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Abstract

The Merrifield-Simmons index is related to several physicochemical characteristics

and is thus of use in combinatorial chemistry, e.g. in drug design and molecu-

lar recognitions. In this paper, we show how one can algorithmically construct

databases of acyclic molecular graphs with large Merrifield-Simmons index. Our

algorithm can deal with a large number of atoms (several hundreds) in short time

by means of a reduction process, and its results lead to a general conjecture on

the structure of acyclic molecular graphs with maximal Merrifield-Simmons index.

Finally, we show that the algorithm can be modified to deal with another popular

index, the Hosoya index.

1 Introduction

Topological indices provide an interesting and powerful tool to study the structure of

molecules and their physicochemical properties. Formally, a topological index is merely

a map from the set of isomorphism classes of molecular graphs to the real numbers. In
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mathematical chemistry, a vast variety of different indices has been investigated in the

past decades, the first prominent example probably being the Wiener index due to the

chemist Harold Wiener [26].

Two other very popular instances are the Hosoya index or Z-index (introduced by Haruo

Hosoya in 1971, see [9, 10]) and the Merrifield-Simmons index or σ-index (due to R.

Merrifield and H. Simmons [15]). The Hosoya index is given as the total number of

independent edge subsets (matchings) of a molecular graph, the Merrifield-Simmons index

is the total number of independent vertex subsets. Here, a set of edges/vertices is said

to be independent if it contains no pair of adjacent edges/vertices (the empty set is

counted as an independent set as well). The connections between these indices and various

physicochemical characteristics such as boiling points, entropy and heat of vaporization

are well studied in several papers—we refer to [6, 18, 20, 23] and the references therein.

In combinatorial chemistry, topological indices are an interesting means of constructing

molecular databases which in turn can be used for drug discovery and other purposes (cf.

[4, 21, 24]). This is the reason why lots of papers have been written on extremal questions

related to these indices (i.e. finding graphs from a prescribed class with large or small

index, cf. [3, 5, 11, 13, 14, 27, 28]) and the inverse problem (given a certain index value,

construct a graph from a prescribed class with this index value, cf. [4, 12, 25]). Mainly,

acyclic systems (in graph-theoretic terminology, trees) and certain classes of molecules

involving hexagonal or pentagonal cycles are of interest in this context.

For the Hosoya index and the Merrifield-Simmons index, the trees with maximal or min-

imal index value are well known (cf. [6, 17] and others); the tree with largest σ-index

and smallest Z-index, given the number of vertices, is the star, whereas the tree with

smallest σ-index and largest Z-index is the path (s. Figure 1). However, for chemical

Figure 1: The star and the path.

applications, it is usually necessary to restrict the degree of the vertices—typically, the

maximum degree is assumed to be bounded above by 4, the valency of carbon. This poses

no particular problems if one is interested in trees with small Merrifield-Simmons index

or large Hosoya index, but obviously, the star has larger maximum degree than 4 if the

number of vertices becomes larger than 5.
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We will call a tree with maximum degree ≤ 4 a chemical tree. Not too much is known

about chemical trees with large σ- or small Z-index (cf. [3]). In this paper, we are going

to present an algorithmic approach which enables us to compute the extremal chemical

trees up to a reasonable number of vertices. The computer calculations will also lead us

to a general conjecture about how chemical trees with large σ- or small Z-index have to

be shaped.

2 Preliminaries

We use the standard graph-theoretic nomenclature—for all notational conventions, we

refer to [2]. For a graph G and a vertex v ∈ V (G), let σ(G) denote the Merrifield-

Simmons index of G, i.e. the number of independent vertex subsets of G. Furthermore,

σ0(G, v) is the number of independent vertex subsets of G not containing v, and σ1(G, v) =

σ(G)−σ0(G, v) is the number of independent vertex subsets of G containing v. It is very

easy to see that we always have σ0(G, v) ≥ σ1(G, v). σ, σ0 and σ1 satisfy several recursive

properties, which we list in the following theorem (cf. [12] for instance):

Theorem 1 Let T be a tree and v a vertex of T . Denote the components of T \ v by

T1, T2, . . . , Tk and the neighbors of v by v1, v2, . . . , vk, where vi belongs to Ti. Then we

have

σ0(T, v) =
k∏

i=1

σ(Ti) and σ1(T, v) =
k∏

i=1

σ0(Ti, vi). (1)

