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Abstract

The general Randi¢ index R, (G) of a graph G is defined as
R, (G) = > [d(u)d(v)]*, where d(u) denotes the degree of a vertex

wel
win G and « is an arbitrary real number. A graph with n vertices and

n + 1 edges is called a bicyclic graph. In this paper, we characterize
the bicyclic graphs with maximum general Randi¢ index for ao > 1.

1 Introduction

Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set
E(G). The Randié index R(G) of a graph G was introduced by chemist
Milan Randi¢ in 1975 that is defined as R = 3 [d(u)d(v)]"2, where d(u)

wel
denotes the degree of a vertex u in G, and the summation goes over all edges

uv of G. In 1998, Bollobds and Erdds generalized this index as the general
Randié¢ index R, (G) of G, defined as

wek

where « is any real number. Evidently, the Randié index is a special case of
the general Randi¢ index for o = f%. More data and information about the
research background of the Randié¢ index and its generalization can be found
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in literatures (see [1] and [10]). There are many results concerning Randié
index and general Randi¢ index in recent years. For a survey of these results
and their mathematical properties, we refer to the book of Li and Gutman:
Mathematical Aspects of Randié-Type Molecular Structure Descriptors [6].
A simple connected graph G with n vertices and n + 1 edges is called
bicyclic graph. For n > 6, let B,, denote the bicyclic graph obtained by
inserting an edge between two non-adjacent vertices of the n-vertex cycle (or
n-cycle) C,, and B!, denote the bicyclic graph obtained by connecting two
disjoint cycles C, and Cp, a + b = n, by means of a new edge. Caporossi
et all [3] showed that for a bicyclic graph G, R(G) < 254 + % ++, and

2
the equality holds if and only if G = B,, or G = B]. Moreover, for a > 0,

Liu and Huang [9] gave a lower bound for the general Randi¢ index of G:
R,(G) > 66"+ (n—5) - 4%, and they characterized the extremal bicyclic
graphs that reach the bound.

In this paper, we consider bicyclic graphs with the maximum general
Randié index for v > 1. To state our results, we give some further notations
and terminologies. For notations and terminologies not definded here, see
Bondy and Murty [2]. Denote by N(u) the neighborhood of the vertex u. A
vertex of degree 1 in a graph is called a leaf vertex (or simply, a leaf) and
the edge incident with the leaf is called a leaf edge. A vertex adjacent to
some leaves is called a leaf branch. We define a class F of graphs as follows:
F consists of bicyclic graphs each of which has two triangles sharing two
common vertices, and the vertices not on the cycles are leaves adjacent to
two common vertices of the triangles and to another vertex of one of the
triangles. We use F, 3, . to denote a graph in class F, where a, ¢ and b are
nonnegative integers that denote the number of leaves adjacent to the two
common vertices and to another leaf branch of the triangles, respectively.
And we have a + b+ ¢ = n — 4. Particularly, let S+t = {F, 4 o] a =b=
0and ¢ # 0} and F, = {Fo b, el a =c=0and b # 0} Ifb =0, we
write F, p . simply as F, .. F, . is balanced if |[a — ¢ < 1, ie, Fy . =
Frazaq |nay (see Fig. 1).
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Fig.1

The main results of this paper are stated in the following theorems.

Theorem 1.1. For o > 1, the bicyclic graph with mazimum general Randi¢
index must be in F.

Theorem 1.2. For o = 1, S} has the mazimum general Randi¢ index
among bicyclic graphs with n > 5 vertices .

Theorem 1.3. Let a > 2 and o be the root of the equation Ro(Fy 1) =
Ro(S§T). Among all bicyclic graphs with n vertices,

(1) forn >1, ]-'[%4]’ E=Y has the mazimum general Randi¢ index ;

(2) for n = 6, Fi 1 has the mazimum general Randié¢ index when o > o/,
ST has the mazimum general Randi¢ index when 2 < o < o;

(3) forn =5, ST has the mazimum general Randié¢ index.

2 Preliminaries and the proof of Theorem 1.1
and 1.2

The proof ideas and techniques of the following lemmas are completely
similar to those in [7].

