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This paper reviews results on how kN non-overlapping equal circles forming N twins (k = 2), 

triplets (k = 3), or quartets (k = 4) are to be packed on a sphere so that the angular diameter of 

the circles will be as large as possible, under constraints: for k = 2, within each twinned pair, 

the circles are in contact; for k = 3, within each triplet, the circle centres lie at the vertices of 

an equilateral triangle inscribed in a great circle of the sphere; for k = 4, within each quartet, 

the  circle  centres  lie  at  the  vertices  of  a  regular  tetrahedron.  Computer  solutions  to  this 

optimization problem are presented for small numbers of twins, triplets and quartets.  The 

configurations obtained can be characterized as perfect matchings in the contact graph of the 

unconstrained problem (k = 2), compounds of equilateral triangles (k = 3), or compounds of 

regular tetrahedra (k = 4).

1. Introduction

Many situations in the physical and life sciences and in technological applications can be 

modelled as variants  of the packing problem – determining the most efficient packing of 

objects in an appropriate space. In the  unconstrained version of the problem, the task is to 

arrange n equal circles (spherical caps) without overlap on a sphere so that their angular radius 

r(n)  is  a  maximum.  This  is  the  Tammes  (1930)  problem,  to  which  proven  solutions  are 

available for  n = 1 to 12 and  n = 24 (Fejes Tóth 1964), and conjectural solutions for other 

values of  n up to 130 (Sloane  et al. 2000). Configurations of  n packed circles model, for 

example, distribution of pores on spherical pollen grains (Tammes 1930), certain polyhedral 
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borane frameworks (Greenwood and Earnshaw 1986), Valence-Shell Electron-Pair Repulsion 

models of molecules (Gillespie & Nyholm 1957), and spherical codes in information theory 

(Conway & Sloane 1999).

In applications it can be more useful to deal with a  constrained version of the spherical 

circle packing problem. For example, the arrangement of packed circles may be required to 

exhibit  a  particular  overall  point-group  symmetry.  Axially  symmetric  packing  has  been 

investigated  by  Goldberg  (1967). Families  of  multisymmetric  packings,  in  tetrahedral, 

octahedral and icosahedral groups, have been studied (Robinson 1969; Tarnai & Gáspár 1987; 

Tarnai 2002); the icosahedral solutions are tabulated to large numbers of circles (Sloane et al.  

2000).  Restriction to icosahedral symmetry results in the ‘fly’s eye’ domes of Buckminster 

Fuller  (Baldwin 1997).  Centrosymmetric packings,  in which every circle has an antipodal 

partner, have been studied (Fejes Tóth 1965; Conway  et al. 1996; Fowler  et al. 2002), and 

solutions are relevant to the construction of the Gamma Knife® in brain surgery (Leksell 

1983).  Single-  and  multi-stranded spiral  packings  have  also  been  analysed  (Gáspár  1990; 

Székely 1974).

The present note is concerned with three variants of the constrained packing problem. 

(a) The first is where circles are locally paired. In the twinned-circle problem, the objects 

to be packed are N rigidly connected contacting pairs of circles, pairs of ‘twins’. Packing of 

twinned circles can be used as a geometrical model of packing of dimers of protein molecules 

in core shells of spherical viruses such as hepatitis B (Wynne  et al. 1999), and can also be 

seen as packing of ‘diatomic molecules’ rather than ‘atoms’ on the spherical shell. Thus, the 

problem to be solved is: How must 2N non-overlapping equal circles forming N twinned pairs 

be packed on a sphere so that the angular radius  r*(2N) of the circles will be as large as 

possible  under  the  constraint  that  contact  is  maintained  within each  twinned pair?  If  the 

solution is not unique, how many (non-isomorphic) solutions with the same radius  r*(2N) 

exist? 

(b) The second is  where circle  centres are grouped as rigid equilateral  triangles.  This 

triplet-packing  problem produces  new zero-volume compounds  (or  nolids;  Holden  1991), 

some  of  which  are  unexpectedly  non-rigid.  Here  the  problem  is:  How  must  3N non-

overlapping equal circles forming N triplets be packed on a sphere so that the angular radius 

r*(3N) of the circles will be as large as possible under the constraint that, within each triplet, 
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the circle centres lie at the vertices of an equilateral triangle inscribed in a great circle of the 

sphere?

