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Abstract

The largest eigenvalue Λ1 of the distance matrix of a tree has been proposed as

a structure–descriptor. We provide upper and lower bounds for Λ1 in terms of the

number of vertices, the sum of the squares of the distances between all unordered

pairs of vertices, or the Wiener index of the tree.

INTRODUCTION

Let G be a connected graph with vertex set {1, 2, . . . , n} . The distance between

vertices i and j of G, denoted by dij, is defined to be the length (i.e., the number of

edges) of the shortest path from i to j . The distance matrix of G, denoted by D(G)

is the n × n matrix with its (i, j)-entry equal to dij, i, j = 1, 2, . . . , n . Note that

dii = 0, i = 1, 2, . . . , n .

The Wiener index W (G) of a connected graph G is the sum of distances between

all unordered pairs of vertices in the graph [1]. The hyper–Wiener index WW (G)
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can be written as WW (G) = 1
2
W (G) + 1

2
S, where S is the sum of the squares of the

distances between all unordered pairs of vertices in the graph [2]. If T is a tree on n

vertices, then [3]

(n − 1)(2n − 3) ≤ S ≤ 1

12
(n + 1)n2(n − 1) (1)

with left (right) equality if and only if T is the n-vertex star Sn (the n-vertex path

Pn) .

Let T be a tree with n ≥ 2 vertices and let Λ1, Λ2, . . . , Λn be the eigenvalues

of D = D(T ) arranged in non-increasing order. Merris [4] obtained an interlacing

inequality involving the distance and Laplacian eigenvalues of T :

0 > − 2

μ1

≥ Λ2 ≥ − 2

μ2

≥ Λ3 ≥ · · · ≥ − 2

μn−1

≥ Λn ,

where μ1 ≥ μ2 ≥ · · · ≥ μn−1 > 0 = μn are the Laplacian eigenvalues of T , while the

Laplacian eigenvalues are connected with the Wiener index [5]:

W (T ) = n
n−1∑
i=1

1

μi

.

Balaban et al. [6] proposed the use of Λ1 as a structure–descriptor, and it was suc-

cessfully used to make inferences about the extent of branching and boiling points of

alkanes [6, 7].

Let T be a tree with n ≥ 3 vertices. Gutman and Medeleanu [7] obtained the

following bounds for Λ1:√
1

2
S + n(n − 1)

(
n − 1

4

)2/n

< Λ1 <

√
n − 1

2
S + n

(
n − 1

4

)2/n

. (2)

We now provide new bounds for Λ1 in terms of the number of vertices, the sum of the

squares of the distances between all unordered pairs of vertices, or the Wiener index

of the tree.

RESULTS

Let T be a tree with n ≥ 2 vertices. The eigenvalues of D obey the following

relations [7]:
n∑

i=1

Λi = 0 , (3)

n∑
i=1

Λ2
i = 2S . (4)
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In addition, from [8, 9], we have

Λ1 > 0, Λi < 0 for i = 2, . . . , n , (5)

det D = Λ1Λ2 · · ·Λn = (−1)n−1(n − 1)2n−2 . (6)

Note that (5) follows also from (3) and Merris’ interlacing inequality.

We first present an upper bound for Λ1 .

Theorem 1. Let T be a tree with n ≥ 3 vertices. Then

Λ1 <

√
2(n − 1)

n
S . (7)

Proof. By (3) and (5),

Λ1 =
n∑

i=2

|Λi| .

By the Cauchy–Schwartz inequality and taking into account (4), we have(
n∑

i=2

|Λi|
)2

≤ (n − 1)
n∑

i=2

Λ2
i = (n − 1)(2S − Λ2

1)

with equality if and only if |Λ2| = · · · = |Λn| . Now it follows that

Λ2
1 ≤ (n − 1)(2S − Λ2

1) ,

i.e.,

Λ1 ≤
√

2(n − 1)

n
S .

Suppose equality holds in the inequality above. Then |Λ2| = · · · = |Λn| . By (3), (5)

and (6),

Λ1 = (n − 1)21−2/n, Λ2 = · · · = Λn = −21−2/n ,

and so (4) becomes

2S = (n − 1)222−4/n + (n − 1)22−4/n = (n − 1)n22−4/n .