Lemma 2.1. Suppose a bicyclic graph G has a path vyvaus such that d(vy) =
i > 1, dws) = q > 1, vyvs ¢ E(G) and N(vy) N N(vs)\{ve} = 0. Let
N(v)\{va} = {ur,us,...,ui—1} and N(vs)\{va} = {wy,wa,...,we—1}. By
deleting the edges vswy, vsws, . .., vswe—1 and adding the new edges

VIW, V1Wa, . . ., V1We—1, we get a new bicyclic graph G’ ( see Fig 2 ). Then
R,(G') > R.(G) for a > 1. O
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From lemma 2.1 we conclude that

Lemma 2.2. Let G be a bicyclic graph with maximum general Randié indez.
Then both the two cycles of G must be 3-cycle having 2 common vertices
or 4-cycle having 3 common vertices, and the vertices not on the cycles are
leaves. O

Proof of Theorem 1.1. By contradiction, suppose that G is a bicyclic
graph with the maximum general Randi¢ index and G is not in F. By
lemma 2.2, we only need to consider the following two cases.

Case 1. Two cycles of GG are 3-cycle having 2 common vertices.

)

e
~—
C
e

Fig.3

We denote the leaf branches of two cycles by vyvv304. Denote by a, b, ¢
and d the number of leaves adjacent to vy, vs, vz and vy, respectively, as
shown in Fig 3. Assume b > d > 0. Let G’ and G” be the bicyclic graphs as
shown in Fig 3. We have

Ro(G) = ala+3)*+bb+2)"+clc+3)* +d(d+2)*+ (a+3)*(c+3)*
+H(b+2)*+ (d+ 2)Y[(a+ 3)* + (c+ 3)°]
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R (G) = ala+3)*+bb+2)*+clc+3)*+(d—1)(d+1)*
(a+3)(c+3)*+[(b+2)*+ (d+ 1)Y[(a+ 3)*+ (c+ 3)7]

+

Ro(G") = ala+3)*+ b+ 1)(b+3)*+clc+3)*+(d—1)(d+1)*

(a+3)(c+3)*+[(b+3)*+ (d+ 1)[(a+ 3)* + (c+ 3)7]

+

Let f(z) = (x4 2)*[z + (a + 3)* + (¢ + 3)*]. Then
R.(G) — R.(G") = (d+2)[d+(a+3)*+ (c+3)]—(d+1)*[d—1
+ (@ +3)"+ (c+3)" = f(d) - f(d—1) = f'(&)
R,(G") = R, (G") = (0+3)*+1+(a+3)*+ (c+3)—(b+2)b
+ (a+3)"+ (c+3)Y = f(b+1) = f(b) = ['(&),
where & € (d—1,d) and & € (b,b+1). By b>d > 1, o > 1 and since
@) =alz+2)*{(a=Dz+ (a+3)*+ (c+3)*] + 2z +2)} >0,

for any x > 0. We know that f'(&) > f'(&), which implies R (G") > Ro(G)
for a > 1, a contradiction.

Case 2. Two cycles of G are 4-cycle having 3 common vertices.

Let G, G', G” be graphs depicted in Fig 4. First suppose b > d > 0,

e > 0. Then by a fully analogous arguments used in case 1, we can prove
that R,(G") > R,(G). Next suppose d = e = 0.
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Let H be the bicyclic graph as shown in Fig 5. For a > 1, we have

R.(H)—R,(G) = (3*=2Y[(a+3)*+ (c+3)]+ (a+3)*(c+3)~
+3% =2%(a+3)* + (¢ + 3)*] := f(a, ).

df(a,c) Of(gmc)
c

Since 0 0 and > 0, we have for a > 1

fla,e) > f(0,¢) > £(0,0) =3-9* —4-6%+ 3% >0,
a contradiction. O

Proof of Theorem 1.2. By contradiction, assume G is a bicyclic graph
with the maximum general Randié¢ index, but G is not S;'+. By Theorem
1.1, G must be in F with a # 0 or b # 0, a simple calculation shows
Ri(S,") = Ri(G) = Ri(Syiera) — Ra(G)
= ab+bc+ac+2b>0,

again a contradiction. |

3 The case for a > 2

In this section, in the proofs of lemmas and theorems, we use Maple
program to deduce some inequalities involving exponential functions. To be
more concise, we omit the tedious details of the deduction, and give the final
inequalities.