(c) The third is where circles are grouped in regular tetrahedral quartets. The motivation of 

the quartet-packing problem comes from the Linnett quartet model of valency. Linnett (1964) 

proposed  a  departure  from  the  usual  thinking  in  valence  theory.  Instead  of  considering 

electron pairs as the basis of the octet rule,  he constructed atomic and molecular valence 

configurations from quartets of spin-up and spin-down electrons. Spin correlation leads to the 

idea  of  rigid  tetrahedral  quartets  of  electrons  of  like  spin,  and  a  disposition  of  opposite 

quartets  that  is  governed  by  the  balance  of  charge-  and  spin-correlation.  Predictions  of 

geometric  arrangement  of  bonds,  in  a  VSEPR-like  model,  can  then  be  made.  The 

mathematical problem is: How must 4N non-overlapping equal circles forming N quartets be 

packed on a sphere so that the angular radius r*(4N) of the circles will be as large as possible 

under the constraint that, within each quartet, the circle centres lie at the vertices of a regular 

tetrahedron? 

In all three variants, it is useful to define, for a packing of  n circles, the  contact graph, 

drawn by taking each circle centre as a vertex, and joining by an edge those pairs of vertices 

representing circles in contact. This paper presents computer solutions to the three constrained 

packing problems for twins (N = 2 to 12), triplets (N = 2 to 7), and quartets (N = 2 to 8). 

2. Packing of twinned circles

If the contact graph of the unconstrained packing of n circles supports a perfect matching (a 

set of disjoint edges that covers each vertex exactly once), then the edges of the matching can 

be considered as representing n/2 pairs of twinned circles in a solution of the N = n/2 twinned-

circle packing problem. In such cases, the radius of circles in the twinned problem is the same 

as that in the unconstrained problem, r*(2N) = r(n). Clearly, such a solution cannot be bettered 

in radius by removal of a constraint. As a given graph may have many perfect matchings, we 

may find multiple non-isomorphic solutions to the twins problem even when the solution to 

the unconstrained problem is unique.

Can we expect all unconstrained contact graphs for even n to support at least one perfect 

matching?  Figure 1 shows the contact graphs for n = 4, 6, 8, …, 24. Table 1 summarises some 

of  their  properties,  which  illustrate  some  general  characteristics  of  contact  graphs.  For 
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example, all contact graphs are planar (i.e.,  they can be embedded on the sphere or plane 

without edge crossings) and have maximum vertex degree at most 5 (Fejes Tóth 1964). Vertex 

degrees of 3, 4 and 5 are observed in the proven and conjectured solutions for these 

Table 1. Properties of solutions of the unconstrained problem 

Solutions  are  characterized  by  number  n and  radius  r(n)  of  the  spherical  circles,  edge  count  e, 
minimum  degree  δ,  maximum  degree  Δ,  connectivity  k of  the  contact  graph,  and  point-group 
symmetry G of the solution. For n = 20, the solution has two rattling circles, and e and G are specified 
for the most symmetrical arrangement, when both rattlers are isolated. In considering rigidity of such a 
graph, we would attach each isolated point to the main body of the graph by two new edges and the 
effective edge count then rises to 43, as listed in parentheses.

n r(n) (deg) E δ Δ k G Source

4 109.4712206 6 3 3 3 Td Fejes Tóth 1943
6 90 12 4 4 4 Oh Fejes Tóth 1943
8 74.8584922 16 4 4 4 D4d Schütte & van der Waerden 1951
10 66.1468220 19 3 4 3 C2v Danzer 1963
12 63.4349488 30 5 5 5 Ih Fejes Tóth 1943
14 55.6705700 28 4 4 4 D2d Schütte & van der Waerden 1951
16 52.2443957 32 4 4 4 D4d Schütte & van der Waerden 1951
18 49.5566548 34 3 5 3 C2 Tarnai & Gáspár 1983
20 47.4310362 39 (43) (2) 5 2 (D3h) van der Waerden 1952
22 44.7401612 42 3 5 3 C1 Sloane et al. 2000
24 43.6907671 60 5 5 5 O Robinson 1961

and larger values of n. A vertex degree of 2 occurs when the solution includes a rattling circle 

(as for n = 20):  the corresponding vertex can be considered to have degree 2, as it is always 

possible to let the circle move into contact with at least two neighbours within the range of its 

two-dimensional  rattling motion.  Exceptionally,  a  solution may also have one-dimensional 

freedom, as in the contact graph for n = 5, where two circle centres are fixed at the poles and 

the other three lie on the equator, along which they are able to move, in contact with the polar 

circles but not necessarily with each other (Tarnai & Gáspár 1983). Allowing for this process 

of addition of supplementary edges, all contact graphs are connected.

