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Abstract

For a graph, the first Zagreb index M1 is equal to the sum of the squares of
the degrees of the vertices, and the second Zagreb index M2 is equal to the sum of
the products of the degrees of pairs of adjacent vertices. This paper investigates
the Zagreb indices of unicyclic graphs by introducing some transformations, and
characterize the unicyclic graphs with the first five largest Zagreb indices and the
unicyclic graphs with the first two smallest Zagreb indices, respectively.

1 Introduction

Let G = (V, E) be a simple connected graph with the vertex set V (G) and the edge set

E(G). For any v ∈ V , N(v) denotes the neighbors of v, and NG[v] = {v} ∪ {u|uv ∈

E(G)}, dG(v) = |N(v)| is the degree of v. A leaf is a vertex of degree one and a stem is a

vertex adjacent to at least one leaf, pendant edges are edges incident to a leaf and stem.

The distance d(x, y) from a vertex x to another vertex y is the minimum number of edges

in an x − y path. The distance dG(x, S) from a vertex x to the set S is min
y∈S

d(x, y). Let

Pn, Cn and K1,n−1 be the path, cycle and the star on n vertices.

Let Un denote the set of the unicyclic graphs with n vertices.

Let Uk
n denote the set of the unicyclic graphs with n vertices and cycle length k.
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Let G
(n)
k,1 denote the unicyclic graph constructed by attaching n−k leaves to one vertex

on a cycle of length k, see figure 1(a).

Let G
(n)
k,2 be the unicyclic graph constructed by attaching n−k−1 leaves to one vertex

u of the cycle, and a K2 attached to adjacent vertex of u, see figure 1(b).

Let Sp,q,r(p, q, r ≥ 0 and p + q + r = n− 3) denote the unicyclic graph constructed by

attaching K1,p, K1,q, K1,r to the vertices of C3, respectively, see figure 1(c).

Other graph notations and terminologies undefined will conform to [1].
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Figure 1.

The first Zagreb index M1 and the second Zagreb index M2 of G are defined as

M1(G) =
∑

x∈V (G)

(dG(x))2

M2(G) =
∑

xy∈E(G)

dG(x)dG(y)

where dG(x) is the degree of vertex x in G.

The Zagreb indices M1 and M2 were introduced in [2] and elaborated in [3]. The main

properties of M1 and M2 were summarized in [4,5]. These indices reflect the extent of

branching of the molecular carbon-atom skeleton, and can thus be viewed as molecular

structure-descriptors [5,6].

Recently, finding the extremal values or bounds for the topological indices of graphs,

as well as related problems of characterizing the extremal graphs, attracted the attention

of many researchers and many results are obtained (see [3-18]). [4] showed that the trees

with the smallest and largest M1 are the path and the star, respectively. [7] also showed

that the trees with the smallest and largest M2 are the path and the star, respectively.

[8] characterized the graphs with the smallest and largest M2 among all unicyclic graphs.

[9] gave the the unicyclic graphs with the first three smallest and largest M1. [10] gave

the bicyclic graph with the largest M1. [15] presented a unified approach to the extremal

Zagreb indices for trees, unicyclic graphs and bicyclic graphs.

In this paper, we present investigate the Zagreb indices of unicyclic graphs by intro-

ducing some transformations, and characterize the unicyclic graphs with the first five

largest Zagreb indices and the unicyclic graphs with the first two smallest Zagreb indices.

- 664 -



2 Two transformations which increase the Zagreb

indices

Let E ′ ⊆ E(G), we denote by G −E′ the subgraph of G obtained by deleting the edges

of E ′. W ⊆ V (G), G − W denotes the subgraph of G obtained by deleting the vertices

of W and the edges incident with them.

We give two transformations which will increase the Zagreb indices as follows:

Transformation α: Let uv be an edge G, dG(u) ≥ 2, NG(v) = {u, w1, w2, · · · , ws},

and w1, w2, · · · , ws are leaves. G
′

= G − {vw1, vw2, · · · , vws} + {uw1, uw2, · · · , uws}, as

shown in Figure 2.