Firstly, we present some lemmas.
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Lemma 3.1. Let o > 2. Then R, (F,) < Ra(}"(%zz]’ [nTHtJ) forn >6, and
Ro(Fs) < Ro(S5T) forn=5.

Proof. We only consider the case when n — 4 is odd, the case when n — 4 is
even is similar. Set n—4 =2k —1 and let f(k) = Ro(Fk, k1) — Ra(Forts) =
k(k+3)%+ (k— 1)(k+2)* + 2o (k + 3)* + (k +2)°] + (k + 3)*(k + 2)* —
2k —1)(2k+1)* —2-3*(2k 4+ 1)* — 2- 6% — 9*. It suffices to show f(k) > 0.
Indeed, for k > 2

k) = (k+3)+ak(k+3)*"+(k+2)*+a(k—1)(k+2)*"
+ a2 (k+3)*" + (k+2)* "+ a(k +3)* N (k +2)*
+ alk+3)*(k+2)*" —a(2k — 1)(2k + 1)*7 = 2(2k + 1)*
— da-3%(2k + 1)t
> 8a2k+4)* =2k + 1) N+ ak+3)* (k+2)* 2k +5)
— 202k +1)* — a(2k — 9)(2k + 1)* — 12a(6k + 3)*!
> a2k +5)(K2 4 5k 4 6)°71 — 2(2k + 1) — a2k — 9)(2k 4 1)~
— 12a(6k + 3)*!
> (K* 45k + 6)*?[a(2k + 5)(k* + 5k + 6) — 2(2k + 1)?
— a2k —9)(2k + 1) — 12a(6k + 3)]
> 20k + (1la — 8)k* — (19a + 8)k + 3a — 2 := h(k, ).

Since PMEO) o013 L 1182 Z 10k 43 > 0, we have h(k,a) > h(k,2) =

4k3 + 14k2af 46k +4 > 0 for k > 2.

Therefore, f(k) > f(2) = 4°+2-8%+2-10°4+20° — 5 —2.6% — 9% —2.15¢ >
10% + 20" — 2 - 15 > 0. It is not difficult to verify that f(1) > 0, which
implies Ra(Fs) < Ra(SE). O

Lemma 3.2. Let o > 2 and o be the root of the equation Rn(Fi, 1) =
Ro(S¢™). Then

(])forn Z 7, RQ(S:-'—) < RQ(F(HT%L LHT%J),

(2) for n = 6, Ry(S¢") < Ro(F1, 1) when a > o'; Ro(Fi, 1) < Ra(S5H)
when 2 < a < a.

Proof. We only prove the case when n — 4 is even, the case when n — 4
is odd is similar. Let n —4 = 2k and f(k) = Ro(Fi, 1) — Ra(Sais) =



- 690 -

2k (k+3)+4(2k+6)+ (k+3)2 — 2k (2 +3) —2(4k+6)* —3%(2k+3)* —2-6°.
Then, when k& > 3

fl(k) = 2(k+3)*+a2k(k+3)*" +8a(2k + 6)* ' + 2a(k + 3)> !
2(2k + 3)* — adk(2k + 3)*" — 8a(4k + 6)*" — 6 (6k + 9)* !

> 8a[(2k +6)* 1 — (2k +3) 1 + 82k + 3)* ! + 2a(k + 3)** !
— 2(2k 4 3)* — adk(2k +3)*7! — 8a(4k 4+ 6)*7! — 6a(6k 4 9)* !
> 2a(k +3)(k* 4 6k +9)* ' — a4k — 8)(2k + 3)**

— 2(2k +3)* — 8a(4k +6)* " — 6a(6k + 9)*!

(K* + 6k +9)*%[2a(k + 3)(k* + 6k +9) — 2(2k + 3)*

a4k — 8)(2k + 3) — Sa(4k + 6) — 6a(6k + 9)]

20k + (10a — 8)k? — (10a + 24)k — 24a — 18

4k3 + 12k* — 44k — 66 > 0.

