ISSN 0340 - 6253

A note on energy of some graphs

G. Indulal*

Department of Mathematics, St. Aloysius College Edathua, Alappuzha - 689693, India

and

A. Vijayakumar[†]

Department of Mathematics, Cochin University of Science and Technology, Cochin-682 022, India.

Abstract

Eigenvalue of a graph is the eigenvalue of its adjacency matrix. The energy $\mathcal{E}(G)$ of a graph G is the sum of the absolute values of its eigenvalues. In this paper we obtain analytic expressions for the energy of two classes of regular graphs.

1 Introduction

Let G be a graph with |V(G)| = p and an adjacency matrix A. The eigenvalues of A are called the eigenvalues of G and form the spectrum of G denoted by spec(G) [3]. The energy [6] of G, $\mathcal{E}(G)$ is the sum of the absolute values of its eigenvalues.

From the pioneering work of Coulson [2] there exists a continuous interest towards the general mathematical properties of the total π -electron energy \mathcal{E} as calculated within the framework of the Hückel Molecular Orbital (HMO) model [7]. These efforts enabled one to get an insight into the dependence of \mathcal{E} on molecular structure. The properties of $\mathcal{E}(G)$ are discussed in detail in [6, 8, 9].

In [5] the spectra and energy of several classes of graphs containing a linear polyene fragment are obtained. In [12], we obtain the energy of cross products of some graphs. In [15], the energy of iterated line graphs of regular graphs and in [13], the energy of some self-complementary graphs are discussed. The energy of regular graphs are discussed in [10]. Some other works pertaining to the computation of $\mathcal{E}(G)$ can be seen in [1, 4, 6, 11, 14].

^{*}Author for correspondence - indulalgopal@yahoo.com

[†]vijay@cusat.ac.in

As there is no easy way to find the eigenvalues of a graph G, the computation of the actual value of $\mathcal{E}(G)$ is an interesting problem in graph theory. In this note we obtain analytic expressions for the energy of two classes of regular graphs.

All graph theoretic terminology is from [3]. We use the following lemmas and definitions in this paper.

Lemma 1. [3] Let M, N, P and Q be matrices with M invertible. Let

$$S = \begin{bmatrix} M & N \\ P & Q \end{bmatrix}. \ Then, \ |S| = |M| \left| Q - PM^{-1}N \right| \ and \ if \ M \ and \ P \ commutes, \ then, \ |S| = |MQ - PN|$$
 where the symbol $|.|$ denotes the determinant.

Lemma 2. [3] Let G be an r- regular connected graph on p vertices with A as an adjacency matrix and $r=\lambda_1,\lambda_2,\ldots,\lambda_m$ as the distinct eigenvalues. Then there exists a polynomial P(x) such that P(A)=J where J is the all one square matrix of order p and P(x) is given by $P(x)=p\times \frac{(x-\lambda_2)(x-\lambda_3)\dots(x-\lambda_m)}{(r-\lambda_2)(r-\lambda_3)\dots(r-\lambda_m)}$, so that P(r)=p and $P(\lambda_i)=0$, for all $\lambda_i\neq r$.

Lemma 3. [3]
$$spec(C_p) = \begin{pmatrix} 2 & 2\cos\frac{2\pi}{p}j \\ 1 & 1 \end{pmatrix}$$
 and $spec(\overline{C_p}) = \begin{pmatrix} p-3 & -1-2\cos\frac{2\pi}{p}j \\ 1 & 1 \end{pmatrix}$, $j=1 \ to \ p-1$.

Lemma 4. [3] Let G be an r- regular graph with an adjacency matrix A and incidence matrix R. Then, $RR^T = A + rI$.

Definition 1. Let G be a (p,q) graph. The complement of the incidence matrix R, denoted by $\overline{R} = [\overline{r_{ij}}]$ is defined by

$$\overline{r_{ij}} = 1$$
 if v_i is not incident with e_j
= 0, otherwise.

Definition 2. Let G be a (p,q) graph. Corresponding to every edge e of G introduce a vertex and make it adjacent with all the vertices not incident with e in G. Delete the edges of G only. The resulting graph is called the partial complement of the subdivision graph of G, denoted by $\overline{S}(G)$.

2 Partial complement of the subdivision graph

In this section we obtain the spectrum of the partial complement of the subdivision graph $\overline{S}(G)$ of a regular graph G and the energy of $\overline{S}(C_p)$.

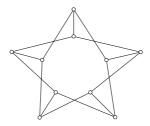


Figure 1: $\overline{S}(C_5)$

Lemma 5. Let G be an r- regular (p,q) graph with an adjacency matrix A and incidence matrix R. Then, $\overline{R} = J_{p \times q} - R$, $\overline{R}^T = J_{q \times p} - R^T$ and $R\overline{R}^T = (q-2r)J + (A+r)$ where J is the all one matrix of appropriate order.

