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Abstract

The Merrifield-Simmons index of a graph is defined as the total number of
the independent sets of the graph and the Hosoya index of a graph is defined as
the total number of the matchings of the graph. In this paper, we characterize
the unicyclic graphs with maximal Merrifield-Simmons indices and minimal
Hosoya indices, respectively, among all unicyclic graphs with n vertices and k
pendent vertices.

1. Introduction

Given a molecular graph G, the Merrifield-Simmons index 0 = o(G) and the
Hosoya index z = z(G) are defined as the number of subsets of V(G) in which no
two vertices are adjacent and the number of subsets of F(G) in which no edges are
incident, respectively, i.e., in graph-theoretical terminology, the total number of the
independent vertex sets of the graph and the total number of the independent edge

sets of the graph G.
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The Hosoya index of a (molecular) graph was introduced by Hosoya in 1971 [9]
and was applied to correlations with boiling points, entropies, calculated bond orders,
as well as for coding of chemical structures ([13, 15]). Merrifield and Simmons [13]
developed a topological approach to structural chemistry. The cardinality of the
topological space in their theory turns out to be equal to o(G) of the respective
molecular graph G. In [6], Gutman first uses “Merrifield-Simmons index” to name
the quantity. Since then, many authors have investigated the Hosoya index and
Merrifield-Simmons index (e.g., see [2]-[8], [11], [16]-[21]). An important direction
is to determine the graphs with maximal or minimal Hosoya indices (or Merrifield-
Simmons indices, resp.) in a given class of graphs. It had been shown in [7, 12] that
the path P, has the minimal Merrifield-Simmons index (or the maximal Hosoys index,
resp.) and the star S, has the maximal Merrifield-Simmons index (or the minimal
Hosoys index, resp.) for all the trees with n vertices. Pedersen and Vestergaad [14]
studied the Merrifield-Simmons indices of the unicyclic graphs.

Here, unicyclic graphs with n vertices and £ pendent vertices are considered, and
the maximal Merrifield-Simmons indices and minimal Hosoya indices are given, and
the corresponding extremal graphs are characterized.

In order to discuss our results, we first introduce some terminologies and notations
of graphs. Other undefined notations may refer to [1]. Let G = (V, E) be a graph.
For a vertex u of G, we denote the neighborhood and the degree of u by Ng(u) and
dg(u), respectively. Denote Nglu] = Ng(u) U {u}. A pendent vertex is a vertex of
degree 1. Let V(G) be the set of all pendent vertices in G. Let C, be a cycle of order
q and Ps be a path of order s. We use G —u or G —uv to denote the graph that arises
from G by deleting the vertex u € V(G) or the edge uv € E(G). Similarly, G + uv
is a graph that arises from G by adding an edge uv ¢ E(G), where u, v € V(G). A
pendent chain P? = vgvy - - - vg of the graph G is a sequence of vertices vy, vy, . .., v,
such that vy is a pendent vertex of G, dg(v1) = -+ = dg(vs—1) = 2 (unless s = 1)
and dg(vs) > 3. We also call that vy and s the end-vertex and the length of the
pendent chain P2, respectively. Denote %, = {G : G is a unicyclic graph with n

vertices and k pendent vertices, 0 < k <n — 3}.

2. Lemmas
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According to the definitions of the Hosoya index and Merrifield-Simmons index,

we immediately get the following results.

Lemma 2.1 ([7]). Let G be a graph and uv be an edge of G. Then
(i) 0(G) =0(G —uw) -0 (G = (Ne[u]UNg[v]));
(i)  2(Q) = z(G —w) + z(G — {u,v}). L]

Lemma 2.2 ([7]). Let v be a vertex of G. Then
(i) (@) =0(G—v)+0(G - Ngvl);
(i) 2(G)=2G-v)+ > 2G—{uv}) .

u€Ng(v)

From Lemma 2.2, if v is a vertex of G, then o(G) > (G — v). Moreover, if G is
a graph with at least one edge incident with v, then z(G) > z(G — v).

Lemma 2.3 ([7]). If G1, Ga,- -+, G, are the components of a graph G, we have
(i)  o(@) =1l 1U(G),
(i) 2(G) = [Tizy 2(Ga). =

In order to formulate our results, we need to define two graphs U¥ (0 < k < n—3)
and S, (shown in Figure 1) as follows: U¥ (0 > k < n — 3) is a graph created from
Ch—k by attaching k pendent vertices to one vertex of the cycle Cy_y; Sy (a,0 > 1)
is a graph created from a path P, = vgvy---v,_1 by attaching b pendent vertices
to v,_1, and the vertex vy is called the tail of the graph S,;. Note that U2 = C,,,
Sn—11 = Py, Son—a =2 Ky po1, S1n-1 = Ki -1 and the unique non-pendent vertex is

the tail of Sl,nfl-

Uk Sab ur—3
Figure 1

Let F, be the nth Fibonacci number, i.e., Fo = Fy =1, F, =F, 1+ F, 2, n > 2.

