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Abstract
Promolecules are derived from a given skeleton by putting proligands (ligands with chi-

rality/achirality only) on its substitution positions. They are regarded as RS-stereoisomers,
which are characterized by the concepts of chirality, RS-stereogenicity, and sclerality. They
are categorized into five types by means of RS-stereoisomeric groups: Type I (chiral/RS-
stereogenic/ascleral), Type II (chiral/RS-astereogenic/scleral), Type III (chiral/RS-stereo-
genic/scleral), Type IV (achiral/RS-astereogenic/ascleral), and Type V (achiral/RS-stereoge-
nic/scleral). They are counted under the action of the maximum point subgroup, the max-
imum RS-permutation subgroup, and the maximum ligand-inversion subgroup, which are
subgroups of an RS-stereoisomeric group. After respective cycle indices with chirality
fittingness are derived for Type I to Type V, the itemized numbers of promolecules are ob-
tained as generating functions. The general method is applied to the enumerations of allene
derivatives and of methane derivatives. The results are verified in comparison with manual
enumerations reported previously.

1 Introduction
Chirality and stereogenicity have provided organic chemists with serious confusion, as found in
the history of the CIP (Cahn, Ingold and Prelog) system. In fact, the earlier version of the CIP
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system [1] was claimed to specify chirality, but the basis of the revised version [2] was changed
from chirality into stereogenicity. According to this revision, the IUPAC Recommendations
1996 [3] describes that an “chirality center” is the traditional example of the “stereogenic unit”.
This implies that “stereogenicity” includes “chirality” as a subsidiary concept within the con-
ventional terminology.

The term “chirality” corresponds to the relational term “enantiomerism” in a one-to-one
fashion, because two chiral compounds with mirror-image configurations are called “enan-
tiomers”. Because the term “diastereomerism” is defined as “stereoisomerism” other than
“enantiomerism” [3], we are forced to adopt the dichotomy between “enantiomerism” and
“diastereomerism”. As a result, we have to claim that the term “stereogenic” corresponds to
“stereoisomerism” so that the term “stereogenic unit” consist of “chirality center” (correspond-
ing “enantiomerism”) and remaining units corresponding to “diastereomerism”. To avoid the
confusion, however, we should demonstrate that “stereogenicity” and “chirality” are entirely
distinct concepts, although they are closely related.

We have analyzed the difference between “chirality” and “stereogenicity” by referring to
the difference between point groups and permutation groups [4–7]. As a result of this analysis,
we have pointed out that a source of the confusion is the conventional terminology on “diastere-
omers” and “stereogenic units”, both of which suffer from diverse connotation just as the term
“nonnatives” coming from the dichotomy between natives and nonnatives indefinitely refers to
all people other than natives.

As a project of avoiding the confusion, we have developed the concept of RS-stereoisomers
by using newly-defined stereoisograms [8–10]. Thereby, the RS-stereoisomeric relationship
have been divided into three relationships, i.e., enantiomeric, RS-diastereomeric, and holan-
timeric. Moreover, the three relationships have been clarified to correspond to three attributes,
i.e., chirality, RS-stereogenicity, and sclerality. By combining the three attributes, compounds
as RS-stereoisomers have been categorized into five types, i.e.,

Type I (chiral/RS-stereogenic/ascleral),
Type II (chiral/RS-astereogenic/scleral),
Type III (chiral/RS-stereogenic/scleral),
Type IV (achiral/RS-astereogenic/ascleral), and
Type V (achiral/RS-stereogenic/scleral).

The concept of stereoisograms has been discussed on a more mathematical basis [11, 12], where
an RS-stereoisomeric group has been defined to control stereoisograms of a given skeleton so
that its subgroups are categorized into five types in agreement of the existence of Types I to V.
Pseudoasymmetry [9] and prochirality [13] have been discussed by using stereoisograms.

As another project, on the other hand, we have developed the proligand method for counting
stereoisomers [14–16] by integrating the concepts of proligands and promolecules [17–19] with
the concept of sphericities [20]. The merit of Fujita’s proligand method in comparison with
Pólya’s theorem has been briefly discussed in an article of ours [21].

As a continuation of the two projects, the next problem to be solved is to obtain the numbers
of RS-stereoisomers of Types I to V on the basis of a given skeleton, where we rely on Fujita’s
proligand method. For this purpose, we will discuss the importance of three subgroups of the
RS-stereoisomeric group, i.e., the maximum point subgroup, the maximum RS-permutation sub-
group, and the maximum ligand-inversion subgroup. Under the action of the three subgroups,
we will enumerate compounds as RS-stereoisomers with itemization in regard to Types I to V.
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2 RS-Stereoisomers

2.1 RS-Stereoisomeric Groups
According to the concepts of proligands and promolecules [17–19], let us consider a pro-
molecule in which a set of proligands occupies a set of substitution positions of a given skeleton.
By following the treatment described in a previous article [12], suppose that the set of substitu-
tion positions is governed by a coset representation GCσ of a point group symmetry:

GCσ = GC +σGC, (1)

by an RS-permutation group:
GCσ̃ = GC + σ̃GC (2)

as well as by a ligand-inversion group:

GCÎ = GC + ÎGC. (3)

Totally, the set of substitution positions of the skeleton belongs to the following RS-stereoisomeric
group:

G = GC +σGC + σ̃GC + ÎGC. (4)

where the group GC corresponds to the maximum chiral subgroup of the point group, the el-
ement σ corresponds to a rotoreflection of the point group, the element σ̃ corresponds to a
permutation σ but does not provide the reflection of ligands, the element Î represents an op-
eration which provides the reflection of ligands but does not the reflection of the skeleton.
The point group GCσ (eq. 1) is specifically called the maximum point subgroup of the RS-
stereoisomeric group G (eq. 4). Because GCσ contains subgroups other than the subgroups of
GC, these subgroup are called point groups or more strictly achiral point groups, which charac-
terize point-group symmetries of derivatives, as discussed in general [20]. The RS-permutation
group GCσ̃ (eq. 2) is specifically called the maximum RS-permutation subgroup of the RS-
stereoisomeric group G (eq. 4), where subgroups of GCσ̃ other than the subgroups of GC are
called RS-permutation groups collectively. The ligand-inversion group GCÎ (eq. 3) is specif-
ically called the maximum ligand-inversion subgroup of the RS-stereoisomeric group G (eq.
4), where subgroups of GCÎ other than the subgroups of GC are called ligand-inversion groups
collectively.

By following the treatment described in Ref. [12], let us examine an allene skeleton shown
in Fig. 1. According to the discussion for deriving eq. 1, the four positions of the allene skeleton
of the D2d-point-group symmetry are governed by the coset representation (Cs\)D2d , which is
shown in eq. 5. This is the concrete form of the maximum point group GCσ for characterizing
allene derivatives. Each operation contained in the coset σd(1)D2 is characterized by an overbar,
which indicates the alternation of the chirality of a ligand accommodated in each position.

D2d = D2 +σd(1)D2

= {I,C2(3),C2(1),C2(2); σd(1),σd(2),S
3
4,S4}

∼ {(1)(2)(3)(4),(1 3)(2 4),(1 2)(3 4),(1 4)(2 3);
(1)(2 4)(3),(1 3)(2)(4),(1 4 3 2),(1 2 3 4)} (5)
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Figure 1: Convention for drawing allene derivatives

Let the symbol D2σ̃ denote the concrete form of the maximum RS-permutation subgroup
(eq. 2) in order to treat allene derivatives. The maximum RS-permutation subgroup is given by
eq. 6, in which the chirality of a ligand accommodated in each position does not altered during
each operation of the coset σ̃d(1)D2.

D2σ̃ = D2 + σ̃d(1)D2

= {I,C2(3),C2(1),C2(2); σ̃d(1), σ̃d(2), S̃
3
4, S̃4}

∼ {(1)(2)(3)(4),(1 3)(2 4),(1 2)(3 4),(1 4)(2 3);
(1)(2 4)(3),(1 3)(2)(4),(1 4 3 2),(1 2 3 4)}, (6)

where the tilde over each operation means no alternation of ligand chirality. It should be noted
that D2d and D2σ̃ correspond to the same permutation group if the alternation of ligand chirality
is not taken into consideration.