Other empirical observations about contact graphs for the unconstrained problem are that 

all known examples are bridgeless (there is no edge whose removal disconnects the graph), 

and (for n > 3, n ≠ 5) all have at least one triangle, but no face of more than six sides.
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Conditions necessary and sufficient for a perfect matching are known from Tutte’s (1947) 

1-factor  theorem,  but  do  not  seem to  offer  an  immediate  connection  with  the  foregoing 

summary  of  known properties  of  contact  graphs.  Other  theorems  prove  the  existence  of 

perfect matchings in some classes of contact graphs: Petersen’s theorem (see e.g., Biggs et al.

n = 4

n = 14

n = 18

n = 16

n = 10n = 8n = 6

n = 20

n = 12

n = 24

n = 22

Figure 1. Contact graphs for the best packing of n equal circles on a sphere for even n, 4 ≤ n ≤ 24, with 
examples of Hamiltonian circuits. Vertices correspond to circle centres, and edges to pairs of circles in 
contact. Symmetries and edge counts are given in Table 1. Open circles for  n = 20, representing the 
centres of rattling circles, are connected to the main graph by two supplementary edges. A perfect 
matching results from taking every second edge of the Hamiltonian circuit.
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1986; Tutte 1998) states that every bridgeless cubic graph has a perfect matching. Amongst 

our contact graphs, N = 2 (the tetrahedron) is covered by this theorem. 

Another useful idea comes from consideration of Hamiltonian walks and circuits. A walk 

of length l is an alternating sequence v0,e1,v1,e2, … el,vl such that vj-1 and vj are the endpoints 

Table 2. Properties of solutions of the twins problem 

Solutions are characterized by the number N of pairs of twinned circles, radius r*(2N) =  r(n) of the 
spherical circles, point-group symmetry G of the solution of the unconstrained problem, total number 
of perfect matchings of the contact graph for the unconstrained problem,  Ptot , and number of non-
isomorphic perfect matchings, Pred , by symmetry group. The notation 6 = 2×C2 + 4×C1 , means that 
there are six non-isomorphic perfect matchings, of which two have C2 and four C1 symmetry.

N = n/2 r*(2N) = r(n) 
       (deg) 

G Ptot Pred

2 109.4712206 Td 3 1 = D2d

3 90 Oh 8 1 = D3

4 74.8584922 D4d 14 3 = D4 + D2 + C2

5 66.1468220 C2v 20 6 = 2×C2 + 4×C1

6 63.4349488 Ih 125 5 = Th + D3d + D3 + D2 + C2

7 55.6705700 D2d 64 8 = 8×C1

8 52.2443957 D4d 92 11 = D4 + S8 + 2×D2 + 4×C2 + 3×C1

9 49.5566548 C2 142 76 = 10×C2 + 66×C1

10 47.4310362 (D3h) 558 54 = 15×C2 + 39×C1

11 44.7401612 C1 120 120 = 120×C1

12 43.6907671 O 7744 385 = O + T + D4 + 7×D3 + 10×D2 
           +3×C4 + 6×C3 + 80×C2 + 276×C1

of edge ej, and a Hamiltonian walk is one that includes every vertex of the graph exactly once 

and no edge more than once. A Hamiltonian circuit includes an additional edge el+1 joining vl 

back to v0. A graph is  Hamiltonian connected if every pair of vertices are the ends of some 

Hamiltonian  walk,  and  a  graph  is  Hamiltonian if  it  contains  a  Hamiltonian  circuit.  The 

connection with perfect  matchings  is  that,  if  a  graph with an even number  of  vertices is 

Hamiltonian, two perfect matchings are immediately available, as we may take alternate edges 

of the Hamiltonian circuit as the set of independent edges for a matching. If the even-vertex 
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graph has  a  Hamiltonian walk,  then  one  perfect  matching is  available  by selecting every 

second edge of that walk, starting from e1.

A theorem of  Tutte  (1956)  states  that  every  4-connected  planar  graph is  Hamiltonian 

connected, and hence Hamiltonian. (A  k-connected graph is one where  k is the minimum 

number of vertices whose removal either disconnects the graph or reduces it to the trivial one-

vertex graph.) Our contact graphs are all planar and some are 4-connected. The connectivities 

are listed in Table 1. Whether 4-connected or not, all the contact graphs for the even numbers 

in the range n = 4 to 24 are Hamiltonian and hence have perfect matchings (see Figure 1). 