Then o(P,) = F,41 and 2(P,) = F,. From Lemmas 2.1-2.3, we can easily get the

following:
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Lemma 2.4. Let UF be the graph shown in Figure 1, where 0 < k <n—3. Then
(i) o(Uy)=2"Fop + Foopoa;
(ii)  z2(UF) =2F, p+ (k—1)F,_p_1.

In the following, we introduce three kinds of graph transformations.

n

Hq.s,l Hq+571,1,l
Figure 2

Lemma 2.5. Let H,; (s > 2) (see Figure 2) be a graph obtained from a graph
H (H 2 Py) by attaching a cycle Cy and a graph S,; at a vertex w of H, where the
tail of S, identifies with w. Then
(i) o(Hysp) < o(Hgrs-110);
(it)  z(Hgsg) > 2(Hys—1,1,)-
Proof. Let H,,; = Gand Hy 511, = G1. Let Ng(w) = {wy, wa, z1, -+ -, 24,01},
where wy, ws € V(Cy), x1,...,2¢ € V(H). Set F_; = 0.
(i) By Lemmas 2.2 and 2.3, we have

o(G) = o(G—w)+c(G— Nglw))
= F,(2'F, 1+ F, 9)o(H—w)+ F, o(2'Fy o+ F, 3)o(H — Ng[w)),
U(Gl) = U(G1 — w) + O'(G1 — NG1 [w])
= Fyis12'0(H —w) + Fyys30(H — Ng[w]).
Thus
o(G) —a(Gh)
= o(H - w)(2'FyFsy + F,Fy o —2'Fy 1)
+0(H — Nu[w])(2'Fy o Fs s+ Fy oFu 5 — Fyis3)
= o(H—w)F, o(F, —2'F, 1) +o(H — Ng[w))Fy o(2'F, o — F, 1)
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Fy[(2'Fy s = Fya)(0(H = Ny[w]) — o(H — w))]
+Fofo(H —w)(Fys — 2'F,_3)]

Foo(2F—2 — Fy1)(0(H — Ny[w]) — o(H — w))]
+Fs s[o(H — w)(Fy—o — 2F,_3)]

Fy o[Fy_40(H — Ng(w)) — Fy_30(H — w)]

Fy oF, 5(c(H — Ngw]) — o(H —w)) < 0.

(ii) By Lemmas 2.2 and 2.3, we have

2(@Q)

2(Gh)

So

¢
Z(G*U})+2Z(G7w7'w1)+Z(G71U71})+ZZ(G7’1117.’L'1-)
=1

Fyi(Fooy +1Fs9)2(H —w) 4+ 2F; o(Fs—1 + 1 Fs_9)2(H — w)
+Fy 1 (Fs_o + IF? )2(H —w) + Fy(Fooy +1Fs) i 2(H —w — x;)
2(H —w)(Fyps—1 + FyooFs 1 + 1F 50+ qu_QFZg_Q)ZZl
+F 1 (Fsoy + 1F ) i z(H —w — ),
- '
2(Gr —w) +22(Gr —w —wy) +12(Gr —w —y1) + Zz(Gl —w— ;)
i=1

Fiis0z(H —w)+2F, s 32(H — w)

t
HFypo22(H —w) + Fpyaa »_ 2(H —w — ;)
i=1
t

2(H = w)(Fys—1 + Fyps—s + 1Fgis2) + Fyisn Z 2(H —w— ).

i=1

2(G) = 2(Gh)
Z(H - w)(qu—QFs—Q - Fq—SFs—Q)

t
+ ZZ(H —w — xi)(qu—lFs—Z — Fq,gFS,Q)
i=1
t
Fooo[o(H — w)(lFy— — Fys) + Z 2(H —w— ;) (lFy — Fy)]

i=1
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Fualo(H —w)(Fya — Fyg) + 3 2(H = w — 2)(Fyy — Fyo)]

i=1

(Y

t
Fg_qu_g ZZ(H —w — Il) > 0.

i=1

(A%

m
Lemma 2.6. Let G be a connected graph and u,v € V(G). Suppose vv;, uu; are
cut-edges of G, 1 < i <'s, 1 < j <t (shown in Figure. 3). Let Gi be the graph
obtained from G by deleting the edges (u,u;) and adding the edges (v,u;) and G5 be
the graph obtained from G by deleting the edges (v,v;) and adding the edges (u,v;).
Then
(i) o(GY) > o(G) or o(G%) > o(G);
(1i) z(GT) < o(G) or z2(G3) < o(G).