Let G1, G2 be arbitrary graphs with disjoint vertex sets and v1, v2 vertices of G1, G2 re-

spectively. We construct a new graph H = (G1, v1)◦(G2, v2) by taking the union of G1, G2

and connecting v1 and v2. Then we obtain

σ(H) = σ0(G1, v1)σ0(G2, v2) + σ0(G1, v1)σ1(G2, v2) + σ1(G1, v1)σ0(G2, v2). (2)

The recursive formulas given in the above theorem suggest the use of rooted trees. A

tree with a distinguished vertex v is called a rooted tree and v its root. If T1, T2, . . . and

v1, v2, . . . are taken as in Theorem 1, we call the rooted trees Ti the subtrees of T and vi

the children of v. vi is regarded as the root of the subtree Ti; in this manner, a recursive

structure is imposed on the family of rooted trees. The number of children is called the

outdegree of a vertex.

Assigning the vector Σ(T, v) = (σ(T ), σ0(T, v)) to every rooted tree, it is possible to

compute Σ(T, v) recursively from the values Σ(Ti, vi) by (1). This also enables us to

compute the σ-index of a rooted tree recursively from its subtrees (cf. also [12]).

In particular, ternary (rooted) trees will be of interest in our context. A ternary tree may

only have up to 3 subtrees, each of which is again a ternary tree. By this means it is
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ensured that every vertex has at most degree 4; the degree of the root is at most 3. Every

chemical tree can be represented as a ternary tree by choosing a vertex of degree ≤ 3 as

the root.

A näıve approach to the problem of finding the chemical trees of given size with maximal

σ-index would thus consist of generating all ternary trees together with their σ-indices in

a recursive manner and compare. However, this is highly inefficient, since the number of

ternary trees of a given size grows exponentially (which is very well known (s. [7])—the

investigation of tree counting problems and their chemical applications goes back to Pólya

[1, 16]).

Thus, at first, we state a reduction result which greatly reduces the set of candidates for

the chemical trees of maximal σ-index:

Theorem 2 Let T be the tree on n vertices with maximum degree ≤ D and maximal

Merrifield-Simmons index. Then all vertices of T , except possibly one, have degree 1 or

D.

For the proof of this theorem, we only need a simple lemma:

Lemma 3 Let T be a tree and v,w two different vertices of degree ≥ 2. Furthermore, let

Tv be a nonempty component of T \{v} not containing w and let Tw be a nonempty com-

ponent of T \ {w} not containing v. Then the σ-index increases either if Tv is transferred

from v to w or if Tw is transferred from w to v (see Figure 2).

v wTv Tw
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��

��
��

� v w

Tv

Tw

��

��
��
��
��

��
�� or v w
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Tw

��

��
��
��
��

��
��

Figure 2: Transferring components of a tree.

Proof: Let

• A be the number of independent subsets of T \ (Tv ∪ Tw) such that v and w are not

contained,

• B1 be the number of independent subsets of T \ (Tv ∪ Tw) such that v is contained,

but w isn’t,
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• B2 be the number of independent subsets of T \ (Tv ∪ Tw) such that w is contained,

but v isn’t,

• and C be the number of independent subsets of T \ (Tv ∪Tw) such that v and w are

both contained.

Clearly, B1, B2 > 0. Furthermore, let v1, w1 be the neighbors of v, w in Tv resp. Tw. We

use the notations x1 = σ(Tv), y1 = σ0(Tv, v1), x2 = σ(Tw) and y2 = σ0(Tw, w1). Then

obviously x1 > y1 and x2 > y2. Let T1 be the tree that emerges if Tv is transferred from

v to w, and T2 the tree that emerges if Tw is transferred from w to v. Then we have, by

consecutive application of Theorem 1 to v and w,

σ(T ) = x1x2A + y1x2B1 + x1y2B2 + y1y2C,

σ(T1) = x1x2A + x1x2B1 + y1y2B2 + y1y2C,

σ(T2) = x2x2A + y1y2B1 + x1x2B2 + y1y2C.

Now assume, without loss of generality, that B1 ≥ B2 (the other case being symmetric).