V

vV Vv

Since f(3) = 4-6“+4-12°+36%—6-9%—2-18* —27* > 36%—2-18*—27* > 0,
we have f(k) > f(3) > 0. For k = 2, using the same arguments we can
verify that f(2) > 0.

Hence for k > 2, i.e, n > 7, we have R, (S;") < Ra(‘ﬂ%“k L"T"‘J)'

For k =1, f(1) = 2(4% — 5%) + 2(8% — 6°) + 2(8% — 10%) + 16% — 15® >
a(15%71 — 4-10°Y). When a > 5, 1571 — 4-10°"" > 0, so f(1) > 0.
Let 2 < o < 5. Using Maple program, we can verify that f(1) > 0 when
o <a <5, and f(1) < 0 when 2 < o < o/. This yields (2) and completes
the proof of the lemma. O

Lemma 3.3. Fora > 2, 2 > 1andn—4—2 > 1, Ro(Fo o, n-a-2) <
Ra(]:z, n—4—z)-

Fig. 6
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P?"OOf. Let f(n) = RG(J:J:, n7471:)7Ra(]:0, x, n747z) = l.(x+3)ail,($+2)a+
2% 43)*=3%ax+2)*+2%n—z—1)*—(z+2)*(n—2x—1)*4+2%(x+3)* —
6+ (z+3)*(n—z—1)*—3%n—x—1)* Since « > 1 and x > 1, we have

f'(n) = am—z—-1)"(z+3)* - (z +2)* +2% - 37
S (43)7 - (2 42)7£2— 3% >4 3% 420 30 50,
Thus Ro(Fz, nei—z) — Ra(Fo, 2, n—a—z) = f(n) > f(6) = 4% +3-8% + 16* —

3% —6%—9%—2-12% > 2-8* 4+ 16% — 9% — 2 - 12¢ > 0, which completes the
proof. O

Lemma 3.4. Fora > 2 and 1 < v+ 1 <n—4—2, Ro(Fp n-a-2) <
Ba(Fragay, 1250)-

Proof. Case 1. x =1 (see Fig. 7).

k

> B
k

2k —1 n—4-—ux
-7:17 2k—1 fk, k -7:1', n—4—zx

Fig.7

Again we only consider the case for n — 4 = 2k, since the case when n —4
is odd is similar. Let f(k) = Ro(Fk, &) — Ra(F1, 2k—1). By using the same
method as in the proof of lemma 3.2, we obtain the following results: f'(k) >
0 when k& > 4. Since f(4) > 0, we have f(k) > f(4) > 0. For k = 2 and
k = 3, it is not difficult to verify that Ry (Fy, n-a-z) < Ra(]:(%]’ l"T_“J)'

Case 2. > 2.
Let f(z) = Ra(Fr noau) = (@ +3)°T '+ (n—2 —1)>F +
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(202 =) [(x +3)*+ (n —x — 1)*] + (z + 3)*(n — x — 1)®. Consider

fl) = (a+ D[z +3)=(n—2—1)+a2*? =3)[(z+3)*""

n—z—-1)"N+az+3) ' (n—z-1)"(n—2z—4)

alz+3) ' n—z—-1 (n—-22—4)

ala+1)(n—22 —HE™ —ala —1)(2°72 = 3)(n — 22 — 4)£572,

where &1,& € (r+3,n—2—1). Since @« > 2 and 2 < x < n—4—x, we have
P@) = aln—20-D@+3 (n -z -1 (a+ D!

(o = 1)(2°72 = 3)&77]

(z+3) " n—z-1)"" = (a+Dn—2-—1)""