(d)

(b)

(e)

(a) (c)

Figure 2. The complete set of non-isomorphic perfect matchings of the contact graph for the best 
packing of  12 equal  circles  on a  sphere.  The symmetries  of  the  graphs decorated  by the perfect 
matchings are (a) Th, (b) D3d, (c) D3, (d) D2, (e) C2, respectively. 

However, Hamiltonicity is not a necessary condition for possession of a perfect matching. The 

contact graph for n = 32 circles (Danzer 1963), is found on checking to be non-Hamiltonian 

(and does not even support a Hamiltonian path). Nevertheless, this graph has multiple perfect 

matchings and hence gives solutions to the twins problem at r*(32) = r(32) ≈ 37.4752140° (see 

Sloane et al. 2000).
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Contact graphs for the solutions of the unconstrained problem on even numbers of circles 

from n = 4, 6, 8, …, 24 were constructed from literature data and perfect matchings listed. 

Although sophisticated techniques are available for counting Kekulé structures in trivalent 

graphs and perfect matchings in more general graphs, here the graphs are all small, and no 

special algorithm are needed. All eleven contact graphs were found to have multiple perfect 

matchings and therefore to give multiple solutions to the twins problem with r(n) = r*(2N). 

The elements of the automorphism group of the contact graph (the point group of the contact 

polyhedron), represented as permutations of the edges, were used to reduce the grand list of 

perfect matchings to the shortlist of non-isomorphic, symmetry unique, cases and to identify 

their individual point-group symmetries. The results are shown in Table 2. As an example, for 

the case  N = 6 pairs of twins, the complete set of perfect matchings (packings of twins) is 

presented in Figure 2.  Further details,  including a discussion of rigidity  properties of the 

packings can be found in Tarnai and Fowler (2006).

3. Packing of regular triplets

In the packing problem for n = 3N equal circles grouped as N equilateral triangles inscribed 

into great circles of the unit sphere, the positions of the circles can be described by three 

angular variables per triplet. Each triangle is fixed by the two polar angles of an arbitrarily 

chosen apical vertex together with the angle of a conical rotation about the radius vector to 

this apex that fixes the two base vertices. The first triangle can be fixed in a standard position 

(e.g. apex at the North Pole, one base vertex on the Greenwich meridian), leaving 3(N – 1) 

degrees of freedom to be optimized.

Circle packing is one limit of the intermediate problem (Fowler & Tarnai 1996) in which n 

equal circles of radius r are arranged on a sphere, with overlap, so as minimize the proportion 

of the spherical surface that is left  uncovered.  Solutions exist  for a range  rp(n) ≤ r ≤ rc(n), 

where  rc(n)  represents  the  covering  limit,  in  which  the  circles  have  the  minimum radius 

necessary to ensure that every point of the spherical surface is covered by at least one circle, 

and  rp(n)  represents  the  packing  limit,  in  which  the  circles  have  the  maximum  radius 

compatible with absence of circle overlap. At intermediate  r, the optimum solutions can be 

found by minimizing the penalty function,  defined as the uncovered area of the spherical 

surface.
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The strategy adopted here for  finding the packing radius for  the constrained problem, 

rp*(n =  3N),  where  rp*(n)  ≤ rp(n),  is  to  begin  by  solving  (numerically)  the  constrained 

intermediate problem in the 3(N – 1) angular variables, setting the initial value for  r to the 

known unconstrained packing radius  rp(n).  The radius is  then decreased,  re-optimizing all 

angles  at  each step.  The penalty  increases with falling radius and,  at  the point  where all 

overlap contributions vanish, the computed penalty intersects the function 4� − 6N�(1 – cos

 r) for non-overlapping circles, and the radius is  rp*(n). The algorithm is a simple downhill 

simplex search (Press et al. 1986), applied with the usual precautions against trapping in local 

minima.