Then it follows that

σ(T1) − σ(T ) = (x1 − y1)(x2B1 − y2B2) ≥ B2(x1 − y1)(x2 − y2) > 0

and thus σ(T1) > σ(T ). �

Now, Theorem 2 follows easily: suppose that T has two vertices v, w whose degree is > 1

and < D. Then, there exist nonempty components Tv, Tw of T \ {v} resp. T \ {w} as

in the lemma; both transformations of the lemma leave the maximum degree ≤ D, since

only the degrees of v and w increase resp. decrease by 1, and one of them yields a tree

with larger σ-index. This contradiction finishes the proof of the theorem. �

Note that we can now restrict ourselves to the study of ternary trees with the property

that all vertices—except the leaves and possibly the root—have outdegree 3. In analogy

with the chemical interpretation, we are going to call these ternary trees saturated.

Next, we consider an auxiliary problem. Suppose that we have a graph G together with

a vertex v. We want to determine a graph G′ from a given family of graphs and a vertex

v′ of G′ such that σ(H) is as large as possible for the resulting graph H = (G, v) ◦ (G′, v′)

(defined as in Theorem 1). By formula (2), this is equivalent to maximizing

σ0(G, v)σ0(G
′, v′) + σ0(G, v)σ1(G

′, v′) + σ1(G, v)σ0(G
′, v′)

= σ0(G, v)

(
σ(G′, v′) +

σ1(G, v)

σ0(G, v)
σ0(G

′, v′)

)
.

Thus, given the fraction ρ = σ1(G,v)
σ0(G,v)

(of which we already know that 0 ≤ ρ ≤ 1), we

only have to maximize σ(G′, v′) + ρσ0(G
′, v′). Since this paper is mainly concerned with

saturated ternary trees, we introduce the notion of α-optimality for this class:
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Definition 1 A saturated ternary tree T with n vertices and root v is called α-optimal

for α ∈ [0, 1] if

σ(T ) + ασ0(T, v) =

max{σ(S) + ασ0(S,w) : S is a saturated ternary tree with n vertices and w ∈ V (S)}.

Remark: A 0-optimal saturated ternary tree is a tree for which σ(T ) is maximal, which

is exactly what we are looking for.

The described construction principle of joining graphs may be interpreted as some kind of

a fusion of molecules (Figure 3). Given a certain molecule, we want to fuse it with another

one at a certain point in order to maximize the resulting Merrifield-Simmons index.

v

v’

G’

G

Figure 3: Fusing molecular graphs.

In the following, we will shortly write α-optimal tree instead of “α-optimal saturated

ternary tree”. One might expect that the subtrees of α-optimal trees are also optimal in

some sense. The following observation shows that this expectation is indeed correct:

Theorem 4 The subtree Ti of an α-optimal tree is always βi-optimal for some βi.

It is not difficult to justify this fact: simply note that

σ(T ) + ασ0(T, v) = (1 + α)
k∏

j=1

σ(Tj) +
k∏

i=1

σ0(Ti, vi)

= (1 + α)

⎛
⎜⎝ k∏

j=1
j �=i

σ(Tj)

⎞
⎟⎠σ(Ti) +

⎛
⎜⎝ k∏

j=1
j �=i

σ0(Tj, vj)

⎞
⎟⎠σ0(Ti, vi),

which means that Ti has to be βi-optimal with

βi =
1

1 + α

k∏
j=1
j �=i

σ0(Tj, vj)

σ(Tj)
. (3)
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3 The algorithmic approach

After all the preliminaries in the preceding section, the procedure to determine α-optimal

trees (and, in particular, 1-optimal trees) is quite obvious: we start with a tree T consisting

of a single vertex for which σ0(T ) = σ1(T ) = 1 and construct larger saturated ternary

trees recursively. We only need a tool to filter α-optimal trees. However, this task can be

reduced to the well-known calculation of the upper envelope of a set of linear functions.

Given a set of rooted trees T1, T2, . . . of equal size with roots v1, v2, . . ., we consider the

linear functions

fi(t) = σ(Ti) + tσ0(Ti, vi).

The upper envelope of the functions f1(t), f2(t), . . . is defined as

f(t) = max(f1(t), f2(t), . . .).

If the fi are linear functions, as they are in our case, it can be determined algorithmically

in time O(n log n), where n is the number of functions (cf. [8]). A tree Ti is α-optimal

for some α if and only if fi(α) = f(α). Thus we only have to filter the trees Ti for which

fi(t) = f(t) holds within some interval.

Now, the algorithmic procedure is clear: first, we only consider saturated ternary trees

with the property that the root has outdegree 3 (the size of such a ternary tree is always of

the form 3m + 1). Now, we make the following steps to generate lists Lm of all saturated

ternary trees on 3m + 1 vertices:

• Start with the ternary tree consisting only of the root—this is the only element of

the first list L0.