Lemma 2.1[15]. Let G′ be obtained from G by transformation α, then

M1(G
′) > M1(G) and M2(G

′) > M2(G).

...G0 u
v

w1w2
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G

�
α .......

G0 u v
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Figure 2. Transformation α.
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Figure 3. Transformation β.

β

Remark 1. Repeating Transformation α, any unicyclic graph can be changed into an

unicyclic graph such that all the edges not on the cycle are pendant edges.

Transformation β: Let u and v be two vertices in G. u1, u2, · · · , us are the leaves

adjacent to u, v1, v2, · · · , vt are the leaves adjacent to v. G′ = G− {uu1, uu2, · · · , uus}+
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{vu1, vu2, · · · , vus}, G′′ = G−{vv1, vv2, · · · , vvt}+ {uv1, uv2, · · · , uvt}, as showed in Fig-

ure 3.

Lemma 2.2[15]. Let G′ and G′′ be obtained from G by transformation β, then either

Mi(G
′) > Mi(G) or Mi(G

′′) > Mi(G), i = 1, 2.

Remark 2. Repeating Transformation β, any unicyclic graph can be changed into an

unicyclic graph such that all the pendant edges are attached to the same vertex.

3 Some transformations which decrease the Zagreb

indices

u
v1 vk vn

u
vk vn vk−1 v1

G G

G1 G2

Figure 4. Transformation γ.

�
γ

Transformation γ. Let G �= P1 be a connected graph and choose u ∈ V (G). G1

denotes the graph that results from identifying u with the vertex vk of a simple path

v1v2 · · · vn, 1 < k < n; G2 is obtained from G1 by deleting vk−1vk and adding vk−1vn (see

Figure 4).

Lemma 3.1[15]. Let G1 and G2 be the graphs in Figure 4. Then Mi(G1) > Mi(G2),

i = 1, 2.

Remark 3. Repeating Transformation γ, any tree T attached to a graph G can be

changed into a path as showed in Figure 5. And the Zagreb indices decrease.

TG G�

Figure 5.

Transformation δ. Let u and v be two vertices in a graph G. G1 denotes the graph

that results from identifying u with the vertex u0 of a path u0u1u2 · · ·us and identifying

v with the vertex v0 of a path v0v1v2 · · · vt; G2 is obtained from G1 by deleting uu1 and

- 666 -



adding vtu1 (see Figure 6).

G

u
u1 us

v v1 vt

G

u

v
v1 vt u1 us

G1 G2

�δ

Figure 6. Transformation δ.

Lemma 3.2[15]. Let G1 and G2 be the graphs in Figure 6. dG(u) ≥ dG(v) > 1, s ≥ 1

and t ≥ 0.

(i) If t > 0, then M1(G1) > M1(G2) and M2(G1) > M2(G2);

(ii) If t = 0 and dG(u) > dG(v), then M1(G1) > M1(G2);

(iii) If t = 0 and
∑

x∈NG(u)−{v}
dG(x) >

∑
y∈NG(v)−{u}

dG(y), then M2(G1) > M2(G2).

Remark 4. After repeating transformation δ, then any tree attached on the unicyclic

graph can be changed into such an unicyclic graph that a path attached to a cycle, and

the Zagreb indices decrease.

4 Unicyclic graphs with larger Zagreb indices

In this section we shall get the upper bounds of the unicyclic graphs with respect to

their Zagreb indices.

Lemma 4.1[15,16]. Let G ∈ Uk
n , then Mi(G) ≤ Mi(G

(n)
k,1)(i = 1, 2), with equality if

and only if G ∼= G
(n)
k,1.

Lemma 4.2[16]. Let G ∈ Un, then

(i) Mi(G) ≤ Mi(G
(n)
3,1), with equality if and only if G ∼= G

(n)
3,1(i = 1, 2);

(ii) If G �∼= G
(n)
3,1 , then Mi(G) ≤ Mi(G

(n)
3,2), with equality if and only if G ∼= G

(n)
3,2 (i =

1, 2).

Note that for given integers k ≥ 3 and n ≥ k. We can calculate out the Zagreb in-

dices of G
(n)
k,1 in the following, M1(G

(n)
k,1) = (n−k)2+5n−k, M2(G

(n)
k,1) = (n−k)2+6n−2k.

