MATCH MATCH Commun. Math. Comput. Chem. 58 (2007) 657-662

Communications in Mathematical
and in Computer Chemistry ISSN 0340 - 6253

ON THE LARGEST EIGENVALUE OF THE
DISTANCE MATRIX OF A TREE

Bo Zhou

Department of Mathematics, South China Normal University,
Guangzhou 510631, P. R. China
e-mail: zhoubo@scnu.edu.cn

(Received January 24, 2007)

Abstract

The largest eigenvalue A; of the distance matrix of a tree has been proposed as
a structure—descriptor. We provide upper and lower bounds for A; in terms of the
number of vertices, the sum of the squares of the distances between all unordered

pairs of vertices, or the Wiener index of the tree.

INTRODUCTION

Let G be a connected graph with vertex set {1,2,...,n}. The distance between
vertices ¢ and j of G, denoted by d;;, is defined to be the length (i.e., the number of
edges) of the shortest path from i to j. The distance matrix of G, denoted by D(G)
is the n x n matrix with its (¢, j)-entry equal to d;;, 4,7 = 1,2,...,n. Note that
di =0,1=1,2,...,n.

The Wiener index W (@) of a connected graph G is the sum of distances between

all unordered pairs of vertices in the graph [1]. The hyper—Wiener index WW (G)
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can be written as WW(G) = 2W(G) + 15, where S is the sum of the squares of the

distances between all unordered pairs of vertices in the graph [2]. If T' is a tree on n

vertices, then [3]

(n—12n-3)<S< —(n+1)n’*(n—1) (1)

sl

with left (right) equality if and only if 7" is the n-vertex star S, (the n-vertex path
P,).

Let T be a tree with n > 2 vertices and let Ay, Ao, ..., A, be the eigenvalues
of D = D(T) arranged in non-increasing order. Merris [4] obtained an interlacing

inequality involving the distance and Laplacian eigenvalues of 7":

2 2 2
0>——>M>-—2>MA3>-- >~
H1 H2 Hn—1

> An7

where 11 > pio > -+ > -1 > 0 = p, are the Laplacian eigenvalues of 7', while the

Laplacian eigenvalues are connected with the Wiener index [5]:

n—1
1
W(T)=nd> —.
i=1 Hi
Balaban et al. [6] proposed the use of A; as a structure-descriptor, and it was suc-
cessfully used to make inferences about the extent of branching and boiling points of
alkanes [6, 7].
Let T be a tree with n > 3 vertices. Gutman and Medeleanu [7] obtained the

following bounds for A;:

1 n—1\¥" \/n—l n—1\¥"
\/§S+n(n71)< 1 ) <A< TSJrn( 1 > . (2)

‘We now provide new bounds for A; in terms of the number of vertices, the sum of the

squares of the distances between all unordered pairs of vertices, or the Wiener index

of the tree.

RESULTS

Let T be a tree with n > 2 vertices. The eigenvalues of D obey the following

relations [7]:

S A =0, 3)

i=1

Y AZ=25. (4)
i=1
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In addition, from [8, 9], we have
A1>0, A,;<0fori:2,...,n, (5)

det D =AAy--- A, = (=1)" Hn—1)2""2, (6)

Note that (5) follows also from (3) and Merris’ interlacing inequality.

We first present an upper bound for A; .

Theorem 1. Let T be a tree with n > 3 vertices. Then
2(n—1
A <2l (7)
n

=2

By the Cauchy—Schwartz inequality and taking into account (4), we have

Proof. By (3) and (5),

n 2 n
(Z |Ai|> <(n=1)3 Af=(n-1)(28 - A
i=2 =2
with equality if and only if [As| = -+ = |A,|. Now it follows that

AT < (n—1)(25 - AD),

ie.,
A<y 2=V
n
Suppose equality holds in the inequality above. Then |Ag| = --- = |A,]. By (3), (5)
and (6),
Ay =(n—1)2"72" Ay = ... = A, = =217/

and so (4) becomes
28 = (n —1)22%" 4 (n — 1)227Y" = (n — 1)n2> Y.

Note that 2S5 is an integer and n > 3. We have n = 4. There are two trees with 4
vertices: Sy and P, . By direct calculation, the eigenvalues of the distance matrix of
Sy are 24++/7,2—/7, -2, —2, and those of P are 2++/10,2—/10, —24++v/2, —2—v/2.
In either case, A; # 3v/2, which is a contradiction. Hence (7) follows. O

Let T be a tree with n > 3 vertices. By Theorem 1 and the upper bound for S in
(1), we have
(n—1)*n(n+1) - (n—1)n

A
1e 6 D

(8)



- 660 -

Now we give a lower bound for A .

Theorem 2. Let T be a tree with at least 3 vertices. Then
Ay > VS, (9)

Proof. From (3), (4) and (5), we have

YoMl Y ANl=S.

1<i<j<n 1<i<j<n
From (3) and (5), we have 2A; = i |A;], and so
=1

AN =3 NP +2 X [AfA] > 48,

i=1 1<i<j<n
iAC., A] > \/§ 0O
The upper bound (7) is always better than that in (2) when n > 4, while the

lower bound (9) is better than that in (2) if S > 2n(n — 1) (”ZI)Z/H.

In the following, more lower bounds for A; are given.
Theorem 3. Let T be a tree on n > 3 vertices. Then
Ay > (n—1)2172m, (10)

Proof By the arithmetic-geometric-mean inequality, we have

i‘ALl n 1/(n—1)
2 S (1A
n—1 7~ (H | 1|>

1=2

with equality only if [Ag| = -+ = |A,|. From Ay = f: |A;| and (6), we have
i=2

Al - (7’? _ 1)2n—2 1/(n—1) ‘
n—17" Al

Therefore
Ay > (n—1)2172m,

Using the same arguments as those in the proof of Theorem 1, equality in the in-

equality above cannot hold. O
Theorem 4. Let T be a tree on n > 3 vertices. Then

A 2w(). (1)
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Proof. Note that -
/\1:sup{VTﬂ :V#O} ,
vy
where v is a column vector and v’ is the transpose of v. By setting v = 1, the all
1’s vector, we have
Ay > %M/ (T)

and equality does not hold since D1 # A1 for a tree on n > 3 vertices. O

There is another way to prove Theorem 4. By Merris’ interlacing inequality and

the expression for the Wiener index in terms of the Laplacian eigenvalues, we have

Z|A|>ZZ

i=2 Hi—1
So Ay = 2W(T). Suppo%e that Ay = 2W(T). Then A; = —i fori=2,...,n. Note

W(T).

[10, p. 39] that H w; = n. In view of (6), we have A; = 2n(n — 1), a contradiction
to (8) for n > 3. Hence (11) follows.

Since W(T') > (n — 1)2, we have from Theorem 4 that A; > 2(n — 1) (1 - %) for
n>3.
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