Note that 2S is an integer and n ≥ 3 . We have n = 4 . There are two trees with 4

vertices: S4 and P4 . By direct calculation, the eigenvalues of the distance matrix of

S4 are 2+
√

7, 2−√
7,−2,−2, and those of P4 are 2+

√
10, 2−√

10,−2+
√

2,−2−√
2 .

In either case, Λ1 �= 3
√

2, which is a contradiction. Hence (7) follows. �

Let T be a tree with n ≥ 3 vertices. By Theorem 1 and the upper bound for S in

(1), we have

Λ1 <

√
(n − 1)2n(n + 1)

6
<

(n − 1)n

2
. (8)
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Now we give a lower bound for Λ1 .

Theorem 2. Let T be a tree with at least 3 vertices. Then

Λ1 >
√

S . (9)

Proof. From (3), (4) and (5), we have

∑
1≤i<j≤n

|Λi||Λj| > | ∑
1≤i<j≤n

ΛiΛj| = S .

From (3) and (5), we have 2Λ1 =
n∑

i=1
|Λi|, and so

4Λ2
1 =

n∑
i=1

|Λi|2 + 2
∑

1≤i<j≤n

|Λi||Λj| > 4S ,

i.e., Λ1 >
√

S . �

The upper bound (7) is always better than that in (2) when n ≥ 4, while the

lower bound (9) is better than that in (2) if S > 2n(n − 1)
(

n−1
4

)2/n
.

In the following, more lower bounds for Λ1 are given.

Theorem 3. Let T be a tree on n ≥ 3 vertices. Then

Λ1 > (n − 1)21−2/n . (10)

Proof By the arithmetic–geometric–mean inequality, we have

n∑
i=2

|Λi|
n − 1

≥
(

n∏
i=2

|Λi|
)1/(n−1)

with equality only if |Λ2| = · · · = |Λn| . From Λ1 =
n∑

i=2
|Λi| and (6), we have

Λ1

n − 1
≥

[
(n − 1)2n−2

Λ1

]1/(n−1)

.

Therefore

Λ1 ≥ (n − 1)21−2/n .

Using the same arguments as those in the proof of Theorem 1, equality in the in-

equality above cannot hold. �

Theorem 4. Let T be a tree on n ≥ 3 vertices. Then

Λ1 >
2

n
W (T ) . (11)

- 660 -



Proof. Note that

Λ1 = sup

{
vT Dv

vTv
: v �= 0

}
,

where v is a column vector and vT is the transpose of v . By setting v = 1, the all

1’s vector, we have

Λ1 ≥ 2

n
W (T )

and equality does not hold since D1 �= Λ11 for a tree on n ≥ 3 vertices. �

There is another way to prove Theorem 4. By Merris’ interlacing inequality and

the expression for the Wiener index in terms of the Laplacian eigenvalues, we have

n∑
i=2

|Λi| ≥ 2
n∑

i=2

1

μi−1

=
2

n
W (T ) .

So Λ1 ≥ 2
n
W (T ). Suppose that Λ1 = 2

n
W (T ). Then Λi = − 2

μi−1
for i = 2, . . . , n. Note

[10, p. 39] that
n−1∏
i=1

μi = n. In view of (6), we have Λ1 = 1
2
n(n − 1), a contradiction

to (8) for n ≥ 3. Hence (11) follows.

Since W (T ) ≥ (n − 1)2, we have from Theorem 4 that Λ1 > 2(n − 1)
(
1 − 1

n

)
for

n ≥ 3 .
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trees and their relation, Bull. Inst. Combin. Appl. 40 (2004) 23–30.

[4] R. Merris, The distance spectrum of a tree, J. Graph Theory 14 (1990) 365–369.

[5] B. Mohar, Eigenvalues, diameter, and mean distance in graphs, Graphs Combin.

7 (1991) 53–64.

[6] A. T. Balaban, D. Ciubotariu, M. Medeleanu, Topological indices and real num-

ber vertex invariants based on graph eigenvalues or eigenvectors, J. Chem. Inf.

Comput. Sci. 31 (1991) 517–523.

- 661 -



[7] I. Gutman, M. Medeleanu, On the structure–dependence of the largest eigenvalue

of the distance matrix of an alkane, Indian J. Chem. A 37 (1998) 569–573.
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