Theorem 4.1. Let G ∈ Uk
n(k ≥ 3), we have Mi(G

(n)
k,1) > Mi(G

(n)
k,2)(i = 1, 2).

Proof. From the definition of G
(n)
k,2 and the Zagreb indices, we have

M1(G
(n)
k,2) = (n − k)2 + 3n + k + 2, M2(G

(n)
k,2) = (n − k)2 + 5n − k + 1.

Then
Δ1 = M1(G

(n)
k,1) − M1(G

(n)
k,2)

= n − k − 1 > 0
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Δ2 = M2(G
(n)
k,1) − M2(G

(n)
k,2)

= n − k − 1 > 0

Theorem 4.2. Let G ∈ Uk
n be an arbitrary unicyclic graph, then Mi(G

(n)
k,2) > Mi(G

(n)
k+1,2)(i =

1, 2).

Proof. From above proof, we have

Δ1 = M1(G
(n)
k,2) − M1(G

(n)
k+1,2)

= 2(n − k − 1) > 0

Δ2 = M2(G
(n)
k,2) − M2(G

(n)
k+1,2)

= 2(n − k) > 0

Theorem 4.3. Let p ≥ q ≥ r ≥ 0, p + q + r = n − 3, we have

(i) Mi(Sp,q,r) < M1(Sp+1,q−1,r), for i = 1, 2;

(ii) Mi(Sp,q,r) < M1(Sp,q+1,r−1), for i = 1, 2.

Proof. Firstly, we get the Zagreb indices of Sp,q,r as follows.

M1(Sp,q,r) = (p + 2)2 + (q + 2)2 + (r + 2)2 + n − 3;

M2(Sp,q,r) = p2 + q2 + r2 + pq + pr + qr + 6p + 6q + 6r + 12.

Consequently, we have
Δ1 = M1(Sp+1,q−1,r) − M1(Sp,q,r)

= 2(p − q + 1) > 0

Δ2 = M2(Sp+1,q−1,r) − M2(Sp,q,r)
= p − q + 1 > 0

and
Δ′

1 = M1(Sp,q+1,r−1) − M1(Sp,q,r)
= 2(q − r + 1) > 0

Δ′
2 = M2(Sp,q+1,r−1) − M2(Sp,q,r)

= q − r + 1 > 0
So the proof of theorem is completed.

Let G
(n)
3,3 be the graph obtained from attaching K1,n−5 and K1,2 to the adjacent vertices

of C3, respectively. See figure 7(a). G
(n)
3,4 be the graph obtained from attaching K1,n−5 to

one vertex of C3, and K1,2 to another two vertices of C3, respectively. See figure 7(b).

.......

.......

⎫⎬⎭
⎫⎬⎭n − 5 n − 5

(a) G
(n)
3,3 (b) G

(n)
3,4

Figure 7.

From Figure 7, we can work out:
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M1(G
(n)
3,3 ) = n2 − 5n + 26, M2(G

(n)
3,3) = n2 − 2n + 13;

M1(G
(n)
3,4 ) = n2 − 5n + 24, M2(G

(n)
3,4) = n2 − 2n + 12;

By Lemma 4.1, Lemma 4.2, Theorem 4.3 and above calculation, we have

Theorem 4.4. When n ≥ 6, we have Mi(G
(n)
3,3 ) > Mi(G

(n)
3,4 ) > · · ·(i = 1, 2).

Let SΔ denote the set of graphs belong to Sp,q,r. Then by Lemma 4.1, Lemma 4.2 and

Theorem 4.3, Theorem 4.4 we have

Theorem 4.5. When n ≥ 6, the order in SΔ with respect to the Zagreb indices is (for

i = 1, 2)

Mi(G
(n)
3,1) > Mi(G

(n)
3,2 ) > Mi(G

(n)
3,3) > Mi(G

(n)
3,4 ) > · · ·

Let U ′3
n be the set of graphs, which there are at least one vertex is at distant ≥ 2 from

C3. Obviously, U ′3
n = U3

n − SΔ. By Lemma 2.1 and Lemma 2.2, we know, graphs with

the largest Zagreb indices in U ′3
n must be made from attaching K1,l(l ≥ 1) to one of the

pendent vertices of Si,j,k(i, j ≥ 0, k ≥ 1), denote the graph as Ri,j,k,l, is showed in Figure

8.

