n
.

Let g(x) = x +
√

(n − 2)(2e − x2), x ≤
√

2e. Then g(x) is monotonously decreasing

in x ≥
√

2e
n

. Hence g(λ1(G)) ≤ g

(√∑n
i=1

(
N

(k+1)
i

)2

∑n
i=1

(
N

(k)
i

)2

)
, which implies

E(G) ≤

√√√√√√
∑n

i=1

(
N

(k+1)
i

)2

∑n
i=1

(
N

(k)
i

)2 +

√√√√√√(n − 1)

⎛⎜⎝2e −
∑n

i=1

(
N

(k+1)
i

)2

∑n
i=1

(
N

(k)
i

)2

⎞⎟⎠.

If G is one of the two graphs shown in the third part of Theorem 3.2, it is easy

to check that the equality (11) holds. Conversely, if the equality (11) holds, then by

the same method of the proof for Theorem 2.5 in [17], G is one of the two graphs

shown in the third part of Theorem 3.2.

By (12) and the same method of the proof for Theorem 3.1 in [17], we have the

following result.

Theorem 4.2. Let G = (X,Y ) be a connected bipartite graph with n > 2 vertices

and e edges. Then

E(G) ≤ min
k

min
α∈	

⎧⎪⎪⎨⎪⎪⎩2

√√√√√√
∑n

i=1

(
N

(k+1)
i

)2

∑n
i=1

(
N

(k)
i

)2 +

√√√√√√(n − 2)

⎛⎜⎝2e −
2
∑n

i=1

(
N

(k+1)
i

)2

∑n
i=1

(
N

(k)
i

)2

⎞⎟⎠.

⎫⎪⎪⎬⎪⎪⎭
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Equality holds if and only if G ∼= Kr1,r2 ∪ (n − r1 − r2)K1, where r1r2 = e;,or G

is a connected bipartite graph with X = {v1, . . . , vn1}, Y = {vn1+1, . . . , vn} such

that
N

(k+1)
1

N
(k)
1

= · · · =
N

(k+1)
n1

N
(k)
n1

,
N

(k+1)
n1+1

N
(k)
n1+1

= · · · = N
(k+1)
n

N
(k)
n

and has four distinct eigenvalues

(
√

pxpy,
√

2e−2pxpy

n−2
, −

√
2e−2pxpy

n−2
, − √

pxpy), where px =
N

(k+1)
i

N
(k)
i

, 1 ≤ i ≤ n1 and

py =
N

(k+1)
j

N
(k)
j

, n1 + 1 ≤ j ≤ n,
√

pxpy >
√

2e
n
.

Note 4.3. Our results in Theorems 4.3 and 4.4, for α = 1, are the Hou et al’s

bounds [13]. Moreover, for k = 2, are the Liu et.al’s bounds (see [17]); and for k = 1,

are the Yu et.al’s bounds (see [23]).
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[4] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs–Theory and Applica-

tion, Academic Press, New York, 1980.

[5] K. Ch. Das and P. Kumar, Some new bounds on the spectral radius of graphs,

Discr. Math. 281(2004) 149-161.
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