A  computed  packing  arrangement  is  summarized  as  a  contact  graph,  with  vertices 

representing circle centres, and edges joining the centres of circles in contact. This graph may 

Table 3. The current best packings of equilateral triangular triplets of circles on a sphere

Configurations are characterized by the number N of triplets of circles, radius rp*(3N) of the spherical 
circles, ratio  � = rp*(3N) / rp(3N) of the packing radii for constrained and unconstrained problems, 
edge  count  e of  the  contact  graph,  and  point  group symmetries  Gp,  Ga and  Gc of  contact  graph, 
abstract  packing  graph,  and  packing  compound,  respectively.  In  the  case  N = 2,  the  packing 
configuration is non-rigid and has alternative solutions, as indicated. In the case N = 7, the point-group 
assignments refer to the most symmetrical placing of the rattling triangle.

N rp*(3N) 
(deg)

ρ e Gp Ga Gc Packing compound

2 30 0.666667 4(6) D2,D2d,D6h D2d,D6h D2,D2d,D6h Two  triangles  of  the 
four  removed  from 
the cuboctahedron

3 30 0.850716 12 D3 D3h D3 One  triangle  of  the 
four  removed  from 
the cuboctahedron

4 30 0.945851 24 Oh Oh O Four triangles in a
Cuboctahedron

5 23.662
6

0.881981 20 D5 D5h D5 Five triangles in a
pentagonal barrel

6 21.7762 0.878840 24 D6 D6h D6 Six triangles in a
hexagonal barrel

7 20.5574 0.901379 27 D3 D3h D3 One rattling triangle

- 469 -



be  embedded  in  three  dimensions,  or  taken  as  a  purely  combinatorial  description  of  the 

packing,  the  abstract  contact  graph.  This  second graph may itself  be  represented  on  the 

sphere, with edge lengths idealized for maximal symmetry, or in the plane as a Schlegel or 

similar diagram.

In the unconstrained problem, the contact  graph may be fully  connected or  may have 

disconnected components, corresponding to ‘rattling’ circles that have some range of freedom 

of  movement within an area defined by rigidly fixed circles.  In  the constrained problem, 

rattling may also occur as a concerted motion of a set  of individual vertices,  but there is 

another possibility that can produce disconnected vertices, even when all circles are fixed. A 

rigid triangular array of circles on a sphere can be fixed by a minimum of four contacts to the 

other circles, no one circle of the triangular set making more than two of the four necessary 

contacts.  It  may happen,  for  example,  that  two circles  of  a  particular  triplet  are  fixed by 

contacts against other rigidly fixed circles, which then fixes the third circle, even if that circle 

itself is out of contact with all nearest neighbours. For similar reasons, vertices of degree two 
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N  =  7

N  =  6N  =  5

N  =  4N  =  3N  =  2

Figure 3. Schlegel-like diagrams for the contact graphs of  N equilateral triangular triplets of equal 
circles on a sphere. Within each diagram, different circular symbols are used to show the individual 
triangular sets. Full lines indicate edges of the contact graph. For N = 2 and N = 3, the packing graph 
can be constructed by deletion of one triplet from the graphs for N = 3 and N = 4, respectively; here, 
dashed lines indicate the position of the deleted triplets. For N = 5 and N = 6, the dashed lines show 
near contacts along the equator of the barrel-shaped contact graphs. For N = 7, dashed lines represent a 
rattling triangle. 

or one may occur in the graph, which is therefore not always the skeleton of a polyhedron. It is 

useful to label the vertices triangle by triangle to help to identify such cases. Though not all 

packing graphs are polyhedral, a polyhedron-like object can always be produced by taking the 
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union of all the triangles; the resulting object is a packing compound. An assembly of faces 

that encloses no volume is termed a nolid by Holden (1991). All our packing compounds are 

nolids.

The packing compound has the symmetry Gc of the union of the triangles, with all edges, 

vertices and interior points, that are defined by the circle centres in their optimized positions. 

The contact  graph embedded on the spherical surface and defined by the same optimized 

circle positions,  but without taking account of the interior of the sphere,  has point  group 

symmetry Gp. The abstract graph, when embedded in the same spherical surface, and formed 

by retaining the connectivity of the packing graph but disregarding its specific geometrical 

properties, has a maximal symmetry Ga. 

The results for the packing of N = 2 to 7 triplets are summarized in Table 3. The contact 

graphs embedded on the sphere are represented as Schlegel-like diagrams in Figure 3. Further 

details not discussed here (e.g. rigidity of packings, 3D shapes of the nolids) can be found in 

Fowler et al. (2005).