Let the symbol D2Î denote the concrete form of the maximum ligand-inversion group (eq.
3) in order to treat allene derivatives. The maximum ligand-inversion group is given by eq. 7, in
which the chirality of a ligand accommodated in each position is altered during each operation
of the coset ÎD2.

D2Î = D2 + ÎD2

= {I,C2(3),C2(1),C2(2); Î,Ĉ(3),Ĉ(1),Ĉ(2)}
∼ {(1)(2)(3)(4),(1 3)(2 4),(1 2)(3 4),(1 4)(2 3);

(1)(2)(3)(4),(1 3)(2 4),(1 2)(3 4),(1 4)(2 3)} (7)

where a circumflex (hat) over each operation means the alternation of ligand chirality. It should
be noted that the maximum chiral subgroup D2 and the coset ÎD2 in eq. 7 correspond to the
same permutation group if the alternation of ligand chirality is not taken into consideration.

By combining eqs. 5, 6, and 7, the concrete form of the RS-stereoisomeric group G for this
case is calculated as follows:

D2dσ̃Î = D2 +σd(1)D2 + σ̃d(1)D2 + ÎD2

= {I,C2(3),C2(1),C2(2); σd(1),σd(2),S
3
4,S4; σ̃d(1), σ̃d(2), S̃

3
4, S̃4; Î,Ĉ(3),Ĉ(1),Ĉ(2)}

∼ {(1)(2)(3)(4),(1 3)(2 4),(1 2)(3 4),(1 4)(2 3);
(1)(2 4)(3),(1 3)(2)(4),(1 4 3 2),(1 2 3 4);
(1)(2 4)(3),(1 3)(2)(4),(1 4 3 2),(1 2 3 4),
(1)(2)(3)(4),(1 3)(2 4),(1 2)(3 4),(1 4)(2 3)}. (8)
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2.2 Five RS-Stereoisomeric Types
In Ref. [12], we have proven the existence of five RS-stereoisomeric types by means of the ex-
istence of five types of subgroups contained in each RS-stereoisomeric group (G). The essence
of the proof is summarized in Table 1, where Types I to V are characterized by subgroups of
G or the corresponding factor groups. Each group listed in the column “maximum subgroup”
shows that a compound of each type (Type I–V) belongs to one of the subgroups of the maxi-
mum subgroup, where the subgroup contains operations other than the operations of GC. This
situation is more clearly demonstrated by referring to the groups of the column “factor group”.

Table 1: Five RS-Stereoisomeric Types

type characteristics maximum subgroup factor group
Type I chiral/RS-stereogenic/ascleral GCÎ

a {GC, ÎGC}
Type II chiral/RS-astereogenic/scleral GCσ̃

a {GC, σ̃GC}
Type III chiral/RS-stereogenic/scleral GC {GC}
Type IV achiral/RS-astereogenic/ascleral G b {GC, ÎGC, σ̃GC,σGC}
Type V achiral/RS-stereogenic/scleral Gσ

a {GC,σGC}
a Each promolecule belongs to a subgroup of the maximum subgroup, where the subgroup
contains elements other than those of GC.
b Each promolecule belongs to a subgroup of the maximum subgroup, where the subgroup
contains elements of the four cosets due to GC.

To exemplify the categorization into Types I to V, Fig. 2 illustrates representative allene
derivatives along with the corresponding subgroups of the RS-stereoisomeric group D2dσ̃Î (eq.
8), where the symbols A, B, X, and Y denote achiral proligands, while the pair of p and p
represents a pair of enantiomeric proligands.

The first compound (3) of Type I belongs to Cŝ = {I, Î}, which is a subgroup of the max-
imum ligand-inversion subgroup D2Î (eq. 7), other than the subgroups of the maximum chiral
subgroup D2. From the viewpoint of the conventional stereochemistry which puts emphasis
on point-group symmetries (e.g., D2d for the allene skeleton in this case), the compound (3)
belongs to C1. That is to say, it is chiral, more specifically speaking, being asymmetric. Thus,
we become able to perceive the ligand-inversion symmetry Cŝ of 3, only if we use the RS-
stereoisomeric group D2dσ̃Î (eq. 8) and its maximum ligand-inversion subgroup D2Î (eq. 7).

The second compound (4) of Type II belongs to Cs̃ = {I, σ̃d(1)}, which is a subgroup of
the maximum RS-permutation subgroup D2σ̃ (eq. 6), other than the subgroups of the maximum
chiral subgroup D2. If we take account of the usual point group (D2d), the compound (4) is
concluded to belong to C1. Thus, we are unable to perceive the RS-permutational symmetry Cs̃
of 4, until we adopt the RS-stereoisomeric group D2dσ̃Î (eq. 8) and its maximum RS-permutation
subgroup D2σ̃ (eq. 6).

The compound of Type III (5) belongs to C1 = {I}, which is a subgroup of the maximum
chiral subgroup D2. Even if we take account of the usual point group (D2d), the compound (5)
belongs to C1.

The compound of Type IV (6) belongs to Css̃ŝ {I,σd(1), σ̃d(1), Î}, which is a subgroup of
the RS-stereoisomeric group D2dσ̃Î (eq. 8), other than the subgroups of the maximum chiral
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Y Cŝ = {I, Î}
∼ {(1)(2)(3)(4),(1)(2)(3)(4)}
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p Cs̃ = {I, σ̃d(1)}
∼ {(1)(2)(3)(4),(1)(2 4)(3)}

Type III
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p C1 = {I}
∼ {(1)(2)(3)(4)}

Type IV
3

2
1

4

B 6
X
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X Css̃ŝ = {I,σd(1), σ̃d(1), Î}
∼ {(1)(2)(3)(4),(1)(2 4)(3),(1)(2 4)(3),(1)(2)(3)(4)}

Type V
3

2
1

4

B 7
p

A

p Cs = {I,σd(1)}
∼ {(1)(2)(3)(4),(1)(2 4)(3)}

Figure 2: Examples of allene derivatives of Types I–V. The symbols A, B, X, and Y denote
achiral proligands, while the pair of p and p represents a pair of enantiomeric proligands.

subgroup D2. It should be noted that the compound (6) belongs to Cs if we take account of the
usual point group (D2d).

The compound of Type V (7) belongs to Cs = {I,σd(1)} which is a subgroup of the maximum
point subgroup D2d , other than the subgroups of the maximum chiral subgroup D2. It should
be noted that the compound (7) belongs to Cs, even if we take account of the usual point group
(D2d).

It is worthwhile to mention the merit of the present treatment in comparison with the con-
ventional stereochemistry based on point-group symmetries only. So long as we rely on the
conventional stereochemistry, we are unable to recognize the distinction between 3 (Type I), 4
(Type II), and 5 (Type III), because they all belong to the point group C1. On the same line, we
cannot distinguish between 6 (Type IV) and 7 (Type V) by the conventional stereochemistry,
because both belong to the point group Cs. This type of incapability reveals an implicit way of
the conventional stereochemistry. If we exclude chiral proligands and take account of achiral
proligands only, the cases of 4 (Type II), 5 (Type III), and 7 (Type V) are excluded so that the
cases of 3 (Type I) and 6 (Type IV) remain to be perceived. In other words, only the remaining
cases of 3 (Type I) and 6 (Type IV) are main subjects of the conventional stereochemistry. As
a result, the consideration of chiral proligands is one of rather optional treatments, so that such
cases as 7 (Type V) are exceptionally treated as pseudoasymmetric cases. Moreover, such cases
as 4 (Type II) and 5 (Type III) are discussed case by case under ad hoc criteria which are devised
to harmonize them with the case of 3 (Type I).
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3 Formalization for Enumeration

3.1 Enumeration Under the Maximum Point Subgroup
Enumerations under point groups have been discussed under the names of Fujita’s USCI (unit-
subduced-cycle-index) approach [22–24] and Fujita’s proligand method [14–16]. The method-
ology of Fujita’s proligand method, in particular, should be mentioned briefly in order to work
on the present enumeration under RS-stereoisomeric groups.

