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Abstract

The anti-forcing number is the smallest number of edges that have
to be removed that any benzenoid remains with a single Kekulé struc-
ture. In this paper, we give a algorithm for computing the anti-forcing
number of hexagonal chains and determine the bounds of the anti-
forcing number of hexagonal chains.

1 Introduction

The connection between graph theory and chemistry is very important. Es-
pecially, the concept of perfect matchings from graph theory is related to
study of benzenoids. The perfect matchings or the Kekulé structures later
attracted considerable interest in graph theory and chemistry
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The forcing number of benzenoids was introduced by Harary et al. [1] in
1991. The roots of this concept can be found in an earlier paper by Randić
and Klein [2]. There, the forcing number has been called the innate degree of
freedom of a Kekulé structure, although the term the forcing number was also
used. The forcing number is equal to the smallest number of double bonds
that completely determine the Kekulé structure of a given benzenoid. After
this initial report, several papers appeared reporting the forcing number of
hexagonal systems and square grids [3,4].

Later, Došlić [5] introduced the global forcing number of a graph and
gave several results concerning global forcing sets and numbers of benzenoid
graphs. In particular, he proved that all catacondensed benzenoids and cata-
fused coronoids with n hexagons have the global forcing number equal to n,
and that for pericondensed benzenoids the global forcing number is always
strictly smaller than the number of hexagons.

Recently, Vukičević and Trinajstić [6] introduced the anti-forcing number
as the smallest number of edges that have to be removed from a benzenoid
to remain with a single Kekulé structure, and determined the anti-forcing
number of benzenoid parallelograms.

In this paper, we will determine the anti-forcing number of any hexagonal
chain.

2 The definition of anti-forcing set

All graphs in this paper are simple, connected, and have a perfect matching,
if not explicitly stated otherwise. For all terms and notation not defined here
we refer the reader to [7]. A perfect matching in a graph G is a set M of
edges of G such that every vertex of G is incident with exactly one edge from
M .

Let G = (V, E) be a graph G with a perfect matching. An anti-forcing
set of G is a subset A of E such that G − A has a unique Kekulé structure.
An anti-forcing set of the smallest cardinality is called a minimal anti-forcing
set, and its cardinality is the anti-forcing number of G and it is denoted by
af(G) (see [6]).

Figure 1. B3,4

In [6], the minimal anti-forcing set and the anti-forcing number of the
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benzenoid parallelogram [8-10] Bm,n are determined, where Bm,n is consisting
of m × n hexagons, arranged in m rows, each row consisting of n hexagons,
af(Bm,n) = 1.

3 The anti-forcing number of hexagonal chains

Let us now consider the main subject of the present paper, the hexagonal
chains. Hexagonal systems are of great importance for theoretical chemistry
because they are the molecular graphs (or, more precisely, the graphs repre-
senting the carbon-atom skeleton) of benzenoid hydrocarbons. The mathe-
matical theory of hexagonal systems is nowadays being greatly expanded.

Our standard reference for any terminology of hexagonal systems is [11].
A hexagonal system [11] is a connected plane graph without cut-vertices

in which all inner faces are hexagons (and all hexagons are faces), such that
two hexagons are either disjoint or have exactly one common edge, and no
three hexagons share a common edge.

The hexagonal systems are divided [11] into catacondensed and pericon-
densed hexagonal systems. In a pericondensed hexagonal system there exist
three hexagons sharing a common vertex; In catacondensed hexagonal sys-
tems no three hexagons share a common vertex.

Catacondensed hexagonal systems are further classified into non-branched
(in which no hexagon has more than two neighboring hexagons) and branched
(in which at least one hexagon has three neighboring hexagons). A cata-
condensed hexagonal system without branched hexagons is called a hexag-
onal chain. Each hexagon in a hexagonal chain is adjacent to at most two
hexagons.

A hexagonal chain with h hexagons, h > 2, possesses two terminal
hexagons and h − 2 hexagons that have two neighbors. Hexagons being
adjacent to exactly two other hexagons are classified as angularly or linearly
adhesive. A hexagon adjacent to exactly two other hexagons possesses two
vertices of degree 2. If these two vertices are adjacent, then the hexagon is
angularly adhesive, if these two vertices are not adjacent, then it is linearly
adhesive.

A linear chain Lh with h hexagons is a hexagonal chain without any
angularly adhesion (see Figure 2).

Figure 2. The linear chain L8.

A fibonacene chain is a hexagonal chain without linearly adhesive hexagons
(see Figure 3).
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One should note that fibonacene chains may be helical or jammed.

Figure 2. Some fibonacene chains.

Figure 4. A segment S with length 6 in a hexagonal chain.

S

A segment [11,12] is a maximal linear chain in a hexagonal chain, in-
cluding the angularly adhesive hexagons and/or terminal hexagons at its
end. The number of hexagons in a segment S is called its length and is
denoted by l(S). For any segment S of a hexagonal chain with h hexagons,
2 ≤ l(S) ≤ h. Particularly, a hexagonal chain is a fibonacene chain if and
only if the lengths of its segment are all equal to 2 and a hexagonal chain is
a linear chain if and only if the length of its unique segment is h.

Lemma 1. Let G = (V, E) be a hexagonal chain. If A is an anti-forcing
set of G. Then, for any hexagon H in G, at least one edge on the segment
containing H belongs to A.