• In the m-th step, consider all possible triples of trees T1 ∈ La, T2 ∈ Lb, T3 ∈ Lc

such that a ≤ b ≤ c, a + b + c = m − 1. Each of these triples defines a new ternary

tree of size 3m + 1 whose subtrees are T1, T2, T3.

• Each of these new trees is a potential candidate for the list Lm. First, we check

whether the optimality conditions of Theorem 4 (βi-optimality with βi given by

equation (3)) are satisfied for T1, T2 and T3 and some α ∈ [0, 1] (T3 might be chosen

from a restricted range right away).

• Determine Σ(T, v) = (σ(T ), σ0(T, v)) for the newly generated tree T recursively

from Σ(T1),Σ(T2),Σ(T3) according to Equation (1).

• Determine the upper envelope of the functions σ(T ) + ασ0(T ) in the interval [0, 1],

where T runs over all generated trees. Select the trees which are optimal within

some interval for the list Lm and store the list of interval borders as well.
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• Repeat this procedure iteratively.

Now, the trees of maximal Merrifield-Simmons index can be generated easily for any given

size n as follows:

• For n = 3m+1, Theorem 2 shows that there is exactly one vertex of degree 3. Taking

it as the root (thus obtaining a saturated ternary tree), our problem is obviously

equivalent to finding a 0-optimal tree.

• For n = 3m + 2, all vertices have to have degree 1 or 4, which means that the tree

T we are looking for is a saturated ternary tree with one additional leaf attached to

the root. If v is this leaf and T ′ = T \v, Lemma 1 shows that σ(T ) = σ(T ′)+σ0(T
′),

which means that T ′ is 1-optimal.

• Finally, if n = 3m+3, there is exactly one vertex of degree 2 by Theorem 2. Taking

this vertex as the root, the two subtrees have to be αi-optimal (i = 1, 2) for some

α1, α2. Therefore, it is sufficient to consider all trees that are obtained by attaching

two trees from lists La, Lb with a + b = m (so that the number of vertices is as

desired) to a common root and compare their Merrifield-Simmons indices in order

to find the optimal tree.

4 Results and Discussion

4.1 Results

The algorithm given in the preceding section was implemented in C++ as well as in Math-

ematica (all files are available at http://finanz.math.tugraz.at/~wagner/molecular).

Additionally, the results of our computations were checked for a number of vertices ≤ 20,

making use of G. Royle’s database of trees [19]. Here, we would like to show the trees on

25 ≤ n ≤ 30 vertices with maximal Merrifield-Simmons index for instance (Figure 4).

The algorithm gives the lists Lm up to m = 100 in considerably short time, so one can find

the optimal trees up to a size of several hundred vertices easily by means of our algorithm.

Note, for comparison, that the number of trees with 100 vertices and maximum degree ≤ 4

is approximately 6 · 1039. Table 1 lists CPU times for the computations in Mathematica

on a 3.4 GHz Windows machine with 1 GB RAM.

The following figure shows a log-plot of the maximal Merrifield-Simmons indices for trees

with ≤ 50 vertices—it seems that they grow exponentially with an exponential base of

approximately 1.711 (Figure 5).

The structure of the optimal trees leads us to the following conjecture for the general

form of the trees with maximal Merrifield-Simmons index.
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25 26

27 28

29 30

Figure 4: Optimal trees with 25 ≤ n ≤ 30 vertices.

n Number of saturated ternary trees CPU time for calculating

with ≤ 3n + 1 vertices all Lm with m ≤ n

10 880 < 0.1 sec

25 1.15 · 109 0.5 sec

50 6.91 · 1019 25 sec

75 6.49 · 1030 8 min

100 7.29 · 1041 2 hrs

Table 1: CPU times required for our computations.

0 10 20 30 40 50
1

100

10000

1.� 106

1.� 108

1.� 1010

Figure 5: Maximal Merrifield-Simmons indices for trees with ≤ 50 vertices.
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Conjecture 1 All optimal trees consist of a path with two subtrees attached to each

vertex of the path, except possibly the ends, and these subtrees are complete ternary

trees (i.e. all leaves have the same distance to the root), not necessarily of the same

size—see Figure 6.

Figure 6: Conjectured form of the optimal trees.