Let us consider a skeleton having n substitution positions, which are governed by RS-
stereoisomeric group G. We first examine the maximum point subgroup GCσ. Suppose that
the action of an element of P of GCσ on the skeleton is represented as a product of d-cycles
(d = 1,2, . . . ,n), where the number of the d-cycles is equal to νd(P). According to Fujita’s
proligand method, the number of promolecules as enantiomers (i.e., achiral promolecules and
enantiomeric pairs of chiral ones) can be counted by using the following cycle index with chi-
rality fittingness (CI-CF):

CI-CF(GCσ;$d,bd)

=
1

|GCσ|

{
∑

P∈GC

bν1(P)
1 bν2(P)

2 · · ·bνn(P)
n + ∑

P∈σGC

$ν1(P)
1 $ν2(P)

2 · · ·$νn(P)
n

}
, (9)

where the symbol bd denotes a sphericity index (SI) for a hemispheric d-cycle contained in GC
and the symbol $d denotes an SI (ad) for a homospheric d-cycle (d: odd) contained in σGC
or an SI (cd) for an enantiospheric d-cycle (d: even) contained in σGC. This CI-CF has been
first noted in our previous article [14] in terms of Fujita’s proligand method. The concept of
sphericity has been originally developed by using orbits in Fujita’s USCI (unit-subduced-cycle-
index) approach, i.e., homospheric, enantiospheric, and hemispheric orbits [25, 20]. The same
CI-CF as eq. 9 has been alternatively obtained by means of Fujita’s USCI approach [20].

The n substitution positions of the skeleton accommodate n proligands selected from the
following warehouse:

X = {X1,X2, . . . ,Xn;p1,p2, . . . ,pn;p1,p2, . . .pn}, (10)

where X1, X2, etc. represent achiral proligands; p1, p2, etc. represent chiral proligands; and p1,
p2, etc. represent chiral proligands of opposite chirality. For the sake of simplicity, the subscript
n appearing in eq. 10 is tentatively selected to be equal to the number (n) of positions but it may
be freely varied according to enumeration problems to be solved without losing generality. The
selection of such substituents produces an isomer having θ1 of X1, θ2 of X2, · · · θn of Xn; θ′1
of p1, θ′2 of p2, · · · θ′n of pn; θ′′1 of p1, θ′′2 of p2, · · · θ′′n of pn, where these numbers satisfy the
following partition:

[θ] = θ1 +θ2 + · · ·+θn

+θ′1 +θ′1 + · · ·+θ′n
+θ′′1 +θ′′1 + · · ·+θ′′n = n. (11)

Then, each proligand is characterized by a molecular formula represented as follows:

Wθ = Xθ1
1 Xθ2

2 · · ·Xθn
n pθ′1

1 pθ′2
2 · · ·pθ′n

n pθ′′1
1 pθ′′2

2 · · ·pθ′′n
n . (12)
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Let the symbol Bθ denote the number of such isomers as having the molecular formula Wθ,
where each pair of enantiomers or each achiral promolecule is counted just once. By using
the CI-CF (eq. 9), Theorem 1 of Ref. [14] (or equivalently Theorem 2 of Ref. [16]) gives the
following generating function:

∑
[θ]

BθWθ = CI-CF(GCσ;$d,bd), (13)

where the summation is concerned with the partitions represented by [θ] (eq. 11) and the SIs are
replaced by the following ligand inventories:

ad = Xd
1 +Xd

2 + · · ·+Xd
n (14)

cd = Xd
1 +Xd

2 + · · ·+Xd
n +2pd/2

1 pd/2
1 +2pd/2

2 pd/2
2 + · · ·+2pd/2

n pd/2
n (15)

bd = Xd
1 +Xd

2 + · · ·+Xd
n +pd

1 +pd
2 + · · ·+pd

n +pd
1 +pd

2 + · · ·+pd
n. (16)

The skeleton having n substitution positions described above can be considered to be gov-
erned by the maximum chiral subgroup GC of the group GCσ. Thereby, the following CI-CF is
obtained:

CI-CF(GC;bd) =
1

|GC| ∑
P∈GC

bν1(P)
1 bν2(P)

2 · · ·bνn(P)
n . (17)

Let the symbol βθ denote the number of such isomers as having Wθ, where achiral isomers
and two enantiomers of each pair are counted separately. By using the CI-CF (eq. 17), Theorem
3 of Ref. [16] gives the following generating function:

∑
[θ]

βθWθ = CI-CF(GC;bd), (18)

where each SI (bd) is replaced by the ligand inventory represented by eq. 16 and the molecular
formula (Wθ) is represented by eq. 12.

Achiral promolecules (Types IV and V) are counted by means of the following CI-CF:

CI-CF(IV/V)(GCσ;$d) = 2CI-CF(GCσ;$d, ,bd)−CI-CF(GC;bd) (19)

=
1

|GC| ∑
P∈σGC

$ν1(P)
1 $ν2(P)

2 · · ·$νn(P)
n , (20)

where we use the relationship |GCσ| = 2|GC|.
Let the symbol B(IV/V)

θ denote the number of such achiral isomers as having Wθ. By using
the CI-CF (eq. 20), Theorem 4 (eq. 50) of Ref. [16] gives the following generating function:

∑
[θ]

B(IV/V)
θ Wθ = CI-CF(IV/V)(GCσ;$d), (21)

where each SI ($d , i.e. ad or cd) is replaced by the ligand inventories represented by eqs. 14 and
15 and the molecular formula (Wθ) is represented by eq. 12. Note that each achiral compound
is counted just once.

Chiral isomers (Types I, II, and III) are counted by means of the following CI-CF:

CI-CF(I/II/III)(GCσ;$d,bd)
= CI-CF(GCσ;$d,bd)−CI-CF(IV/V)(GCσ;$d,bd) (22)

=
1

|GCσ|

{
∑

P∈GC

bν1(P)
1 bν2(P)

2 · · ·bνn(P)
n − ∑

P∈σGC

$ν1(P)
1 $ν2(P)

2 · · ·$νn(P)
n

}
, (23)
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where each pair of enantiomers is counted just once. By comparison between eq. 9 and eq. 23,
we find a remarkable correspondence between them, where the second summations alter their
plus-minus signs.

In order to count allene derivatives by starting from the skeleton (1), eqs. 9 and 17 are
applied to the cycle structures appearing in eq. 5, so that we obtain the following CI-CFs:

CI-CF(D2d;$d,bd) =
1
8
(b4

1 +3b2
2 +2a2

1c2 +2c4) (24)

CI-CF(D2;bd) =
1
4
(b4

1 +3b2
2). (25)

Thereby, eqs. 20 and 23 for allene derivatives take the following concrete forms:

CI-CF(IV/V)(D2d;$d) =
1
2
(a2

1c2 + c4) (26)

CI-CF(I/II/III)(D2d;$d,bd) =
1
8
(b4

1 +3b2
2 −2a2

1c2 −2c4). (27)

3.2 Enumeration Under the Maximum RS-Permutation Subgroup
In a previous paper [11], we have reported enumerations under the RS-permutation groups
by Fujita’s USCI approach, where itemization into Types I to V was conducted manually. In
the present article, we apply Fujita’s proligand method to such enumeration problems, where
we focus on combinatorial itemization into Types I to V. Thus, let us examine the skeleton
having n substitution positions under the maximum RS-permutation subgroup GCσ̃. Suppose
that an element of P (or P′) of GCσ̃ is represented as a product of d-cycles (d = 1,2, . . . ,n),
where the number of the d-cycles is equal to νd(P) (or νd(P′)). The number of promolecules
as RS-diastereomers (i.e., RS-astereogenic promolecules and RS-diastereomeric pairs of RS-
stereogenic ones) can be counted by using the following cycle index with chirality fittingness
(CI-CF):

CI-CF(GCσ̃;bd)

=
1

|GCσ̃|

{
∑

P∈GC

bν1(P)
1 bν2(P)

2 · · ·bνn(P)
n + ∑

P′∈σ̃GC

bν1(P′)
1 bν2(P′)

2 · · ·bνn(P′)
n

}
, (28)

where only hemispheric cycles are taken into consideration because of no alternation of chi-
ralities. This means that two enantiomers of each pair as well as each achiral compound are
counted separately.