Figure 3

Proof. Let G' =G — {vvy, -+, vv5,uuy, -, uu} = HUX; U---UX,UY; U
-+ UY, (shown in Figure. 3), where H is a component containing u, v, and Xy is a
component containing v, 1 < k < s, and Yj is a component containing uj, 1 < j <,
respectively.

(i) Denote a = [[5_, o(X1), @' = [[_, 0(Xx — vg) and b = [[}_, o (Ya), V' =
szl oYy —u). Then a > a > 0and b > 0 > 0. Let i,, be the number
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of independent vertex subsets in H containing both u and v. By Lemma 2.2 and
Lemma 2.3, we have

o(G) = o(G—v)+0o(G— Ngv])

abo(H — v —u) +ab'o(H — v — Ngu]) + a'bo(H — u — Ng[v]) + a'Viy,.

Similarly, we have

o(G;) = ablo(H—v—u)+0c(H—v—Ngu))]+dV[oc(H—u— Ny[v]) + in.),
o(Gy) = ablo(H—v—u)+0o(H—u— Ny])]+dV[oc(H—v— Nglu]) + i)
Therefore

o(G)—o(Gy) = d(b-V)o(H—u— Ngv]) —alb—b)o(H — v — Nglu]),
b(a—a)o(H —v— Nglu]) —bla—a')o(H —u— Ng[v]).

2
8
|
2
Q
E
I

If 0(G) — o(Gy) > 0, then (b —V)[a'o(H — u— Nyv]) —aoc(H —v — Ng[u])] >0

Since a > a’ and b > V', we have
o(H —u— Nglv]) > o(H —v— Nglul).
So

o(G)—0o(Gs) = (a—d)[Vo(H—v— Nglu]) —bo(H —u— Ng[v])]
< (a—d)[t'o(H—v— Nglu]) —bo(H — v — Ng[u])]
(a—a)(b' —b)o(H — v — Nglu]) <O0.

. s 2(Xp—v, 2(YVi—u
(if) Denote p = TTi_, 2(Xn). o' = 2hmy 2555 0 = [Ty 2(Ya), ¢ = iy e,

Ty = > 2(H-—v—u—1u),r, = > 2(H—v—u—1'),
w' €NG_(u)\{u1,...;ut } v'eNg(v)\{u,v1,...,vs}
ro = > > 2(G—v—u—v —u). Let g = 1if

v'eNg(v)\{v1,...,vs,u} W ENg_,_r(u)\{ut,...;us }
wv € E(GQ); and ey = 2 if wv ¢ E(G).

By Lemmas 2.2 and 2.3, we have

2(G) = 2(G—-v)+ Z 2(G—v—=1)

v'€Ng(v)
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2(G—v—u)+ Z 2(G—v—u—u)

wWENG—y(u)

+ Z 2(G—v—v —u)+ Z Z 2(G—v—v —u—1)

v'€Ng(v) v ENg(v) W ENgG_,_ v (u)

t
(ioz(G—v—u)+Zz(G—'u—u—uj)+ Z 2(G—v—u—1u)
j=1 wENG_p(u)\{u1,...;,ut }
s t

+ZZz(G—v—u—vj—uk)+ Z 2(G—v—u—1)

j=1 k=1 v'eNg(v)\{v1,...,vs,u}

+ZZ(G—U_U_'U]')+Z Z 2G—v—u—v;—u)
j=1 j=1 u’ENG,,U,v] (u)\{w1,...;ut}
¢

+ Z Zz(G—v—u—v’—uk)

v'eNg(v)\{v1,...,vs,u} k=1

+ Z Z 2(G—v—u—v —u)

v'€NG (V)\{v1,...;vs,u} W ENgG_,_r(w)\{ur,...,ut}

pq-leoz(H—v—u)+qz2(H—v—u)+r,+pqdz2(H—v—u)+r,
+p'2(H — v — ) + ryp + 1o’ + 70]
paleoz(H —v —u)(1+ ¢+ +p'd) +ro(1+¢) +ru(1+ 1) + rol.