(= 1)(2*" = 3)(n — 2 — 1)*2

(

(

>

n—r—-1)2(n—2z-D+3)"—(a+1)(n—x-1)
a—1)(2*7% - 3)].
Let g(@) =(n—z—1)(x+3)* ' —(a+1)(n—2—1) — (o — 1)(2°72 — 3).
Since
d@) = —(z+3)* ' +(a-)n—2-1)(2+3) 4+ (a+1)
—(z+3)* T+ (a—-D)(@+3)* "+ (a+1) >0,

we have g(m) >g(2) = (n—3)-5"'—(a+1)(n—3)— (a—1)(2°72=3) >
75971 —(a+1)-7T—(a—1)(22t2=3) > 0. Then f'(z) > 0forx+1 < n—4—ux,
and this implies Ro(Fy, nei4—s) < Ra (.7:[% 1 L%J) O
Lemma 3.5. For a > 2 and 1 < & < n —4 =22, Ry(Fp n-a-2s, z) <
Ra(Frazy, pogey)
Proof. As in the previous proofs, we may assume n — 4 — 2z = 2k ( see Fig.
8). Let f(z,k) = Ro(Fusr, arr) — Ra(Fu, 2k, 2) = 2(x + k)(x + k + 3)* +
2002 (1 + k+3)% + (v + k + 3)% — 2x(x + 3)* — 2k(2k +2)® — 2(2k + 2)*(x +
3)a _ 2a+1(m + 3)u _ (T + 3)204.

x x+k
=~ =~

—~
T+ k

‘7:1+k, z+k

Fig. 8
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Case 1. k—1<x < 2k.
Note that for z > 2 and &k > 2

of(x, k)

ok

20(x + k+3)* — (2k +2)*] + 2af(z + k) (x + k + 3)* !

— 2k(2k 4+ 2)° + a2 (@ + k 4+ 3)*7 + 2a(x + k + 3)% 7!

vV Vv Vv

4a(2k +2) (2 4 3)°

2a[(x +k +3)%7 — 2(2k +2)* "z + 3)°]
(x+k+3)*(z+k+3)°—2(z + 3)%(2k + 2)]
(x4+3)% — (k+4)(x +3)* +3k*(x +3) + k* > 0.

Hence, for k > 2 and k—1 < x < 2k, we have f(z, k) > f(z,2) = f(2,2) >0
or f(z, k) > f(x,2) = f(3,2) > 0, according as x =k=2orx=k+1=3.
For = 1, f(a, k) = f(1,k) = f(1,1) = 4-5 + 4. 10° + 25 — 4. 4% — 3.
169 —2-8% > 2-10% 4 25% — 3 - 16 > 0.
Thus, we have Ry (Fy, n—a—20, 2) < Ra(]:[nTﬂ]’ L%J)'

Case 2. 1<z <k-1.

Note that
8f((;: ko 2z +k+3)* — (x +3)] + (2ax + a - 2T [(w + k + 3)*
— (43 N+ 2k +a- 20 (x+k+3)!
+ 20z +k+3)27 —20[(2k + 2)%(x + 3)H + (2 4 3)2*7 Y]
> 2af[(z+k+3)% — 2k +2)%x +3)*" + (x +3)*7 ]
> (x4+E+3) Yz +k+3)° = 2k +2)2(z+3) — (x +3)7
> 3k(z+3)% — (v +3)(k* + 8k +4) + k* == g(x, k).
Since 8‘9(832716) > 0, we have g(z,k) > g(x,2) = ¢(1,2) > 0. So f(x,k) is

monotonously increasing in x, and thus f(x, k) > f(1,k) = (k+4)*(2+ 2k +
2042) | (| + 4)% — (2k + 2 - 4%) (2 + 2)* — 2 4% — 2. 8% — 16°.
By dropping out some positive items in f’(1, k), for k > 3 we have

f'(1k)

>

>
>

2a(k +4)?7 1 — 2(2k +2)* — 20(2k + 2)* 1 (2k + 2 - 4%)

2lak +4)% 7 — (2k + 2)* — 2ka(2k +2)*7! — 8a(8k + 8)* 7]
alk +4)* — (2k + 2)* — 2ka(2k + 2) — 8a(8k + 8)

2(k +4)% — (2k +2)? — 4k(2k +2) — 16(8k + 8) > 0.
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When k = 2, we can also verify f'(1,2) > 0.