On the same line as the dichotomy of chirality/achirality has derived eq. 20 from eq. 9, the
dichotomy of RS-stereogenicity/RS-astereogenicity converts the CI-CF (eq. 28) into the follow-
ing CI-CF for counting promolecules of Type II and IV (RS-astereogenic promolecules):

CI-CF(II/IV)(GCσ̃;bd)
= 2CI-CF(GCσ̃;bd)−CI-CF(GC;bd) (29)

=
1

|GC| ∑
P′∈σ̃GC

bν1(P′)
1 bν2(P′)

2 · · ·bνn(P′)
n . (30)

Note that eq. 30 counts two enantiomers of each pair separately, although it counts each RS-
astereogenic promolecule just once. Thus, A3p and A3p, for example, are not equalized under
the action of GCσ̃.
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It follows that the CI-CF for counting promolecules of Type I, III, and V (RS-stereogenic
promolecules) is represented as follows:

CI-CF(I/III/V)(GCσ̃;bd)
= CI-CF(GCσ̃;bd)−CI-CF(II/IV)(GCσ̃;bd) (31)

=
1

|GCσ̃|

{
∑

P∈GC

bν1(P)
1 bν2(P)

2 · · ·bνn(P)
n − ∑

P′∈σ̃GC

bν1(P′)
1 bν2(P′)

2 · · ·bνn(P′)
n

}
. (32)

As found easily, eq. 28 and eq. 32 correspond to each other, where the second summations alter
their plus-minus signs.

For the purpose of counting allene derivatives under the maximum RS-permutation group,
eq. 28 is applied to the cycle structures appearing in eq. 6, so that we obtain the following
CI-CF:

CI-CF(D2σ̃;bd) =
1
8
(b4

1 +3b2
2 +2b2

1b2 +2b4) (33)

Thereby, eqs. 30 and 32 for allene derivatives take the following concrete forms:

CI-CF(II/IV)(D2σ̃;bd) =
1
2
(b2

1b2 +b4) (34)

CI-CF(I/III/V)(D2σ̃;bd) =
1
8
(b4

1 +3b2
2 −2b2

1b2 −2b4). (35)

3.3 Enumeration Under the Maximum Ligand-Inversion Subgroup
Let us examine the skeleton having n substitution positions under the maximum ligand-inversion
subgroup GCÎ . Suppose that an element of P (or P′′) of GCÎ is represented as a product of d-
cycles (d = 1,2, . . . ,n), where the number of the d-cycles is equal to νd(P) (or νd(P′′)). The
number of promolecules as holantimers (i.e., ascleral promolecules and holantimeric pairs of
scleral ones) can be counted by using the following cycle index with chirality fittingness (CI-
CF):

CI-CF(GCĨ;$d,bd)

=
1

|GCĨ|

⎧⎨⎩ ∑
P∈GC

bν1(P)
1 bν2(P)

2 · · ·bνn(P)
n + ∑

P′′∈ĨGC

$ν1(P′′)
1 $ν2(P′′)

2 · · ·$νn(P′′)
n

⎫⎬⎭ . (36)

Because the maximum ligand-inversion subgroup (GCĨ) does not contain such operations that
cause equivalence of two enantiomers, eq. 36 counts two enantiomers of each pair separately.

On the same line as the dichotomy of chirality/achirality has derived eq. 20 from eq. 9,
the dichotomy of sclerality/asclerality converts the CI-CF (eq. 36) into the following CI-CF for
counting promolecules of Type I and IV (ascleral promolecules):

CI-CF(I/IV)(GCĨ;$d)
= 2CI-CF(GCĨ;$d,bd)−CI-CF(GC;bd) (37)

=
1

|GC| ∑
P′′∈ĨGC

$ν1(P′′)
1 $ν2(P′′)

2 · · ·$νn(P′′)
n . (38)
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This equation means that Type I (chiral/RS-stereogenic) and Type IV (achiral/RSastereogenic)
are counted all together from the viewpoint of asclerality, where it counts each ascleral pro-
molecule just once. Note that eq. 38 counts two enantiomers of each pair (Type I) or each
achiral promolecule (Type IV) separately from the viewpoint of chirality/achirality.

It follows that the CI-CF for counting promolecules of Types II, III, and V (scleral pro-
molecules) is represented as follows:

CI-CF(II/III/V)(GCĨ;$d,bd)

= CI-CF(GCĨ;$d,bd)−CI-CF(I/IV)(GCĨ;$d) (39)

=
1

|GCĨ|

⎧⎨⎩ ∑
P∈GC

bν1(P)
1 bν2(P)

2 · · ·bνn(P)
n − ∑

P′′∈ĨGC

$ν1(P′′)
1 $ν2(P′′)

2 · · ·$νn(P′′)
n

⎫⎬⎭ . (40)

Refer to the note described just after eq. 36.
In order to count allene derivatives, eq. 36 is applied to the cycle structures appearing in eq.

7, so that we obtain the following CI-CF:

CI-CF(D2Î;$d,bd) =
1
8
(b4

1 +3b2
2 +a4

1 +3c2
2). (41)

Thereby, eqs. 38 and 40 for allene derivatives take the following concrete forms:

CI-CF(I/IV)(D2Î;$d) =
1
4
(a4

1 +3c2
2) (42)

CI-CF(II/III/V)(D2Î;$d,bd) =
1
8
(b4

1 +3b2
2 −a4

1 −3c2
2). (43)

3.4 Itemization into Five Types
3.4.1 Evaluation of Type IV

By inspection of eqs. 20, 30, and 38, we find as the next task the evaluation of CI-CF for
counting promolecules of Type IV which are involved commonly. This task cannot be solved in
general so long as we have not obtained the full information on the group-subgroup relationship
of each RS-stereoisomeric group. However, we can find such a CI-CF through trial and error,
as shown below in special cases such as an allene skeleton and a tetrahedral skeleton.

Let us examine whether each products of SIs for P in eq. 20 (i.e., $ν1(P)
1 $ν2(P)

2 · · ·$νn(P)
n )

causes pseudoasymmetry or not. If the element P fixes a pseudoasymmetric promolecule (Type
V), the product of SIs is replaced by the modified sum of products, ∑φ $

ν1φ(P)
1 $

ν2φ(P)
2 · · ·$νnφ(P)

n ,
so that the modified sum is not concerned with the pseudoasymmetric promolecule. Thereby,
we obtain the following CI-CF:

CI-CF(IV)(GCσ;$d) =
1

|GC| ∑
P∈σGC

∑
φ

$
ν1φ(P)
1 $

ν2φ(P)
2 · · ·$νnφ(P)

n , (44)

which counts promolecules of Type IV (achiral, RS-astereogenic, and ascleral).
For example, because one of the products of SIs (a2

1c2) in eq. 26 is related to a pseudoasym-
metric promolecule (e.g., 7), we should select a2

1a2 and a2c2, which contain a duplicated com-
ponent represented by a2

2. This means that the product a2
1c2 is replaced by a2

1a2 + a2c2 −a2
2 so
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as to exclude contamination by pseudoasymmetry. The other product of SIs (c4) is not related
to pseudoasymmetry. Hence, eq. 44 for this case takes the following form:

CI-CF(IV)(D2d;$d) =
1
2
(a2

1a2 +a2c2 −a2
2 + c4). (45)

3.4.2 Evaluation of Other Types

To evaluate the number of promolecules of Type V, the subtraction of eq. 44 from 20 gives the
following equation:

CI-CF(V)(GCσ;$d)
= CI-CF(IV/V)(GCσ;$d)−CI-CF(IV)(GCσ;$d) (46)

=
1

|GC| ∑
P∈σGC

$ν1(P)
1 $ν2(P)

2 · · ·$νn(P)
n − 1

|GC| ∑
P∈σGC

∑
φ

$
ν1φ(P)
1 $

ν2φ(P)
2 · · ·$νnφ(P)

n . (47)

Obviously, eq. 47 is concerned with achiral promolecules only, each of which is counted just
once.

By the subtraction of eq. 45 from eq. 26, we can calculate eq. 47 for allene derivatives as
follows:

CI-CF(V)(D2d;$d) =
1
2
(a2

1c2 + c4)− 1
2
(a2

1a2 +a2c2 −a2
2 + c4)

=
1
2
(a2

1c2 −a2
1a2)− 1

2
(a2c2 −a2

2). (48)

The last side of eq. 48 can be confirmed by considering the transitivity of the pseudoasym-
metric promolecule (7). The product a2

1c2 counts unnecessary promolecules (ABX2, AX3, and
X4) in which the pair p/p of 7 is replaced by X2 (two achiral proligands of the same kind).
Because the unnecessary promolecules can be correlated to the product a2

1a2, they are excluded
by means of the subtraction a2

1c2 − a2
1a2. On the other hand, the product a2

1c2 also contains
unnecessary promolecules in which the AB of 7 is replaced by A2 (two achiral proligands of
the same kind). The latter promolecules can be correlated to the subtraction of the products
a2c2 − a2

2, where the subtracting product a2
2 corresponds to unnecessary promolecules (A2X2)

in which the AB of 7 is replaced by A2 (two achiral proligands of the same kind) and the pair
p/p is replaced by X2 (two achiral proligands of the same kind).