Similarly, we get

Thus

2(GY) = palz(H—v—u)(eo+q +p)+ru(1+0 +q)+ 70 +70],
2(Gy) = palz(H —v—u)(eo+ ¢ +p) +ro(L4+p +¢) +ry+70).

I
—
Q
~—
I
I
—
Q
—%
—
I

pqq,[Z(H —Uv= u)pl + 7y — Tu]v

I
—
Q
~
|
I
—
Q
¥
N
Il

pap'[z(H — v —u)q + 1y —14].

If 2(G) — 2(G3) <0, then pqq'[2(H — v — w)p’ + 1, — r,] <0, that is,

So

Ty =Ty 2> Z(H*U*U)p/.

2(H—v—u)gd +ry—ry, > 2z(H—v—u)qd+2(H—v—u)p
= z(H—v—u)(¢d+p)>0.
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Note that pgp’ > 0, and hence z(G3) < z(G). ]

D G

P Py

As(H,u) B(H,u,v)
._. o @_“v' v
< U v U\ )

Py Py

G G

Figure 4

Let As(H,u) (s > 3) be a graph obtaining from a graph H by attaching a path
P; at one vertex u of H, and let By(H,u,v) be a graph obtained from A(H,u) by

attaching a pendent vertex v to u (see Figure 4).

Lemma 2.7. Let G be a graph obtained from Bs(Ha,u,v)(s > 3) by attaching a
graph Hy to the vertex v, where Hy, Hy % Py. If G’ is obtained from G by replacing
P, with a pendent edge and replacing the edge uv with a path Py (see Figure 4), then

(i) o(G") > o(G);
(it) (@) < z(Q).
Proof. (i) Let Ny, [v] = V4 and Ny, [u] = Vo. By Lemmas 2.2 and 2.3, we have

o(G) = o(G—v)+0(G— Nglv])
= o(G—v—u)+0(G—v— Ng_y[u]) + oc(G — Ng[v])
= F.o(Hy —v)o(Hy—u)+ Fs_10(H; —v)o(Hy — Vo) + Fso(Hy — Vi)o(Hy — u),
a(G) = o(G —v)+ (G — Ngv])
= (G —v—u) +0(G" — v~ Ne-y[u]) + o(G" = Ner[v] — u)
+0(G" — Ng[v] — Ner—new[u])
= 2F, 10(Hy —v)o(Hy — u) + Fs_s0(Hy —v)o(Hy — V3)
+2F, s0(H, — V1)o(Hy — u) + Fs_30(Hy — Vi)o(Hy — V).
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Since Fp =1, Fy =1 and F,, = F,,_1 + F,_5 for n > 2, we have
o(G') —o(G) = Fy_3(c(H, —v) —o(Hy — V1)) (0(Hy —u) — o(Hy — V) > 0

(ii) Let Ay = Ay(Ha,u) and By = Bg(Ha, u,v). Then z(A4;) = 2(Ai—1) + 2(A;_2)
and z(By) = z(A;)) + F_12(Hy — u). By Lemmas 2.1 — 2.3, we have

2(G) = 2(G—w)+ 2(G - {u, v})
H)z(A) + Fyo12(Hy —v)2(Hy — )
Hy)z(As—1) + 2(Hy)2(As—2) + Fs_12(Hy — v)z(Hy — u),

(
2(
(
(G = z(G’—vv +2(G" = {v', v})
(
z(H.

Il
w

= Z

= Z H1 5 1)+Z(H1—’U)Z(BS,2).
1)z ( s—1) + Fs—oz(Hy)z(Hy — w) + z(Hy — v)z(As—2)
+F_3z(Hy — v)z(Hy — u).

Since Fyp = Fy =1 and F,, = F,,_1 + F,,_ for n > 2, we have

2(G) = 2(G") = (2(Hy) — 2(Hy —v))(2(As_s) — Fs_92(Hy — u))
= Fo3(2(H) — 2(H1 —v)) Z 2(Hy —u—x)>0.
r€Np, (u)
3. Results

From Lemmas 2.4 — 2.7, we immediately get the following results.
Theorem 3.1. Let G € U,y (0 <k <n—3). Then
o(G) < 2"Fy i+ Fuga (1)

and
2(G) > 2F, + (k= 1)Fy_j_1. (2)
Moreover, the equalities in (1) and (2) hold if and only if G = UF.
Proof.  First we note that if G = U¥, then (1) and (2) hold by Lemma 2.4.