Proof. By contradiction, we assume that there is a hexagon H0 of G such
that the segment S0 containing H0 has no edge in A. Let l0 be the length of
S0 and M the unique perfect matching of G − A.
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x2x3
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y4
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(a) (b)

Figure 5.

S0S0 H H
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(I) If l0 = 2 and S0 is at the end of the hexagonal chain G, or l0 > 2, see
Figure 5(a) or (b), then either both x2x3 and y2y3 are in M , or none edge of
them is in M .

(i) If both x2x3 and y2y3 are in M , then y4y5 ∈ M , and H is an M-
alternating circuit, G − A has at least two perfect matchings.

(ii) If no edge of x2x3 and y2y3 is in M , then y4y5 �∈ M , y3y4 ∈ M . And
S0 − {x2, y3, y4} contains an M-alternating circuit, G − A has at least two
perfect matchings.

(II) If l0 = 2 and S0 is not at the end of the hexagonal chain G, see Figure
6, then both x2x3 and y2y3 are in M , or no edge of x2x3 and y2y3 is in M ,
and S1 has no edge of A.

(i) If both x2x3 and y2y3 are in M , then H1 is a M-alternating circuit,
and G − A has at least two perfect matchings.

(ii) If no edge of x2x3 and y2y3 is in M , then y3y4 ∈ M , y4y5 �∈ M .
And there is a M-alternating circuit in S1, G − A has at least two perfect
matchings.

Therefore, the result holds.

H H
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S1 S1
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y3
y4

y5

H0 H0

Figure 6.

Now we introduce a new concept. The figure consisting of two adjacent
segments in a hexagonal chain G is called a broken line, and the edge crossed
by the bisector of the 240◦ angle is called a broken edge (see Figure 7).

�

a broken edge

Figure 7. A broken line and a broken edge in a hexagonal chain.

Remark. If we delete the broken edge in a broken line or the slant edge
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incident with two vertices of degree 2 in a linear chain, then there is only one
perfect matching (see Figure 8).

X

X

Figure 8.

(a) (b)

u
v

If there is an edge e of a hexagonal chain G such that the perfect matching
of a hexagon H is unique after deleting e, then we say that e dominates the
hexagon H. Let A be any anti-forcing set of G. From Lemma 1, we need at
least one edge of A for dominating the hexagons on S for each segment S of
G.

The following algorithm will give a minimal anti-forcing set and the anti-
forcing number af(G) of a hexagonal chain G.

Algorithm
Let G be a hexagonal chain. u, v are two adjacent vertices with degree 2

on the last hexagon of G such that the degree of the other vertex adjacent
to u is 3. When a hexagon is deleted from a hexagonal chain, the common
edges of the hexagon and its neighboring hexagons are left. Let A = ∅.

If G is a linear chain, then A ← A ∪ {uv} and stop.
If G is not a linear chain, then
(i)Let L be the first broken line and e the broken edge of L, and A ←

A ∪ {e}, G ← G − L;
(ii)If G is neither empty nor a linear chain, then return to (i);
(iii)If G is empty, then stop;
(iv)If G is a linear chain, then A ← A ∪ {uv} and stop.
Theorem 2. The set A given by the algorithm above is a minimal anti-

forcing set of G.
Proof. By the remark above, A is a anti-forcing set of G.
Now, we prove that the set A is a minimal anti-forcing set of G by using

Lemma 1.
If G is a linear chain or a broken line, then the result is true since af(G) ≥

1 (also see Figure 8).
Let G be the hexagonal chain. L1, L2, · · · , Lk are the broken lines of G

deleted in the algorithm. s1, s2, · · · , s2k are the segments such that L1 =
s1 ∪ s2 and Li = s2i−1 ∪ s2i − s2i−2, i = 2, 3, · · · , k. Then the length of s2i−1

is at least 3 if s2i−1 and s2i−2 have a common hexagon from the algorithm.
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Figure 10.

If G is empty after deleting L1, L2, · · · , Lk from G (see Figure 10(a)), then
|A| = k. So, there does not exist an edge e such that e can dominate the
hexagons on both s2i−1 and s2j−1, i �= j. By Lemma 1, any anti-forcing set
of G must contain k edges. Therefore, A is a minimal anti-forcing set.

If G is a linear chain after deleting L1, L2, · · · , Lk from G (see Figure
10(b)), then |A| = k + 1, and at least one edge is needed for dominating the
hexagons of G−L1 ∪L2 ∪ · · · ∪Lk. But no edge can dominate the hexagons
on both s2i−1 and s2j−1, 1 ≤ i < j ≤ k. By Lemma 1, any anti-forcing set of
G must contain k + 1 edges. Therefore, A is a minimal anti-forcing set.

Example. Using the algorithm above, we can easily obtain the anti-
forcing numbers of the hexagonal chains in Figure 9.

X X

X

X

X
(a) af(G) = 2.

(b) af(G) = 3.

Figure 9.

The following results are immediate from the algorithm.
Corollary 3. If the number of segments in a hexagonal chain G is s,

then af(G) ≤ s+1
2

.
Corollary 4. Let Fn be a fibonacene chain with n hexagons. Then

af(Fn) = �n
3
�, where �x� is the minimal integer not less than x.

Corollary 5. Let G be a hexagonal chain with n hexagons. If G is
neither a linear chain Ln nor a fibonacene chain Fn, then

1 = af(Ln) < af(G) < af(Fn) = �n

3
�.
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