In summary, eqs. 45 and 48 have been derived by taking account of the following corre-
spondence between the products of SIs and the types of promolecules:

a2
1c2: ABpp + ABX2 + A2pp + A2X2 + AX3 + X4

a2
1a2: ABX2 + A2X2 + AX3 + X4

a2c2: A2pp + A2X2

a2
2: A2X2

where promolecules represented by ABpp (7) have a pseudoasymmetric center (Type V). It
should be noted that the transitivities of a homospheric cycle ad and an enantiospheric cycle
cd are characterized by the ligand inventories shown in eqs. 14 and 15 or more specifically by
those shown below (eqs. 64 and 65).
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To evaluate the number of promolecules of Type II, the subtraction of eq. 44 from 30 gives
the following equation:

CI-CF(II)(GCσ̃;$d,bd)
= CI-CF(II/IV)(GCσ̃;bd)−CI-CF(IV)(GCσ;$d) (49)

=
1

|GC| ∑
P′∈σ̃GC

bν1(P′)
1 bν2(P′)

2 · · ·bνn(P′)
n − 1

|GC| ∑
P∈σGC

∑
φ

$
ν1φ(P)
1 $

ν2φ(P)
2 · · ·$νnφ(P)

n , (50)

where two enantiomers of each pair are counted separately.
By the subtraction of eq. 45 from eq. 34, eq. 50 for allene derivatives is calculated as follows:

CI-CF(II)(D2σ̃;$d,bd) =
1
2
(b2

1b2 +b4)− 1
2
(a2

1a2 +a2c2 −a2
2 + c4). (51)

To evaluate the number of promolecules of Type I, the subtraction of eq. 44 from 38 gives
the following CI-CF:

CI-CF(I)(GCĨ;$d)

= CI-CF(I/IV)(GCĨ;$d)−CI-CF(IV)(GCσ;$d) (52)

=
1

|GC| ∑
P′′∈ĨGC

$ν1(P′′)
1 $ν2(P′′)

2 · · ·$νn(P′′)
n − 1

|GC| ∑
P∈σGC

∑
φ

$
ν1φ(P)
1 $

ν2φ(P)
2 · · ·$νnφ(P)

n , (53)

where two enantiomers of each pair are counted separately.
By the subtraction of eq. 45 from eq. 42, eq. 53 for allene derivatives is calculated as follows:

CI-CF(I)(D2Î;$d) =
1
4
(a4

1 +3c2
2)−

1
2
(a2

1a2 +a2c2 −a2
2 + c4). (54)

Finally, in order to evaluate the number of promolecules of Type III, the subtraction of eqs.
53 (Type I), 50 (Type II), and 20 (Type IV/V) from eq. 17 gives the following CI-CF:

CI-CF(III)(GC;$d,bd)
= CI-CF(GC;bd)−CI-CF(I)(GCĨ;$d)−CI-CF(II)(GCσ̃;$d,bd)

−CI-CF(IV/V)(GCσ;$d) (55)

=
1

|GC| ∑
P∈GC

bν1(P)
1 bν2(P)

2 · · ·bνn(P)
n − 1

|GC| ∑
P′′∈ĨGC

$ν1(P′′)
1 $ν2(P′′)

2 · · ·$νn(P′′)
n

− 1
|GC| ∑

P′∈σ̃GC

bν1(P′)
1 bν2(P′)

2 · · ·bνn(P′)
n − 1

|GC| ∑
P∈σGC

$ν1(P)
1 $ν2(P)

2 · · ·$νn(P)
n

+
2

|GC| ∑
P∈σGC

∑
φ

$
ν1φ(P)
1 $

ν2φ(P)
2 · · ·$νnφ(P)

n . (56)

In order to count allene derivative, the subtraction of eqs. 54, 51, and 26 from eq.25 is
carried out according to eq. 56 so as to give the following CI-CF:

CI-CF(III)(D2;bd,$d) =
1
4
(b4

1 +3b2
2)−

1
4
(a4

1 +3c2
2)−

1
2
(b2

1b2 +b4)

− 1
2
(a2

1c2 + c4)+(a2
1a2 +a2c2 −a2

2 + c4). (57)
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Because we have obtained CI-CFs for Types I–V respectively, we are able to obtain the
number of promolecules of Type T (T = I–V) on the same line as eq. 21 etc. The results are
summarized as a theorem:

Theorem 1 Let the symbol B(T)
θ denote the number of promolecules of Type T (T = I–V) having

Wθ. The number B(T)
θ is obtained as the coefficient of the term Wθ representing a molecular

formula (eq. 12), which appears in the following generating function:

∑
[θ]

B(T)
θ Wθ = CI-CF(T)(G′;$d,(bd)), (58)

where each SI ($d , i.e. ad or cd; or bd if necessary) is replaced by the ligand inventories repre-
sented by eqs. 14–16. The CI-CFs in the right-hand side of eq. 58 are represented respectively
by eqs. 53 (Type I), 50 (Type II), 56 (Type III), 44 (Type IV), and 47 (Type V), where G′ is
selected as found in each CI-CF.

3.4.3 Total Features of Enumeration

As commented below each equation for counting chiral promolecules, eqs. 53 (Type I), 50 (Type
II), and 56 (Type III) count two enantiomers of a pair separately. On the other hand, eqs. 44
(Type IV) and 47 (Type V) are concerned with achiral promolecules (Table 1) so that they count
an achiral promolecule just once. It follows that eq. 9 can be derived from eqs. 53 (Type I), 50
(Type II), 56 (Type III), 44 (Type IV), and 47 (Type V) as follows:

CI-CF(GCσ;$d,bd)

=
1
2

CI-CF(I)(GCĨ;$d)+
1
2

CI-CF(II)(GCσ̃;$d,bd)+
1
2

CI-CF(III)(GC;$d,bd)

+CI-CF(IV)(GCσ;$d)+CI-CF(V)(GCσ;$d), (59)

because eq. 9 counts each pair of enantiomers (and also each achiral promolecule) just once.
Note that 2|GC|= |GCσ|. In addition, eq. 17 can be derived by summing up eqs. 53 (Type I), 50
(Type II), 56 (Type III), 44 (Type IV), and 47 (Type V) as follows:

CI-CF(GC;bd)
= CI-CF(I)(GCĨ;$d)+CI-CF(II)(GCσ̃;$d,bd)+CI-CF(III)(GC;$d,bd)

+CI-CF(IV)(GCσ;$d)+CI-CF(V)(GCσ;$d), (60)

because eq. 17 counts two enantiomers of each pair separately as well as each achiral pro-
molecule just once.

In accord with eqs. 59 and 60, the CI-CFs for allene derivatives (i.e., eqs. 54 (Type I), 51
(Type II), 57 (Type III), 45 (Type IV), and 48 (Type V)) give eqs. 24 and 25.

Because eqs. 53 (Type I), 56 (Type III), and 47 (Type V) are concerned with RS-stereogenicity
(Table 1), they count two RS-diastereomers of an RS-diastereomeric pair separately. On the
other hand, eqs. 50 (Type II) and 44 (Type IV) are concerned with RS-astereogenic promolecules
so that they count an RS-astereogenic promolecule just once. It follows that eq. 28 can be de-
rived from eqs. 53 (Type I), 50 (Type II), 56 (Type III), 44 (Type IV), and 47 (Type V) as
follows:

CI-CF(GCσ̃;bd)
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=
1
2

CI-CF(I)(GCĨ;$d)+CI-CF(II)(GCσ̃;$d,bd)+
1
2

CI-CF(III)(GC;$d,bd)

+CI-CF(IV)(GCσ;$d)+
1
2

CI-CF(V)(GCσ;$d), (61)

because eq. 28 counts each pair of RS-diastereomers (and also each RS-astereogenic promolecule)
just once. Note that 2|GC| = |GCσ̃|.