Now we prove that if G € %, , then (1) (or (2), resp.) holds and the equality in
(1) (or (2), resp.) holds only if G = U*.
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Let G € %, . If k=0, then G = C,, and hence the result holds obviously. So in
the following proof, we assume that k£ > 1. We choose G such that o(G) is as large

as possible. Let C be the unique cycle of order ¢ in G. We will show some facts.
Fact 1. There is only one vertex w € V(C') such that dg(w) > 3.

Proof of Fact 1. Assume that dg(w;) > 3, where w; € V(C), i = 1,2. Denote
Neg(wy) ={x1,..., x5, us,us} and Ng(wa) = {y1, ..., Y, v1,v2}, where uy, ug, vy, v €
V(C) and s,t > 1. Set G1 = G — {way1, ..., woy} + {wy,..., w1y} and Gy =
G —A{wizy, ..., vz} +{woxy, ..., wezs}. Then Gy, Gy € %, . By Lemma 2.6, we
have 0(G1) > o(G) or 0(G2) > o(G), a contradiction with our choice. ]

By Fact 1, we let w be the unique vertex of C with dg(w) > 3. Let T4, - -+, T,,, (m >
1) be the subtrees rooted at w with |V (1})| = s;+{; and |V(T;)N(Vo(T;) \{w})| = ;,
1 < j < m, respectively.

Fact 2. Let v € V(T}) with Np(v) NVo(Ty) # 0. If Ty 2 Py, 1y, then dp(v) > 3.

Proof of Fact 2. Otherwise, we assume that P? = vovy---v; (¢ > 2) is the
pendent chain of T; for some j (1 < j < m) with vy € Vo(T'). Let w; be the only
vertex that belongs to the (w, v;)-path with wyv; € E(G). Set G/ = G—{wyvy, vovy t+
{wiv1,v0v¢}. Then G' € U, 1. By Lemma 2.7, we have 0(G") > o(G), a contradiction

with our choice. ]
Fact 3. If T} % P4y, then T; = S, ;. and w is the tail of T}, 1 < j < m.

Proof of Fact 3. Assume that there exists some j (1 < j < m) such that
T; % S, ,,. Then there are two vertices u,v € V(T;)\{w} such that Ny, (u) Vo (T}) #
0 and N, (v) N Vo(T;) # 0. Denote Nr,(u) N Vo(T;) = {uy,---,w}, t > 1 and
Ny, (v)NVy(T;) = {v1,---,vs}, s > 1. Note that if t = dg(u) — 1, s = dg(v) — 1, then
s,t > 2 by Fact 2. Set Gy = G — {uuy,...,uup} + {vuy, -+, vuy} and Gy = G —
{vvy, - vvg b +{uvy, -+ uvg }, where t! = t—1 (or s’ = s—1, resp.) if t = dg(u)—1
(or s = dg(v) — 1, resp.); otherwise t' = ¢ (s’ = s, resp.). Then G1,Gy € %, . By
Lemma 2.6, we have 0(G1) > o(G) or 0(G2) > o(G), a contradiction with our choice.
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Fact 4. T =Ky, 1<j<m.

Proof of Fact 4. Assume that T; % K, for some j, 1 < j < m. Then

s; > 2. Set H = U 7, Then by Lemma 2.5, we have o(H(q,s;,l;)) >
1<i<m,j#1

o(H(q+ s; —1,1,1;)). Note that H(q,s;,l;) = G by Fact 3, and hence we get a
contradiction with our choice. [ ]

Therefore the proof of the theorem is complete.

Lemma 3.2. Suppose that 0 < k <n—4 andn > 5. Then
(i) o(UN) > o(UY) ;
(i) 2(Uy*™) < z(Uy).

Proof. (i) By Lemma 2.4(i), we have
Uyt —o(U)) = 2P pa 4+ Fogs—2Fu g — Fogoo
= 2"F, 43— Fyj_a > 0.

Therefore, a(UF') > o(UF) for 0 <k <n—4and n > 5.
(ii) By Lemma 2.4(ii), we have

2UEY) = 2(UF) = 2F g1+ kFy o —2F,  — (k—1)Fp g4

—Fp o — (k— 1)ank73 < 0.

From Lemma 3.2 and Theorem 3.1, we have the following:
Corollary 3.3. Let G be a unicyclic graph with n(n > 5) vertices. Then
o(G) <323+ 1 and 2(G) > 2n —2.
Moreover, the equality holds if and only if G =2 U"=3.

Acknowledgments. Many thanks to the anonymous referee for his/her many

helpful comments and suggestions, which have considerably improved the presenta-
tion of the paper.
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