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Abstract 

An integral method is adopted herein in order to extract the Rydberg parameter from 

those of the generalized Morse potential energy function. By imposing equal area above 

the potential energy curves from equilibrium to dissociation, the parameter relationship is 

suitable for the case of large bond-stretching. This integral approach is significantly 

different from the double or higher derivative and the series expansion approach, which 

gives acceptable parameter relations only for the case of small bond-stretching. The 

obtained relations enable parameters of the more flexible function, the generalized Morse 

potential, to be converted into those of the Rydberg parameters for application in 2-body 

interaction of multi-body systems. 

 

1. Introduction 

Unlike the bridging parameter which describes the difference between various potential 

energy functions [1-4], parameter relationships among different potential energy 

functions are useful for converting parameters from a preferred potential energy function 

into parameters of another function, which is adopted in some molecular mechanics and 

chemical physics softwares. Earlier attempts of obtaining the parameter relationships 
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have been largely confined to the philosophy of imposing equal curvature at the minimum 

well depth of the potential energy curves [5-10]. Although these relations are valid for 

small bond-stretching, the error between both potential curves become more pronounced 

for the bond length range within 1.2R<r<2.4R. 

 

In this paper, the imposition of equal curvature at the minimum well-depth is removed to 

make way for a criterion more appropriate in large bond-stretching. Specifically, integral 

of both functions are taken from the equilibrium state to dissociated state. Thereafter, 

both integrals are equated so that the areas above both potential energy curves are equal 

for ∞≤≤ rR . Hence the error is effectively minimized. See Fig.1.  

 

 

 
 

Fig. 1. Similarity and dissimilarity between the parameter relations for small and large 
bond stretching. 
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In this paper, we show the advantage of the integral approach over the derivative 

approach for obtaining the Rydberg parameter using those of the Generalized Morse 

potential energy function. 

 

2. Analysis 

The Rydberg potential energy function [11,12] is given as 

( ) ρρ a
Ryd eaDU −+−= 1  (1) 

where D  is the dissociation energy while the parameter a  controls the shape of the 

potential energy curve. The variable ρ  is defined either as 

Rr −=ρ  (2) 

or as 

R
Rr −

=ρ  
(3) 

where r  is the bond length upon stretching while R  is the bond length at equilibrium. 

These 2 definitions result in inverse length dimension or no dimension for a . In this 

paper, we select the definition described by Eq.(2). As a consequence of its good fit for 

covalent bonds, the Rydberg parameter has been adopted as the stretching energy 

between bonded atoms in many-body condensed matter systems [13-18] and also 

extended to more parameters [19-24]. Of equal importance in covalent bond energy 

description is the Morse potential function [25] 

( ))()(2 2 RrRr
M eeDU −−−− −= αα  (4) 

where α  is a parameter that influences the potential energy curve at large bond stretching. 

A more generalized Morse function was introduced by Biswas and Hamann [26] 

)exp()exp( 2211 rArAUGM λλ −+−=  (5) 

for describing the 2-body energy in condensed matter. Here iA  and iλ  control the 

potential energy curve’s magnitude and shape respectively, while subscripts 1=i  and 

2=i  correspond to the repulsive and attractive terms respectively. One can see that there 

are 4 parameters in the original generalized Morse function ( 2121 ,,, λλAA ) and in its 

equivalent form ( 21 ,,, λλRD ), but only 3 parameters exist in the Rydberg function 
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( aRD ,, ), thereby implying the higher flexibility of the generalized Morse function for 

curve-fitting, especially for long range interaction. This forms the justification for 

converting the generalized Morse parameters into those of Rydberg function for large 

bond-stretching in softwares (e.g. [13-18]). 

 

 Since the dimensions of 1λ  and 2λ  are reciprocal to the length dimension, we have 

selected Eq.(2) as the definition of ρ  in order to set a common unit for a , 1λ  and 2λ . 

Imposing 

( ) DU RrGM −==  (6) 

and 
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(8) 

In this form the generalized Morse function is described by the dissociation energy D  

and the equilibrium bond length R , to make it more comparable to the Rydberg potential 

function. When both functions are expressed in non-dimensionalized energy )/( DU , the 

number of parameters on the right hand sides of Eqs.(1) and (8) are less by one. This 

simplification paves a way for the proceeding analysis. 

 

The Rydberg function integral 

∫∫
∞ −∞

+−=
0

)1(1 ρρ ρdeadrU
D

a

R Ryd  (9) 

can be obtained via performing integration by parts 

∫∫
∞ −−∞ − +⎟

⎠
⎞

⎜
⎝
⎛ +−=+

00

1)1( ρρρρ ρρρ dee
a

dea aaa  
(10)

to give 

a
drU

D R Ryd
21

−=∫
∞

. (11)

Writing Eq.(8) as 
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enables convenient integration to give 
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211
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D

. 
(13)

The negative signs in Eqs.(11) and (13) are due to the area being under the horizontal axis. 