4. Packing of regular quartets

In the quartet problem, where n = 4N equal circles are grouped as N rigid regular tetrahedra 

with vertices on the unit sphere, an exactly similar strategy for finding the packing radius 

rp*(n = 4N) was adopted.  The results for the packing of N = 2 to 8 quartets are summarized in 

Table  4.  The  contact  graphs  embedded  on  the  sphere  are  represented  as  Schlegel-like 

diagrams in Figure 4. Further details (e.g. rigidity of packings, shapes of the compounds of 

regular tetrahedra) can be found in Tarnai et al. (2003).

5. Discussion

(i) The twins problem

By examining contact graphs for proven and conjectural literature solutions (Table 1) for the 

unconstrained packing problem for n = 2N circles, we have found solutions for the twinned-

circle packing problem for N = 2 to 12 pairs. As the solutions for the unconstrained problem 

for  n = 2N = 4, 6, 8, 10, 12, 24 are mathematically proven, the twins solutions are exact in 

these cases. For N = 7, 8, 9, 10, 11 pairs, the solutions have the same conjectural status as the 

underlying solution of the unconstrained problem. From the discussion of perfect matchings 
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given above, if we have found one solution we have found all solutions at the given radius. The 

set of non-isomorphic solutions has been classified by point-group symmetry in all cases.

Table 4. The best known packings of regular tetrahedral quartets of equal circles on a sphere

Configurations  are  characterized by the number  N of  the quartets,  radius  rp
*(4N)  of  the  spherical 

circles, ratio  � = rp
*(4N)/rp(4N) of the packing radii for the constrained and unconstrained problems, 

edge count e of the contact graph, and by point group symmetries Gp, Ga, and Gc of the packing graph, 
the  abstract  graph,  and  the  packing  compound,  respectively.   Where  the  assignment  of  Ga is 
ambiguous, the most natural group is listed in brackets. 

N rp
*(4N) (deg) � e Gp Ga Gc Packing compound

1 54.73561 1 6 Td Td Td Single tetrahedron
2 35.26439 0.9421613 12 Oh Oh Oh Stella octangula
3 24.09485 0.7596711 12 D6d (D6d) D6d 3  tetrahedra  in  an  elongated 

hexagonal antiprism
4 20.90516 0.8002833 18 T Td T 1 removed from 5 tetrahedra in a 

dodecahedron
5 20.90516 0.8814970 30 Ih Ih I 5 tetrahedra in a dodecahedron
6 18.90715 0.8654986 18 D6 (D6h) D6 6 tetrahedra in a hexagonal barrel
7 17.63439 0.8961669 36 C3 C3 C3 1  removed  from 8  tetrahedra  in 

an octahedral compound
8 17.63439 0.9411228 48 O Oh O 8  tetrahedra  in  an  octahedral 

compound

In the case N = 10, the solution to the corresponding unconstrained problem has rattling 

circles. A single rattling circle equates to a wagging pair in the twins problem, comprising the 

rattler and any one of its contactable neighbours A strategy for dealing with such cases is that 

an augmented contact graph is constructed by joining each rattler simultaneously to all its 

individually  contactable  neighbours  (feasibility  of  the  contact  requiring  a  geometric 

calculation) and the set of solutions of all the possible twins problems is given by the perfect 

matchings of the augmented contact graph.

In all the cases examined, we have been able to find a solution of the twins problem with 

the same circle diameter as that in the solution of the corresponding unconstrained problem. If 

all contact graphs for the unconstrained problem have perfect matchings, then it will always be 

possible to find such a solution. However, in the absence of a proof that  all unconstrained 

contact graphs are of this type, there is an open question: What is the smallest number of 

twins of circles (if any) for which the solution of the twins problem is  not obtained from a 

perfect matching in the contact graph of the unconstrained problem?
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N = 1 N = 2 N = 3

N = 4 N = 5 N = 6

N = 7 N = 8

Figure 4.  Schlegel-like diagrams for  the contact  graphs of  N regular  tetrahedral  quartets  of  equal 
circles on a sphere.  Within each diagram, different circular symbols are used to show the individual 
tetrahedral sets.  Full lines indicate edges of the graph.  For N = 6,  dashed lines are added to show the 
near contacts along latitudes of the barrel-shaped graph.  For  N = 4 and  N = 7 the graph can be 
constructed by deletion of one quartet from the graphs for N = 5 and N = 8, respectively; here dashed 
lines indicate the position of the deleted quartet in each case.
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(ii) The triplet problem

It is often the case that a solution to the unconstrained problem has rattling circles, able to 

move on the spherical surface with two degrees of freedom. It is also known that for n = 5 the 

circles in the packing can move with one degree of freedom. Similar properties have been 

observed for the solutions to the triplet problem. In the best packing of N = 7 triplets there is a 

rattling triangle having a two-degree-of-freedom motion, while in that of N = 2 triplets, one 

triangle is able to move relative to the other with one degree of freedom.