Proof. By Definition 1, $\overline{R} = J_{p \times q} - R$. Therefore

$$\overline{R} \ \overline{R}^T = (J_{p \times q} - R) \left(J_{q \times p} - R^T \right)$$

$$= qJ - rJ - rJ + A + rI$$

$$= (q - 2r) J + (A + r)I, \text{ by Lemma 4}$$

Hence the lemma. \Box

Lemma 6. Let G be a connected r-regular (p,q) graph. Then, $\overline{S}(G)$ is regular if and only if G is a cycle.

Proof. From Definition 2, we have the degree of vertices in $\overline{S}(G)$ corresponding to the edges of G is p-2 each and of those corresponding to the vertices of G is q-r each. Since G is r- regular, $q=\frac{pr}{2}$ and hence q-r=p-2 if and only if r=2. Thus, $\overline{S}(G)$ is regular if and only if G is a cycle.

Theorem 1. Let G be a connected r- regular (p,q) graph. Then,

$$spec(\overline{S}(G)) = \begin{pmatrix} \pm \sqrt{p(q-2r) + 2r} & \pm \sqrt{\lambda_i + r} & 0 \\ 1 & 1 & q-p \end{pmatrix}, i = 2 \text{ to } p.$$

Proof. The adjacency matrix of $\overline{S}(G)$ can be written as $\begin{bmatrix} 0 & \overline{R} \\ \overline{R}^T & 0 \end{bmatrix}$. Then, the theorem follows from Lemmas 1 and 5.

Theorem 2.

$$\mathcal{E}\left(\overline{S}\left(C_{p}\right)\right) = \begin{cases} 2\left(p - 4 + 2\cot\frac{\pi}{2p}\right), p \equiv 0 (mod 2) \\ \\ 2\left(p - 4 + 2cosec\frac{\pi}{2p}\right), p \equiv 1 (mod 2) \end{cases}$$

Proof. By Lemma 3 and Theorem 1 we have

$$spec\left(\overline{S}\left(C_{p}\right)\right) = \begin{pmatrix} p-2 & -\left(p-2\right) & \pm 2\cos\frac{\pi j}{p} \\ 1 & 1 & 1 \end{pmatrix}, j = 1 \ to \ p-1.$$

We shall consider the following two cases.

Case 1. $p \equiv 0 \pmod{2}$.

The cosine numbers $2\cos\frac{\pi j}{p}$ are positive only for $\frac{\pi}{p}j\leq\frac{\pi}{2}$. Then, the positive cosine numbers are $2\cos\frac{\pi}{p},2\cos\left(\frac{\pi}{p}\times2\right),...,2\cos\left(\frac{\pi}{p}\times\frac{p}{2}\right)$.

Let
$$C = 2\cos\frac{\pi}{p} + 2\cos\left(\frac{\pi}{p} \times 2\right) + \dots + 2\cos\left(\frac{\pi}{p} \times \frac{p}{2}\right)$$
 and
$$S = 2\sin\frac{\pi}{p} + 2\sin\left(\frac{\pi}{p} \times 2\right) + \dots + 2\sin\left(\frac{\pi}{p} \times \frac{p}{2}\right)$$

so that

$$\begin{split} C+iS &= 2\gamma + 2\gamma^2 + \dots + 2\gamma^{\frac{p}{2}} \\ &= 2\gamma \frac{\left(1-\gamma^{\frac{p}{2}}\right)}{1-\gamma} \text{ where } \gamma = \cos\frac{\pi}{p} + i\sin\frac{\pi}{p} \text{ and } i = \sqrt{-1}. \end{split}$$

Now, equating real parts, we get $C = \cot \frac{\pi}{2p} - 1$. Since the spectrum of $(\overline{S}(C_p))$ is symmetric with respect to zero, the energy contribution from the cosine numbers is 2C. Thus,

$$\begin{split} \mathcal{E}\left(\overline{S}\left(C_{p}\right)\right) &= 2\times\left(p-2+2C\right) \\ &= 2\left(p-4+2\cot\frac{\pi}{2p}\right) \end{split}$$

Case 2. $p \equiv 1 \pmod{2}$.

When p is odd, the cosine numbers $2\cos\frac{\pi j}{p}$ are positive for $j \leq \frac{p-1}{2}$. Then, by a similar argument as in Case 1, we get $\mathcal{E}(\overline{S}(C_p)) = 2\left(p-4+2\cos ec\frac{\pi}{2p}\right)$. Hence the theorem.

3 Energy of the complement of a cycle.

In [5], I.Gutman obtained an analytic expression for the energy of a cycle C_p . In this section we derive the energy of $\overline{C_p}$, the complement of the cycle C_p .