.......

.......

...
...

.......} }{
︷ ︸︸ ︷ }

i

j

k − 1

l

k − 1

Ri,j,k,l
R0,0,k,1

Figure 8.

Similar to the proof of Theorem 4.3, we have

Theorem 4.6. Let i ≥ j ≥ 1, i+j+k+l = n−3, we have Mi(Ri+1,j−1,k,l) > Mi(Ri,j,k,l)

(for i = 1, 2). In particular, Mi(Ri+j,0,k,l) > Mi(Ri,j,k,l) (for i = 1, 2).

Proof. At first, we can calculate out the Zagreb indices of Ri,j,k,l.

M1(Ri,j,k,l) = (i + 2)2 + (j + 2)2 + (k + 2)2 + (l + 1)2 + n − 4;

M2(Ri,j,k,l) = i(i + 2) + (j + 2)(i + j + 2) + (k + 2)(n − l) + (l + 1)(k + l + 2).

Therefore,

M1(Ri+1,j−1,k,l) = (i + 2 + 1)2 + (j + 2 − 1)2 + (k + 2)2 + (l + 1)2 + n − 4;

M2(Ri+1,j−1,k,l) = (i + 1)(i + 3) + (j + 1)(i + j + 2) + (k + 2)(n− l) + (l + 1)(k + l + 2).

Consequently, we have
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Δ1 = M1(Ri+1,j−1,k,l) − M1(Ri,j,k,l)
= 2(i − j + 1) > 0

Δ2 = M2(Ri+1,j−1,k,l) − M2(Ri,j,k,l)
= i − j + 1 > 0

The proof of Mi(Ri+j,0,k,l) > Mi(Ri,j,k,l) is similar.

So the proof of theorem is completed.

Theorem 4.7. Let i ≥ 1, we have Mi(Ri,0,k,l) < Mi(R0,0,i+k,l)(i = 1, 2).

For brevity, we shall denote R0,0,k,1 simply as Rk,1, or denote it by G
′(n)
3,1 .

Theorem 4.8. Let n ≥ 9, we have Mi(G
(n)
3,3) < Mi(Rk,1) < Mi(G

(n)
3,2)(i = 1, 2).

Proof. By simple calculation, we have

M1(G
(n)
3,2 ) = n2 − 3n + 14, M2(G

(n)
3,2) = n2 − n + 7;

M1(Rk,1) = n2 − 3n + 12, M2(Rk,1) = n2 − n + 4.

Therefore, Mi(G
(n)
3,3 ) < Mi(Rk,1) < Mi(G

(n)
3,2) hold.

Theorem 4.9. Let n ≥ 6, l ≥ 2, k + l + 3 = n, we have we have Mi(G
(n)
3,4) >

Mi(Rk,l)(i = 1, 2).

Proof. From the definition of Rk,l and k + l + 3 = n, we have M1(Rk,l) = 2 ×

l2 + (4 − 2n)l + n2 − n + 6, M2(Rk,l) = l2 − nl + (n − 3)2 + 6(n − 1). Let f(l) =

2 × l2 + (4 − 2n)l + n2 − n + 6, g(l) = l2 − nl + (n − 3)2 + 6(n − 1), (l ∈ [2, n − 4]),

then max{f(l)} = {f(2), f(n − 4)} = n2 − 5n + 22 (since f(2) = f(n − 4)), and

max{g(l)} = {g(2), g(n− 4)} = {n2 − 2n + 7, n2 − 4n + 19} = n2 − 2n + 7.

Therefore, Mi(G
(n)
3,4 ) > Mi(Rk,l)(i = 1, 2) hold.

So the proof of theorem is completed.