It means that f(1, k) is monotonously increasing in k, and hence f(1, k) >
F(1,2) =2-6+4-12 436 —2-4% — 28> — 16* — 2-24% > 2-12* 4+ 36> —
2-24% — 16" > 0. Therefore, Ry (Fy n-i-2, 2) < R”(}—[%l L%”). |

Proof of Theorem 1.3. After considering special cases which are stated
in the above lemmas, next we will prove that F, . has the greater general
Randi¢ index than F, i, ~, where ¥’ # 0 and at least one of ¢’ and ¢ is not
zero, moreover a +c¢ = a' + 0 + . Let f(x,y,n) = Ro(Fu, y, n-a—a—y) =
r(x+3)*+yly+2)*+(n—4—2—y)n—or—y—1)*+ 12+ (y +2)°][(z +
3+ (n—z—y— 1+ (z+3)*(n—z—y—1)* We need to consider the
following three cases.

n—4—x—y
Fig. 9
Casel. y<n—4—z—y<ux.

In this case we will prove that f(z,y,n) monotonously decreases in y for
« > 2. Note that

L(z,@y, N o (y+2)" +ay(y+2)*" = (n—a—y—1)°
Y
- aln—d-z—yn-—z-y-1)""

4 aly+ 2@ +8)" + (- -y~ 1))

— aln—2—y =1y +2)*+2%+ (z + 3)%]
< aly+2)* M@ +3)*+n—z—y—1)"
o~ — 5~ )" (y +2)° + (o + 3]
—ala—1)(n —z — 2y — 3)(x + 3)%02
aly+2)**n—z-2y-3)(n—z—y—1)"
an—z -2y —3)[~(a—1)(z+ 3)*&?

+ W+ —y -1,

+



- 695 -

where {1 € (y+2,n—x—y—1). Sincea>2andy<n—-4—2—y <z,
we have
0
O v 1) )@t 3 —a -y — 1)
dy
+ W+ -y -1
< (y+2)*?[n—2z—y—1)*—(x+3)] <0.
It means Ra(fw, Y, n747w7y) < Ra(]::t, y—1, 7L7371'7’y) < < RQ(FJL', n7471')
forl1<y<n—-4—z—y<uz.
Case 2. n—4—zv—y<y<u.

In order to obtain the same result as in case 1, consider

PIOD1  aafa g1 e D2y 1
— ala—1)n—4—z—y)n—az—y—1)"72
— ala—D)(n—z—y— T2y + 2 + (2 +3)7]
+ Ay +2)n—z—y—-1)"
< aln—z—y—1)"ay +2)* = 2(a—1)(y +2)*] < 0.

Of(x, y, n)

of(x, y, n)
So k) oy

is decreasing function of n, and furthermore
(9 xZ, N 6 a 17 17 6 a a—

Hence, f(x,y,n) is monotonously decreasing in y.

<

Case 3. n—4—z—y<z<uy.

Now we will prove that f(x,y,n) is monotonously increasing in z for
a>2. Set A=n—4—y, we have

7‘9’6(25/’ Do (@ 48) (A2 +3)° +ax(z+ 3
— a(A-z)(A—2+3)* "+ a2+ (y+ 2)*[(x + 3)*!
— (A—z+3)* N—a@r—-A)(z+3)*(A-z+3)!
> a2z - A)[(a - 1)(y +2)%°

— T A,
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where § € (A —xz+ 3,2+ 3). Since a >2and A —z <z <y,

UEY ) s (g g g)(A a8 — (248 (A2 43

= (z+3)*HA-1+3) 22— A) > 0.
This means that Ry (Fy, 4, nd—o—y) < Ra(Fat1, y, n-p—a—y) < -
< Ro(Foza—y, 4, 0) for n —4 — 2z —y < 2 < y. And by Lemma 3.5 we have

R (Fr—a—y, y, 0) < Ro(Fn-a—y, ), which is desired.
The proof of the theorem is now complete. O

4 Concluding remarks

In this paper, we study bicyclic graphs with the maximum general Randi¢
index for a > 1. We use the following table to summarize our main results.

o a=1|1<a<?2 a>2

extremal bicyclic graph | S in F forn > 7, Frazay oz

For n = 6, F;, 1 has the maximum general Randié¢ index when a > o/, ng -
has the maximum general Randi¢ index when 2 < o < o/, where ' is the
root of the equation R,(F1, 1) = Ro(S¢T); for n =5, S3 has the maximum
general Randié¢ index. The case for v < 1 seems much more complicated and
left for further study.
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