In accord with eq. 61, the CI-CFs for allene derivatives (i.e., eqs. 54 (Type I), 51 (Type II),
57 (Type III), 45 (Type IV), and 48 (Type V)) give eq. 33.

Because eqs. 50 (Type II), 56 (Type III), and 47 (Type V) are concerned with sclerality
(Table 1), they count two holantimers of a holantimeric pair separately. On the other hand, eqs.
53 (Type I) and 44 (Type IV) are concerned with ascleral promolecules so that they count an
ascleral promolecule just once. It follows that eq. 36 can be derived from eqs. 53 (Type I), 50
(Type II), 56 (Type III), 44 (Type IV), and 47 (Type V) as follows:

CI-CF(GCÎ;$d,bd)

= CI-CF(I)(GCĨ;$d)+
1
2

CI-CF(II)(GCσ̃;$d,bd)+
1
2

CI-CF(III)(GC;$d,bd)

+CI-CF(IV)(GCσ;$d)+
1
2

CI-CF(V)(GCσ;$d), (62)

because eq. 36 counts each pair of RS-holantimers (and also each ascleral promolecule) just
once. Note that 2|GC| = |GCÎ|.

The CI-CFs for allene derivatives (i.e., eqs. 54 (Type I), 51 (Type II), 57 (Type III), 45 (Type
IV), and 48 (Type V)) give eq. 41 in accord with eq. 62.

It is worthwhile to point out a similarity among eq. 59 for the maximum point subgroup
(GCσ), eq. 61 for the maximum RS-permutation subgroup (GCσ̃), and eq. 62 for the maximum
ligand-inversion subgroup (GCÎ). That is to say, the maximum chiral subgroup GC is commonly
contained as a normal subgroup of index 2 in each of the maximum subgroups, i.e., GCσ (cf.
eq. 1), GCσ̃ (cf. eq. 2), and GCÎ (cf. eq. 3). Hence, eq. 17 can be commonly used to examine
the the maximum subgroups so that eq. 60 is considered to correspond triply to GCσ (chiral-
ity/achirality), GCσ̃ (RS-stereogenicity/RS-astereogenicity), and GCÎ (sclerality/asclerality).

4 Enumeration Results
4.1 Allene Derivatives
To exemplify the usefulness of the present approach, let us count allene derivatives by using eq.
54 (Type I), eq. 51 (Type II), eq. 57 (Type III), eq. 45 (Type IV), and eq. 48 (Type V). According
to eq. 10, we take account of the following warehouse for allene derivatives:

X = {A,B,X,Y; p,q, r,s; p,q, r,s}, (63)

where the letters A, B, X, and Y represent achiral proligands and the pairs of p/p, q/q, r/r, and s/s
represent pairs of enantiomeric proligands. Thereby, eqs. 14–16 for counting allene derivatives
are obtained as follows:

ad = Ad +Bd +Xd +Yd (64)
cd = Ad +Bd +Xd +Yd +2pd/2pd/2 +2qd/2qd/2 +2rd/2rd/2 +2sd/2sd/2 (65)
bd = Ad +Bd +Xd +Yd +pd +qd + rd + sd +pd +qd + rd + sd. (66)
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The ligand inventories (eqs. 64–66) are introduced into the CI-CF for Type I (eq. 54) and the
resulting equation is expanded so as to give the corresponding generating function for counting
Type-I promolecules:

f (I) = 2[A2B2 + · · ·]+2[A2BX+ · · ·]+6ABXY
+2[A2pp+ · · ·]+2[p2p2 + · · ·]+6[ppqq+ · · ·], (67)

where each pair of brackets shows terms having the same kind of partition. Note that two
enantiomers of a pair are counted separately. For example, the coefficient 6 of the term 6ABXY
shows the existence of three pairs of enantiomers (i.e., six allene derivatives).

By introducing the ligand inventories (eqs. 64–66) into the CI-CF for Type II (eq. 51), we
obtain the corresponding generating function for counting Type-II promolecules:

f (II) = [(A3p+A3p)+ · · ·]+ [(A2Bp+A2Bp)+ · · ·]
+ [(A2p2 +A2p2)+ · · ·]+ [(A2pq+A2pq)+ · · ·]
+ [(ABp2 +ABp2)+ · · ·]
+ [(Ap2p+Ap2p)+ · · ·]+ [(Ap3 +Ap3)+ · · ·]+ [(Ap2q+Ap2q)+ · · ·]
+ [(p4 +p4)+ · · ·]+ [(p3p+p3p)+ · · ·]
+ [(p3q+p3q)+ · · ·]+ [(p2pq+p2pq)+ · · ·]
+ [(p2q2 +p2q2)+ · · ·]+ [(p2qq+p2qq)+ · · ·]
+ [(p2qr+p2qr)+ · · ·], (68)

where each pair of brackets shows terms having the same kind of partition. Note again that two
enantiomers of a pair are counted separately. Thus, a pair of such terms as (A3p+A3p) shows
the existence of two enantiomers of a pair, and so on.

The introduction of the ligand inventories (eqs. 64–66) into the CI-CF for Type III (eq. 57)
gives the corresponding generating function for counting Type-III promolecules:

f (III) = 2[(A2Bp+A2Bp)+ · · ·]+2[(A2p2 +A2p2)+ · · ·]
+2[(A2pq+A2pq)+ · · ·]+2[(ABp2 +ABp2)+ · · ·]
+2[(Ap2p+Ap2p)+ · · ·]+2[(Ap2q+Ap2q)+ · · ·]
+2[(p2pq+p2pq)+ · · ·]
+2[(p2q2 +p2q2)+ · · ·]+2[(p2qq+p2qq)+ · · ·]
+2[(p2qr+p2qr)+ · · ·]
+6[(ABXp+ABXp)+ · · ·]+6[(ABpq+ABpq)+ · · ·]
+6[(Appq+Appq)+ · · ·]+6[(Apqr+Apqr)+ · · ·]
+6[(ppqr+ppqq)+ · · ·]+6[(pqrs+pqrs)+ · · ·]
+4[ABpp+ · · ·], (69)

where each pair of brackets shows terms having the same kind of partition. Note that two
enantiomers of a pair are counted separately. The term 2(A2Bp+A2Bp) in the right-hand side
of eq. 69 shows the existence of two pairs of enantiomers (i.e., four allene derivatives). On the
same line, the term 6(ABXp + ABXp) indicates six pairs of enantiomers (i.e., twelve allene
derivatives). On the other hand, the term 4ABpp should be regarded as being equal to the
term 2(ABpp+ABpp), which shows the existence of two pairs of enantiomers (i.e., four allene
derivatives).
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The ligand inventories (eqs. 64–66) are introduced into the CI-CF for Type IV (eq. 45) and
the resulting equation is expanded to give the corresponding generating function for counting
Type-IV promolecules:

f (IV) = [A4 + · · ·]+ [A3B+ · · ·]+ [A2B2 + · · ·]
+ [A2BX+ · · ·]+ [A2pp+ · · ·]+ [p2p2 + · · ·]. (70)

Finally, the enumeration of Type-IV promolecules is accomplished by introducing the ligand
inventories (eqs. 64–66) into the CI-CF for Type V (eq. 48). Thereby, we obtain the following
generating function:

f (V) = 2[ABpp+ · · ·]. (71)

Because of such promolecules of Type V are achiral, the coefficient 2 of the term 2ABpp in eq.
71 indicates that there exists two RS-diastereomers corresponding to the formula ABpp.

The above-mentioned results (eqs. 67–71) itemized with respect to RS-stereoisomeric types
(Types I–V) are in agreement with the manual itemization by using stereoisograms [10]. For the
full list, see Figs. 8–10 of Ref. [10]. To show the effect of itemization into Types I–V, however,
it is worthwhile to examine several values among the above results.

As already mentioned, the term 4ABpp appearing in eq. 69 should be interpreted as 2(ABpp+
ABpp), because the promolecules of Type III is chiral and the enantiomers have the same molec-
ular formula. This value is in agreement with the fact that there exist two pairs of enantiomers
(8/8 and 9/9), which are depicted in Fig. 3. We find that these four promolecules are char-
acterized by a single stereoisogram of Type III [10]. Strictly speaking, however, the present
enumeration is incapable of correlating these promolecules, because the result simply reveals
that the four promolecules have the same formula ABpp.