4.2 Complexity

Note that the complexity of the algorithm mainly depends on the length of the lists

Lm since all operations on the generated lists can be done within a time bounded by a

polynomial of the lengths. Unfortunately, the only estimates we are able to give for these

lists are exponential in m. However, the following list of values (Table 2) suggests that

the length of Lm increases quite slowly with m.

m 0 1 2 3 4 5 6 7 8 9 10

Length of Lm 1 1 1 2 2 2 4 3 2 3 4

m 15 20 25 30 40 50 60 70 80 90 100

Length of Lm 7 7 5 10 6 12 12 13 9 16 15

Table 2: Lengths of the lists Lm.

4.3 Other Problems

Of course, the idea of our algorithm is not restricted to ternary trees only. It can be

adapted to any given maximum degree D (or other classes of trees that can be defined in

a similar recursive manner), and even more general problems based on degree restrictions:

for instance, suppose we are interested in trees maximizing the Merrifield-Simmons index

which have at most one vertex of degree 4 and otherwise maximum degree 3. Then we

can take the vertex of degree 4 as the root, and from our considerations it follows that the
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subtrees have to be α-optimal for some α among all rooted trees with maximum outdegree

2. Hence all one has to do is to generate a list of all possible trees with this property by

means of our algorithm and compare.

Furthermore, the algorithm can also be used for another popular topological index, namely

the Z-index or Hosoya index which has already been defined in the introduction. In

analogy to the σ-index, one defines Z0(G, v) as the number of independent edge subsets

of G not containing an edge incident with v and Z1(G, v) as the number of independent

edge subsets containing such an edge. Then,

Z0(T, v) =
k∏

i=1

Z(Ti) and Z1(T, v) =
k∑

j=1

(
Z0(Tj, vj)

k∏
i=1
i �=j

Z(Ti)

)
.

Furthermore, if H = (G1, v1) ◦ (G2, v2) as in Theorem 1, we have

Z(H) = Z(G1)Z(G2) + Z0(G1, v1)Z0(G2, v2).

Now, Theorems 2 and 4 hold in an analogous manner when one considers trees of minimal

Z-index (the (chemical) tree of maximal Z-index is the path):

In the setting of Lemma 3, let this time

• A be the number of independent edge subsets of T \ (Tv ∪ Tw) such that no edge is

incident with v or w,

• B1 be the number of independent edge subsets of T \(Tv∪Tw) such that v is incident

with one of the edges, but w isn’t,

• B2 be the number of independent edge subsets of T \(Tv∪Tw) such that w is incident

with one of the edges, but v isn’t,

• and C be the number of independent edge subsets of T \ (Tv ∪ Tw) such that v and

w are both incident with one of the edges.

With x1 = Z(Tv), y1 = Z0(Tv, v1), x2 = Z(Tw), y2 = Z0(Tw, w1) and T1, T2 as in Lemma 3,

we have

z(T ) = x1x2(A + B1 + B2 + C) + x1y2(A + B1) + y1x2(A + B2) + y1y2A,

z(T1) = x1x2(A + B1 + B2 + C) + x1y2(A + B1) + y1x2(A + B1),

z(T2) = x1x2(A + B1 + B2 + C) + x1y2(A + B2) + y1x2(A + B2).

If we assume, without loss of generality, that B1 ≤ B2, we obtain

z(T ) − z(T1) = (B2 − B1)y1x2 + y1y2A > 0,

proving the analogue of Lemma 3 and thus the following theorem:

- 249 -



Theorem 5 Let T be the tree on n vertices with maximum degree ≤ D and minimal

Hosoya index. Then all vertices of T , except possibly one, have degree 1 or D.

We can define α-optimality in the exact same way as for the Merrifield-Simmons index

and obtain a statement analogous to Theorem 4 by observing that

Z(T ) + αZ0(T, v) =

(
1 + α +

∑
j �=i

Z0(Tj, vj)

Z(Tj)

)⎛
⎜⎝ k∏

j=1
j �=i

Z(Tj)

⎞
⎟⎠Z(Ti) +

⎛
⎜⎝ k∏

j=1
j �=i

Z(Tj)

⎞
⎟⎠Z0(Ti).

The algorithm can now be implemented along the same lines. The results of our imple-

mentation (see http://finanz.math.tugraz.at/~wagner/molecular again for the files)

suggest that chemical trees of maximal Merrifield-Simmons index coincide with those of

minimal Hosoya index (indeed, this was checked for a number of vertices ≤ 100), which is

a quite typical phenomenon that can be observed in other cases as well (see, for instance,

[5, 28]).
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