Theorem 3.

$$\mathcal{E}\left(\overline{C_p}\right) = \begin{cases} 2\left(\frac{2p-9}{3} + \sqrt{3}\cot\frac{\pi}{p}\right); p \equiv 0 \pmod{3} \\ \\ 2\left(\frac{2p-8}{3} + \frac{2\sin\frac{\pi}{3}\left(1 - \frac{1}{p}\right)}{\sin\frac{\pi}{p}}\right); p \equiv 1 \pmod{3} \\ \\ 2\left(\frac{2p-10}{3} + \frac{2\sin\frac{\pi}{3}\left(1 + \frac{1}{p}\right)}{\sin\frac{\pi}{p}}\right); p \equiv 2 \pmod{3} \end{cases}$$

Proof. We have
$$spec(\overline{C_p})=\left(\begin{array}{cc} p-3 & -\left(1+2\cos\frac{2\pi j}{p}\right)\\ 1 & 1 \end{array}\right), j=1\ to\ p-1$$
 by Lemma 3.

We shall consider the following cases

Case 1. $p \equiv 0 \pmod{3}$.

Then,
$$-\left(1+2\cos\frac{2\pi j}{p}\right) \geq 0$$
 if and only if $\frac{p}{3} \leq j \leq \frac{2p}{3}$.
Let $\sum_{j=\frac{p}{3}}^{\frac{2p}{3}} \left(1+2\cos\frac{2\pi j}{p}\right) = \frac{p+3}{3} + \sum_{j=\frac{p}{3}}^{\frac{2p}{3}} 2\cos\frac{2\pi j}{p} = \frac{p+3}{3} + C$ and $S = \sum_{j=\frac{p}{3}}^{\frac{2p}{3}} 2\sin\frac{2\pi j}{p}$, so that $C+iS = \sum_{j=\frac{p}{3}}^{\frac{2p}{3}} \gamma^{j}$ where $\gamma = \cos\frac{2\pi}{p} + i\sin\frac{2\pi}{p}$.
Equating real parts, we get $C = -(1+\sqrt{3}\cot\frac{\pi}{p})$.

The total sum of positive eigenvalues

$$= p - 3 + \sqrt{3} \cot \frac{\pi}{p} + 1 - \left(\frac{p+3}{3}\right)$$
$$= \frac{2p-9}{3} + \sqrt{3} \cot \frac{\pi}{p}.$$

Thus,
$$\mathcal{E}(\overline{C_p}) = 2 \times \left[\frac{2p-9}{3} + \sqrt{3} \cot \frac{\pi}{p}\right]$$
.

The other two cases $p \equiv 1 \pmod{3}$ and $p \equiv 2 \pmod{3}$ can be proved similarly.

References

- [1] R. Balakrishnan, The energy of a graph, Linear Algebra Appl., 387(2004), 287 295.
- [2] C. A. Coulson, On the calculation of the energy in unsaturated hydrocarbon molecules, Proc. Cambridge Phil. Soc., 36 (1940), 201 203.

- [3] D.M.Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs-Theory and Applications, Academic Press, (1980).
- [4] I. Gutman, M. Milun, N. Trinajstić, Hückel Molecular Orbital Calculations of Aromatic Stabilization of Annulenes, Croat. Chem. Acta, 44 (1972), 207-213.
- [5] I. Gutman, A graph theoretical study of conjugated systems containing a linear polyene fragment,
 Croat. Chem. Acta, 48(2)(1976), 97 108.
- [6] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungszenturm Graz., 103 (1978), 1
 22.
- [7] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, 1986.
- [8] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer, (2000), 196-211.
- [9] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on molecular topology, J. Serb. Chem. Soc., 70 (2005), 441-456.
- [10] I. Gutman, S. Zare Firoozabadi, J. A. de la Peña, J. Rada, On the energy of regular graphs, MATCH Commun. Math. Comput. Chem., 57 (2007), 435-442.
- [11] G. Indulal, A. Vijayakumar, On a pair of equienergetic graphs, MATCH Commun. Math. Comput. Chem., 55(2006), 83 - 90.
- [12] G. Indulal, A. Vijayakumar, Energies of some non-regular graphs, J. Math. Chem., (to appear).
- [13] G. Indulal, A. Vijayakumar, Equienergetic self-complementary graphs, Czechoslovak Math. J.,(to appear).
- [14] O. E. Polansky, Über ungesättigte monocyclen mit durchlaufender konjugation, 2. Mitt.: Berechnung der elektronenstruktur mit hilfe der einfachen LCAO-MO-Methode und allgemeine gruppentheoretische betrehtungen, Monatsh. Chem., 91 (1960), 916-962
- [15] H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, I. Gutman, P. R. Hampiholi, S. R. Jog, Equienergetic graphs, Kragujevac. J. Math., 26 (2004), 5 - 13.