On the other hand, the value 2 of the term 2ABpp appearing in eq. 71 shows that there
exist two achiral promolecules (7 and 10), because Type-V promolecules are achiral. They
are also depicted in in Fig. 3. The two promolecules (7 and 10) are characterized by a single
stereoisogram of Type V [10]. It should be again noted that the present enumeration simply
reveals that the four promolecules have the same formula ABpp but does not correlate these
promolecules.

4.2 Methane Derivatives
4.2.1 Basic Formulas for Enumeration

The RS-stereoisomeric group (Tdσ̃Î) for treating methane derivatives has been discussed on the
basis of a tetrahedral skeleton belonging to the point group Td [8, 11, 26]. In order to apply
the present method of combinatorial enumeration to the tetrahedral skeleton, we take account
of three maximum subgroups (eqs. 1–3), i.e., the maximum point subgroup (Td), the maximum
RS-permutation subgroup (Tσ̃), and the maximum ligand-inversion subgroup (TÎ):

Td = {I,C2(1),C2(2),C2(3),C3(1),C3(3),C3(2),C3(4),C
2
3(1),C

2
3(4),C

2
3(3),C

2
3(2);

σd(1),S4(3),S
3
4(3),σd(6),σd(2),σd(4),S4(1),S

3
4(1),σd(3),S

3
4(2),σd(5),S4(2)} (72)

= {(1)(2)(3)(4),(1 2)(3 4),(1 3)(2 4),(1 4)(2 3),(1)(2 4 3),(1 2 3)(4),
(1 3 4)(2),(1 4 2)(3),(1)(2 3 4),(1 2 4)(3),(1 3 2)(4),(1 4 3)(2);
(1)(2 3)(4),(1 2 4 3),(1 3 4 2),(1 4)(2)(3),(1)(2)(3 4),(1 2)(3)(4),
(1 3 2 4),(1 4 2 3),(1)(2 4)(3),(1 2 3 4),(1 3)(2)(4),(1 4 3 2)} (73)
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Allene Derivatives of Type III with the formula ABpp
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Figure 3: Allene derivatives of Types III and V

Tσ̃ = {I,C2(1),C2(2),C2(3),C3(1),C3(3),C3(2),C3(4),C
2
3(1),C

2
3(4),C

2
3(3),C

2
3(2);

σ̃d(1), S̃4(3), S̃
3
4(3), σ̃d(6), σ̃d(2), σ̃d(4), S̃4(1), S̃

3
4(1), σ̃d(3), S̃

3
4(2), σ̃d(5), S̃4(2)} (74)

= {(1)(2)(3)(4),(1 2)(3 4),(1 3)(2 4),(1 4)(2 3),(1)(2 4 3),(1 2 3)(4),
(1 3 4)(2),(1 4 2)(3),(1)(2 3 4),(1 2 4)(3),(1 3 2)(4),(1 4 3)(2);
(1)(2 3)(4),(1 2 4 3),(1 3 4 2),(1 4)(2)(3),(1)(2)(3 4),(1 2)(3)(4),
(1 3 2 4),(1 4 2 3),(1)(2 4)(3),(1 2 3 4),(1 3)(2)(4),(1 4 3 2)} (75)

TÎ = {I,C2(1),C2(2),C2(3),C3(1),C3(3),C3(2),C3(4),C
2
3(1),C

2
3(4),C

2
3(3),C

2
3(2);

Î,Ĉ2(1),Ĉ2(2),Ĉ2(3),Ĉ3(1),Ĉ3(3),Ĉ3(2),Ĉ3(4),Ĉ
2
3(1),Ĉ

2
3(4),Ĉ

2
3(3),Ĉ

2
3(2)} (76)

= {(1)(2)(3)(4),(1 2)(3 4),(1 3)(2 4),(1 4)(2 3),(1)(2 4 3),(1 2 3)(4),
(1 3 4)(2),(1 4 2)(3),(1)(2 3 4),(1 2 4)(3),(1 3 2)(4),(1 4 3)(2);
(1)(2)(3)(4),(1 2)(3 4),(1 3)(2 4),(1 4)(2 3),(1)(2 4 3),(1 2 3)(4),
(1 3 4)(2),(1 4 2)(3),(1)(2 3 4),(1 2 4)(3),(1 3 2)(4),(1 4 3)(2)} (77)

As for the maximum point subgroup Td , the cycle structures appearing in eq. 73 are used
by following eqs. 9 and 17. Thereby, we obtain the following CI-CFs:

CI-CF(Td;$d,bd) =
1

24
(b4

1 +3b2
2 +8b1b3 +6a2

1c2 +6c4) (78)

CI-CF(T;bd) =
1

12
(b4

1 +3b2
2 +8b1b3), (79)
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because |Td| = 24 and |T| = 12. It follows that eqs. 20 and 23 for methane derivatives take the
following concrete forms:

CI-CF(IV/V)(Td;$d) =
1
2
(a2

1c2 + c4) (80)

CI-CF(I/II/III)(Td;$d,bd) =
1
24

(b4
1 +3b2

2 +8b1b3 −6a2
1c2 −6c4). (81)

The action of the maximum RS-permutation subgroup (Tσ̃) can be characterized by the cycle
structures appearing in eq. 75. Hence, eq. 28 for this case is calculated to give the following
CI-CF:

CI-CF(Tσ̃;bd) =
1

24
(b4

1 +3b2
2 +8b1b3 +6b2

1b2 +6b4). (82)

Thereby, eqs. 30 and 32 for methane derivatives take the following concrete forms:

CI-CF(II/IV)(Tσ̃;bd) =
1
2
(b2

1b2 +b4) (83)

CI-CF(I/III/V)(Tσ̃;bd) =
1
24

(b4
1 +3b2

2 +8b1b3 −6b2
1b2 −6b4). (84)

The ligand-inversion subgroup TÎ acts on the tetrahedral skeleton, where the cycle structures
appearing in eq. 77 represent the modes of the action. Hence, by using eq. 36, we obtain the
following CI-CF:

CI-CF(TÎ;bd,$d) =
1
24

(b4
1 +3b2

2 +8b1b3 +a4
1 +3c2

2 +8a1a3). (85)

Thereby, eqs. 38 and 40 for methane derivatives take the following concrete forms:

CI-CF(I/IV)(TÎ;$d) =
1
12

(a4
1 +3c2

2 +8a1a3) (86)

CI-CF(II/III/V)(TÎ;bd) =
1
24

(b4
1 +3b2

2 +8b1b3 −a4
1 −3c2

2 −8a1a3). (87)

4.2.2 Itemization and Enumeration Results

The discussion described for deriving eq. 45 is also effective in the case of methane derivatives.
Hence, eq. 44 for this case takes the following form:

CI-CF(IV)(Td;$d) =
1
2
(a2

1a2 +a2c2 −a2
2 + c4). (88)

The ligand inventories (eqs. 64–66) are introduced into the CI-CF for Type IV (eq. 88) and
the resulting equation is expanded to give the corresponding generating function for counting
Type-IV methane derivatives:

g(IV) = [A4 + · · ·]+ [A3B+ · · ·]+ [A2B2 + · · ·]
+ [A2BX+ · · ·]+ [A2pp+ · · ·]+ [p2p2 + · · ·]. (89)

By the subtraction of eq. 88 from eq. 80, eq. 47 for methane derivatives of Type V is calcu-
lated as follows:

CI-CF(V)(Td;$d) =
1
2
(a2

1c2 + c4)− 1
2
(a2

1a2 +a2c2 −a2
2 + c4)

=
1
2
(a2

1c2 −a2
1a2)− 1

2
(a2c2 −a2

2). (90)
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The enumeration of Type-V promolecules is accomplished by introducing the ligand in-
ventories (eqs. 64–66) into the CI-CF for Type V (eq. 90). Thereby, we obtain the following
generating function:

g(V) = 2[ABpp+ · · ·], (91)

which corresponds to pseudoasymmetric cases.
The subtraction of eq. 88 from eq. 83 gives the following CI-CF:

CI-CF(II)(Tσ̃;$d,bd) =
1
2
(b2

1b2 +b4)− 1
2
(a2

1a2 +a2c2 −a2
2 + c4), (92)

which is the concrete form of eq. 50 for methane derivatives of Type II.
By introducing the ligand inventories (eqs. 64–66) in to the CI-CF for Type II (eq. 92), we

obtain the corresponding generating function for counting Type-II methane derivatives:

g(II) = [(A3p+A3p)+ · · ·]+ [(A2Bp+A2Bp)+ · · ·]
+ [(A2p2 +A2p2)+ · · ·]+ [(A2pq+A2pq)+ · · ·]
+ [(ABp2 +ABp2)+ · · ·]
+ [(Ap2p+Ap2p)+ · · ·]+ [(Ap3 +Ap3)+ · · ·]+ [(Ap2q+Ap2q)+ · · ·]
+ [(p4 +p4)+ · · ·]+ [(p3p+p3p)+ · · ·]
+ [(p3q+p3q)+ · · ·]+ [(p2pq+p2pq)+ · · ·]
+ [(p2q2 +p2q2)+ · · ·]+ [(p2qq+p2qq)+ · · ·]
+ [(p2qr+p2qr)+ · · ·], (93)

where each pair of brackets shows terms having the same kind of partition. Note again that two
enantiomers of a pair are counted separately.

