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Abstract
Eigenvalue of a graph is the eigenvalue of its adjacency matrix. The energy £(G) of a graph G is

the sum of the absolute values of its eigenvalues. In this paper we obtain analytic expressions for the

energy of two classes of regular graphs.

1 Introduction

Let G be a graph with |[V(G)| = p and an adjacency matrix A. The eigenvalues of A are called the
eigenvalues of G and form the spectrum of G denoted by spec(G) [3]. The energy [6] of G, £(G) is the
sum of the absolute values of its eigenvalues.

From the pioneering work of Coulson [2] there exists a continuous interest towards the general math-
ematical properties of the total m-electron energy £ as calculated within the framework of the Hiickel
Molecular Orbital (HMO) model [7]. These efforts enabled one to get an insight into the dependence of
£ on molecular structure. The properties of £(G) are discussed in detail in [6, 8, 9].

In [5] the spectra and energy of several classes of graphs containing a linear polyene fragment are
obtained. In [12], we obtain the energy of cross products of some graphs. In [15], the energy of iterated
line graphs of regular graphs and in [13], the energy of some self-complementary graphs are discussed.
The energy of regular graphs are discussed in [10]. Some other works pertaining to the computation of

&(G) can be seen in [1, 4, 6, 11, 14].
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As there is no easy way to find the eigenvalues of a graph G, the computation of the actual value of
£(G) is an interesting problem in graph theory. In this note we obtain analytic expressions for the energy

of two classes of regular graphs.

All graph theoretic terminology is from [3]. We use the following lemmas and definitions in this paper.

Lemma 1. [8] Let M, N, P and Q be matrices with M invertible. Let

M N
S = . Then, |S| = |M||Q — PM~'N| and if M and P commutes, then, |S| = |[MQ — PN|
P Q

where the symbol |.| denotes the determinant.

Lemma 2. [3] Let G be an r— regular connected graph on p vertices with A as an adjacency matriz and

= A, A2, ..., Ay as the distinct eigenvalues. Then there exists a polynomial P(z) such that P(A) = J

where J is the all one square matriz of order p and P(x) is given by P(z) = p x %, S0
that P(r) = p and P(X\;) =0, for all \; # r.

2 2cos 2T _ p—3 —1—2cos2rj
P and spec(Cp) = P

1 1 1

Lemma 3. [3] spec(C,) =
j=1top—1.

Lemma 4. [3] Let G be an r— regular graph with an adjacency matriz A and incidence matriz R. Then,

RRT = A+l

Definition 1. Let G be a (p,q) graph. The complement of the incidence matriz R, denoted by R = [F7;]
is defined by

7;; = L if v; is not incident with e;
=0, otherwise.
Definition 2. Let G be a (p,q) graph. Corresponding to every edge e of G introduce a vertex and make

it adjacent with all the vertices not incident with e in G. Delete the edges of G only. The resulting graph

is called the partial complement of the subdivision graph of G, denoted by S(G).

2 Partial complement of the subdivision graph

In this section we obtain the spectrum of the partial complement of the subdivision graph S(G) of

a regular graph G and the energy of S(C,,).
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Figure 1: S(C5)

Lemma 5. Let G be an r— regular (p,q) graph with an adjacency matriz A and incidence matriz R.
Then, R = Jyxq — R, R = Jyxp — RT and RR" = (g —2r)J + (A+r) where J is the all one matriz

of appropriate order.

Proof. By Definition 1, R = J,x, — R. Therefore

— =T
RR = (Jpxq*R) (qup*RT)
=qJ —rJ—rJ+A+7r]

=(q—2r)J+ (A+r)l, by Lemma 4.
Hence the lemma. O

Lemma 6. Let G be a connected r—regular (p,q) graph. Then, S(G) is reqular if and only if G is a

cycle.

Proof. From Definition 2, we have the degree of vertices in S(G) corresponding to the edges of G is p — 2

each and of those corresponding to the vertices of G is ¢ — r each. Since G is r— regular, ¢ = & and

hence ¢ —r = p — 2 if and only if r = 2. Thus, S(G) is regular if and only if G is a cycle. O

Theorem 1. Let G be a connected r— regular (p, q) graph. Then,

_ + —2r) 4+ 2r VN +r 0
spec(S(G)) = Vrla ) v ,i=2top.

1 1 q—p

Proof. The adjacency matrix of S(G) can be written as . Then, the theorem follows from

Lemmas 1 and 5. O
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Theorem 2.
2 (p — 4+ 2cot %) ,p = 0(mod2)

£(5(C,) =
! 2 (p — 44 2cosec %) ,p = 1(mod2)

Proof. By Lemma 3 and Theorem 1 we have

_ p—2 —(p—2) +2cos™
spec (5 (Cp)) = Poli=1top-1.
1 1 1

We shall consider the following two cases.
Case 1. p= 0(mod 2) .

The cosine numbers 2(:05’;7] are positive only for %j < 5. Then, the positive cosine numbers are

os T s (=« P
2cosp,2cos<p ><2)7 .......... ,2(305(1) ><2>.
LetC:2c0s1+2(:os <1X2>+ .......... +2(:05<E><£> and
P P p 2
S=2sini+2sin<zx2>+ .......... +25in(i><g>
P p p 2
so that
C+iS:2’y+2’yz+ ........ +2’y%
(1—~%) T )
= 2*,/17 where v = cos — +isin — and i = vV —1.
- p p

Now, equating real parts, we get C' = cot 21;; —1. Since the spectrum of (? (Cp)) is symmetric with respect

to zero, the energy contribution from the cosine numbers is 2C. Thus,

E(S(Cy) =2x(p—2+20)

=2 <p74+200t1>
2p
Case 2. p = 1(mod 2).

When p is odd, the cosine numbers 2(308% are positive for j < %. Then, by a similar argument as

in Case 1, we get £(S(Cp)) =2 (p — 4+ 2cos ec%). Hence the theorem. O
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3 Energy of the complement of a cycle.

In [5], I.Gutman obtained an analytic expression for the energy of a cycle Cp. In this section we derive

the energy of Cp,, the complement of the cycle C,.

Theorem 3.

2 (2”3—_9 + V3 cot %) ;p = 0(mod 3)

9 (2173—8 + 2““;]#) p = 1(mod 3)

_ p—3 7(1+2cos2ﬂ)
Proof. We have spec(C}) = P ,j=1top—1by Lemma 3.
1 1

We shall consider the following cases.
Case 1. p = 0(mod 3).

Then, — (1 + 2cos 2%) > 0 if and only if g <j< %
2p Ip

(1+20052”> =2fd 4 Z 2c08 284 = 22 4 ¢ and

; ]:3

Let

y
A T
whs

p

= 27’1 — J — cos 2T 4 jsin 2&
S = JZ 2sin Z4 so that C' +iS = ;Z 77 where v = cos 2F +isin 2.
3 3
Equating real parts, we get C = —(1 + V3 cot;).

The total sum of positive eigenvalues

=p- 3+\/§cot +1- <]%d>

2 —
=P 9+\/§cot7.
3 P

Thus, £(Cp) = 2 x [QP—;Q + /3 cot zl

The other two cases p = 1(mod 3) and p = 2(mod 3) can be proved similarly . O
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