For  the  unconstrained  packing  problem,  the  packing  radius  typically  decreases  with 

increase in the circle number: rp(n−1) > rp(n). Proven exceptions are for n = 6 and 12, where 

equality holds, that is, the best arrangement of n−1 circles is obtained by removal of one circle 

from the  best  packing  of  n circles.  Some years  ago,  when  fewer  numerical  results  were 

available, Robinson (1969) thought that perhaps there were additional exceptions for n = 24, 

48,  60,  120.  Székely  (1974)  referred  to  comments  by  Molnár  who  supposed  many  other 

exceptions to exist (not only those mentioned by Robinson), and who even did not exclude 

cases where rp(n−i) = rp(n) for i > 1 and thought that perhaps 48 was the first value of n for 

which i = 2. Later numerical results refuted all these suggestions, and it is conjectured that the 

property rp(n−1) = rp(n)  holds only for n = 6 and 12 (Tarnai & Gáspár 1991). If this conjecture 

is correct, no packings exist for which rp(n−2) = rp(n−1) = rp(n). 

However, for constrained packing problems, where congruent sets of k circles are packed 

on the sphere, it also sometimes occurs that the best packing of N−1 sets of circles is obtained 

by removal of one set from the best packing of  N sets of circles, i.e.  rp*(k(N−1)) = rp*(kN). 

This happens for antipodal packing (k = 2) in the cases of N = 3 and 6 (Fejes Tóth 1965). In 

the present case, such cases were found also with triangular triplets (k = 3), for N = 3 and 4. 

Surprisingly, however, the removal property is valid for two consecutive values of the number 

of triplets, so rp*(k(N−2)) = rp*(k(N−1)) = rp*(kN), N = 4. This is therefore the first example 

where the radius in the best packing of N−2, N−1 and N sets of equal circles is equal, that is, 

the removal operation can be applied twice in succession. According to the conjecture, no 

analogous result  can exist  for unconstrained packing.  It  is an interesting question whether 

there exists a constrained problem with a longer removal sequence. 
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Packings  of  triangular  triplets  produce  zero-volume  compounds  called  nolids. 

Interestingly,  the  packing  of  N =  4  equilateral  triangles  gives  as  packing  compound  the 

assembly of four-triangles-in-a-cuboctahedron, noted by Holden (1991) as a chiral  ‘curious 

nolid’.

(iii) The quartet problem

The packing graphs of tetrahedral quartets in the investigated cases (N = 2 to 8) are connected. 

Beyond  N =  8,  however,  the  graphs  tend  to  be  disconnected  and  apart  from  sporadic 

exceptions are of low symmetry.  Some of them such as the cases  N = 9 and  N  = 10, for 

instance, have rattling tetrahedra.

Cases  with  the  removal  property  rp*(k(N−1))  = rp*(kN)  occur  for  regular  tetrahedral 

quartets (k = 4), for N = 5 and 8. 

Considering  the  tetrahedra  as  solid  bodies  defined  by  the  centres  of  their  respective 

member circles, the procedure of optimising the packing lead us to a generalised family of 

compound polyhedra. Some members of this family are well known. For instance, for N = 2, 

Kepler’s stella octangula is obtained, and for N = 5 the regular compound of five tetrahedra is 

yielded.  The  packing  of  N =  8  regular  tetrahedra  has  lead  us  to  an  apparently  new, 

octahedrally symmetric compound.

Packing  problems  are  of  interest  because  they  come  from  natural  and  easily  stated 

questions with wide applicacations. Of the three constrained problems reviewed here, in some 

ways,  the  twins  problem  is  the  most  appealing,  partly  because  abstract  graph  theoretic 

properties (perfect matching, Hamiltonicity) of known packing graphs were used to gain the 

new results. This problem also has a generalisation to that of the densest packing of equal 

rings  of  circles,  where within each ring the circle  centres  lie  at  the vertices of  a  regular 

spherical  k-gon, and the neighbouring circles are in contact. For  k  = 5, the solution could 

provide a good geometrical model for the structure of all-pentamer viruses, for example.
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