By the subtraction of eq. 88 from eq. 86, eq. 53 for methane derivatives of Type I is calcu-
lated as follows:

CI-CF(I)(TÎ;$d) =
1

12
(a4

1 +3c2
2 +8a1a3)− 1

2
(a2

1a2 +a2c2 −a2
2 + c4). (94)

The ligand inventories (eqs. 64–66) are introduced into the CI-CF for Type I (eq. 94) and the
resulting equation is expanded so as to give the corresponding generating function for counting
Type-I methane derivatives:

g(I) = 2ABXY+2[ppqq+ · · ·], (95)

where each pair of brackets shows terms having the same kind of partition. Note that two
enantiomers of a pair are counted separately.

By subtracting eqs. 94, 92, and 80 from eq.79, we obtain eq. 56 for methane derivatives of
Type III as follows:

CI-CF(III)(T;$d,bd) =
1
12

(b4
1 +3b2

2 +8b1b3)− 1
12

(a4
1 +3c2

2 +8a1a3)− 1
2
(b2

1b2 +b4)

− 1
2
(a2

1c2 + c4)+(a2
1a2 +a2c2 −a2

2 + c4). (96)

The introduction of the ligand inventories (eqs. 64–66) into the CI-CF for Type III (eq. 96)
gives the corresponding generating function for counting Type-III methane derivatives:

g(III) = +2[(ABXp+ABXp)+ · · ·]+2[(ABpq+ABpq)+ · · ·]
+2[(Appq+Appq)+ · · ·]+2[(Apqr+Apqr)+ · · ·]
+2[(ppqr+ppqq)+ · · ·]+2[(pqrs+pqrs)+ · · ·], (97)
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where each pair of brackets shows terms having the same kind of partition. Note that two
enantiomers of a pair are counted separately.

The above-mentioned results (eqs. 89, 91, 93, 95, and 97) itemized with respect to RS-
stereoisomeric types (Types I–V) are in agreement with the manual itemization by using stereo-
isograms [11]. For the full list, see Fig. 10 of [10] and Fig. 15 of [11]. To show the effect
of itemization into Types I–V, it is worthwhile to compare methane derivatives with allene
derivatives of the same type.

4.3 Comparison Between Allenes and Methanes
Let us compare the coefficient of the term ABXY in eq. 67 with that of eq. 95, where both
of the equations are concerned with Type I. The value 6 of eq. 67 indicates that there exist
three pairs of enantiomers (11/11, 3/3, and 12/12), which are depicted in Fig. 4. Each pair
corresponds to a single stereoisogram of Type I. Because any Type I promolecule is ascleral
(Table 1), the chirality and the RS-stereogenicity are superposed upon each other. It follows that
the corresponding relationships, i.e., the enantiomeric relationship and the RS-diastereomeric
relationship are superposed upon each other, as shown by underbraces below each pair (11/11,
3/3, or 12/12).

Allene Derivatives of Type I with the formula ABXY
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Methane Derivatives of Type I with the formula ABXY
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RS-diastereomeric

Figure 4: Allene and methane derivatives of Type I

The value 2 of the term 2ABXY in eq. 95 indicates that there exists one pair of enantiomers

(
13/13), which are also depicted in Fig. 4. The pair corresponds to a single stereoisogram of

Type I, where the chirality and the RS-stereogenicity are superposed upon each other so that
the enantiomeric relationship and the RS-diastereomeric relationship are superposed upon each
other.

As found easily, if the allene nucleus C=C=C of each pair (11/11, 3/3, or 12/12) is hypothet-
ically reduced into a one-carbon nucleus, there emerges the pair of enantiomers (13/13). This
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Allene Derivatives of Type III with the formula ABXp
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Methane Derivatives of Type III with the formula ABXp
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Figure 5: Allene and methane derivatives of Type III

hypothetical process rationalizes the difference between the value 6 of the term 6ABXY in eq.
67 and the corresponding value 2 in eq. 95.

Let us next compare the coefficient of the term (ABXp + ABXp) in eq. 69 with that of eq.
97. The coefficient 6 of the term 6(ABXp + ABXp) in eq. 69 indicates that there exist six
pairs of enantiomers (14/14, 15/15, 5/5, 16/16, 17/17, and 18/18), which are depicted in Fig.
5. Among them, the set of 14/14 and 15/15, the set of 5/5 and 16/16, and the set of 17/17 and
18/18) are respectively linked with a large horizontal brace, which shows that each of the sets
appears in a single stereoisogram. Although holantimeric relationships are not denoted, they
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are contained in respective stereoisograms, along with the enantiomeric relationships and the
RS-diastereomeric ones which are denoted in Fig. 5.

On the other hand, the value 2 of the term 2(ABXp + ABXp) in eq. 97 indicates that there
exist two pairs of enantiomers (19/19 and 20/20), which are also depicted in Fig. 5. These two
pairs appear in a single stereoisogram.

Let us apply the above-mentioned hypothetical procedure to this case, where the allene nu-
cleus C=C=C of each set (e.g., 14/14 and 15/15) is reduced into a one-carbon nucleus. Thereby,
we obtain the two pairs of enantiomers (19/19 and 20/20). On the same line, each of the remain-
ing sets (i.e., the set of 5/5 and 16/16 as well as the set of 17/17 and 18/18) produces also the two
pairs of enantiomers (19/19 and 20/20). This hypothetical process rationalizes the difference
between the value 6 of the term 6(ABXp + ABXp) in eq. 69 and the corresponding value 2 in
eq. 97.

Finally, let us compare between Fig. 4 (Type I) and Fig. 5 (Type III). By replacing the chiral
proligand (p) by an achiral one (Y), the set of 14/14 and 15/15 shown in Fig. 5 is converted into
the pair of enantiomers (11/11) shown in Fig. 4. The same replacement applied to the set of
5/5 and 16/16 as well as to the set of 17/17 and 18/18 turns out to generate the pair of 3/3 as
well as the pair of 12/12). Moreover, the same replacement applied to the two pairs of Type-
III enantiomers (19/19 and 20/20) produces one pair of Type-I enantiomers (13/13). Thus, the
conversions of Type III into Type I described here demonstrate clearly the superposition of an
RS-diastereomeric relationship onto an enantiomeric relationship, which is concealed so long
as we rely on the conventional stereochemistry.

5 Conclusion
Molecules or promolecules are categorized into five types by means of chirality, RS-stereogenic-
ity, and sclerality, i.e., Type I (chiral/RS-stereogenic/ascleral), Type II (chiral/RS-astereogenic/-
scleral), Type III (chiral/RS-stereogenic/scleral), Type IV (achiral/RS-astereogenic/ascleral),
and Type V (achiral/RS-stereogenic/scleral). Molecules or promolecules based on a given
skeleton are counted under the action of the maximum point subgroup, the maximum RS-
permutation subgroup, and the maximum ligand-inversion subgroup, which are subgroups of
RS-stereoisomeric group, so that their numbers itemized with respect to Type I to Type V are
obtained. Thereby, allene derivatives and methane derivatives are counted respectively in an
itemized fashion and the results are verified in comparison with manual enumerations reported
previously.
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