Clearly, 

21

212
λλ
λλ
+

=a . 
(14)

To appreciate the large bond-stretching relationship, we obtain the small bond-stretching 

through equating the curves at the minimum well-depth. Hence equating 
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(15)

gives 

21λλ=a . (16)

 

3. Results and Discussion 

To exhibit the advantage of the parameter relationship for long range, i.e. Eq.(14), over 

the short range approach, i.e. Eq.(16), for large bond-stretching, we compare the 

generalized Morse curve with the Rydberg curve obtained using the short and long bond-

stretching assumptions. Based on the generalized Morse parameter furnished by Biswas 

and Hamann [26] whereby 
1

1 946668.3
−Ο

Α=λ  and 
1

2 191187.1
−Ο

Α=λ  for the 2-body 

interaction of silicon, we plot the generalized Morse curve using Eq.(8). The equilibrium 

bond length 
Ο

Α= 773872.2R  was obtained by solving Eq.(7). The Rydberg shape 

parameter was obtained as 
1

830032.1
−Ο

Α=a  using Eq.(14) and 
1

16823.2
−Ο

Α=a  using 

Eq.(16) for large and small bond-stretching respectively, so that the potential energy 

curve can be plotted using 
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Equations (8) and (17) enable the potential energy curves to be plotted as non-

dimensionalized bond energy against non-dimensionalized bond length, as shown in Fig. 

2. 
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Fig.2. The generalized Morse energy (circles) using Biswas-Hamann parameters [26] and 
the Rydberg approximation using the second derivative (bold curve) and the integral (fine 

curve) approaches. 
 

It can be seen that the parameter relation by second derivative approach, Eq.(16), gives 

good agreement for bond compression and small bond stretching. However, this 

approximation clearly overestimates the generalized Morse energy at larger internuclear 

distance. Although the Rydberg approximation by the integral approach underestimates 

the generalized Morse energy for bond compression and small bond stretching, it gives a 

better agreement with the latter for larger internuclear distance. 

 

To clearly show the advantage of the integral approach over the second derivative 

approach for large deformation, we calculate the error as 
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GMRyd UUerror −=  (18)

and plotted in non-dimensionalized terms, as depicted in Fig.3. 
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Fig.3. Error due to second derivative approach (bold curve) compared to the integral 

approach (fine curve). The negative portion is flipped up as dotted curve for comparison 
with the bold curve. 

 

It shows that the short range Rydberg approximation overestimates the generalized Morse 

curve regardless of the extent of bond stretching. The higher slope at the inflexion point 

for the short range Rydberg approximation shows that the Rydberg function gives a more 

solid-like long-range description. 

 

By replacing the imposition of equal curvature at the minimum well-depth with equal 

integral over the entire stretching range, a better long range approximation is achieved at 

the expense of the short range region. Specifically, the long range Rydberg approximation 

exhibits smaller curvature, and hence lower energy, near the minimum well-depth. 
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A cross-over occurs at the intermediate bond-length such that the areas between both 

curves for ∞≤≤ rR  are equal before and after the cross-over point, i.e. 

∫∫
∞

−=−
C GMRyd

C

R RydGM drUUdrUU )()(  (19)

where C  is the bond length denoting the cross-over point and RydU  refers to the long 

range Rydberg approximation. The cross-over point can be obtained by equating 

( ) ( )
CrRydCrGM UU
== = . (20)

Solving numerically for the present example using the Biswas-Hamann parameters for the 

generalized Morse function and the Rydberg parameter using the long range case gives 

)/( RC =1.557346. 

 

4. Conclusions 

The integral approach for obtaining relationships between the Rydberg and the 

generalized Morse parameters has been shown to be more reliable than the second 

derivative approach for large bond-stretching. The higher number of parameters for the 

generalized Morse function ( 2121 ,,, λλAA  or 21 ,,, λλRD ) than those of the Rydberg 

function ( aRD ,, ) implies a better long range bond-stretching data fitting for the former 

than the latter. This justifies the conversion of the generalized Morse parameters into 

Rydberg parameters for use as 2-body interaction energy description. Obviously, the 

choice of parameter conversion – whether Eq.(14) or Eq.(16) – depends on the extent of 

deformation. 

 

From a practical viewpoint within the context of molecular mechanics, the parameter a  

obtained by second derivative is useful for bond compression and small bond stretching 

while the same parameter obtained by integration is more appropriate for large bond 

stretching. The switching of the numerical value of parameter a  is analogous to the 

scaling factors 13.772 and 12 in the loose form of the Exponential-6 function for 

describing short and long range van der Waals energy in the DREIDING molecular 

mechanics software [27]. 
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