Theorem 4.10. Let n ≥ 9, the Zagreb indices order in U3
n is(i = 1, 2)

Mi(G
(n)
3,1 ) > Mi(G

(n)
3,2 ) > Mi(G

′(n)
3,1 ) > Mi(G

(n)
3,3 ) > Mi(G

(n)
3,4 ) > Mi(Rk,l) > · · ·

Let G
(n)
4,3 be the graph obtained from a C4 by attaching n − 5 leaves to one of its

vertices and another one leaf to the vertex which 2-distant to the n − 3-degree vertex

of C4. By the definition, we can work out the Zagreb indices of G
(n)
4,3 easily, M1(G

(n)
4,3 ) =

n2 − 5n + 22 = M1(G
(n)
4,2 ), M2(G

(n)
4,3 ) = n2 − 4n + 18.

Similar to Theorem 4.10, we have

Theorem 4.11. Let n ≥ 6, the Zagreb indices order in U4
n is

(i) M1(G
(n)
4,1) > M1(G

(n)
4,2 ) = M1(G

(n)
4,3 ) > M1(G

′(n)
4,1 ) > · · ·
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(ii) M2(G
(n)
4,1 ) > M2(G

(n)
4,2 ) > M1(G

′(n)
4,1 ) > M2(G

(n)
4,3) > · · ·

where G
′(n)
4,1 is obtained from by attaching K2 to one of the pendent edges of G

(n−1)
4,1 .

Theorem 4.12. Let n ≥ 6, we have

(i) M1(G
(n)
4,1) = M1(G

′(n)
3,1 );

(ii) M1(G
(n)
3,4 ) > M1(G

(n)
4,2 );

(iii) M2(G
(n)
3,4 ) > M2(G

(n)
4,1 ).

Proof.By simple calculation, we have M1(G
(n)
4,1 ) = n2−3n+12, M2(G

(n)
4,1) = n2−2n+8,

M2(G
(n)
4,2 ) = n2 − 3n + 13.

Then the results is obvious.

Combining all the results, we shall get the upper bounds of unicyclic graphs with

respect to Zagreb indices.

Theorem 4.13. Let n ≥ 6, we have

(i) M1(G
(n)
3,1) > M1(G

(n)
3,2 ) > M1(G

′(n)
3,1 ) = M1(G

(n)
4,1 ) > M1(G

(n)
3,3) > M1(G

(n)
3,4 ) > · · ·

(ii) M2(G
(n)
3,1 ) > M2(G

(n)
3,2 ) > M2(G

′(n)
3,1 ) > M2(G

(n)
3,3) > M2(G

(n)
3,4 ) > · · ·

5 The lower bounds of the unicyclic graphs with re-

spect to Zagreb indices

Given integers n and k with 3 ≤ k ≤ n − 1, the lollipop Ln,k is the unicyclic graph of

order n obtained from the two vertex disjoint graphs Ck and Pn−k by adding an edge

joining a vertex of Ck to an endvertex of Pn−k.

Theorem 5.1([8,9]). The cycle Cn is the unique graph with the smallest Zagreb in-

dices M1 and M2 among all unicyclic graphs with n vertices.

Theorem 5.2. Let G ∈ Uk
n , 3 ≤ k ≤ n − 1 be an arbitrary unicyclic graph, then

Mi(G) ≥ Mi(Ln,k)(i = 1, 2), with equality if and only if G ∼= Ln,k.

Proof. By transformation γ, δ and Lemma 3.1, Lemma 3.2, the conclusion is obvious.

Theorem 5.3. Let G ∈ Un − Cn be an arbitrary unicyclic graph, then Mi(G) >

Mi(Ln,k)(i = 1, 2), k ∈ {3, · · · , n − 1}.

Proof. By the definition of Ln,k, we have M1(Ln,k) = 4n + 2, M2(Ln,k) = 4n + 4.

Consequently, the values of M1 and M2 are the function of n, not related to k, and we

know Mi(Ln,k) = Mi(Ln,l), which k ∈ {3, · · · , n−1} and k �= l. That’s to say, if G �∼= Cn,

then Mi(G) > Mi(Ln,k) for k ∈ {3, · · · , n − 1}.
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So the proof of theorem is completed.
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