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Abstract:  The software system KBGRAPH, which supports graph theoretical proofs and 
the analysis of graph classes, is presented by developing partial proofs for two graph  
colouring problems. It is shown that Reed's Conjecture, which concerns an upper bound  
to the chromatic number, holds for some special classes of graphs; future approaches  
are  briefly  outlined.  Another  strengthening  of  Brooks'  well-known  upper  bound  is  
sketched.  Details  about  the  internal  derivation  strategies  of  the  program and  tools  
offered  to  the  users  are  presented,  as  far  as  needed  for  an  understanding  of  the  
subsequent sketch of a problem-solving process. For readers particularly interested in  
the  software  system  further  hints  on  its  implementation,  technical  data,  and  the  
availability of the program are compiled in the last chapter.

1.  A First Look at Some Open Problems

In the spirit of the conference CSD III, with its focus on the computer-supported generation of 
hypotheses and computer-assisted proofs in graph theory, we want to let the reader participate 
in a step-by-step search for new restrictive conditions, aiming at a proof of Reed's Conjecture. 
Yet  only  partial  proofs  have  been found.  In  the  course  of  this  stepwise  search,  also  new 
relations between graph invariants have been discovered, which are valid for all graphs and 
hence of interest independently. 

Reed's Conjecture is an extension of a well-known upper bound for the chromatic number χ
(G)  (Brooks 1941):
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Conjecture (Reed): For any graph G

        χ(G)  ≤  ⎡(Δ(G) + ω(G) + 1)/2⎤                                                                                        (1) 

where Δ(G) denotes the maximum degree, and ω(G) is the clique number of G.

The chromatic number χ is a graph invariant which is connected with a great variety of other 
invariants, such that sharper bounds for  χ may lead to an improved knowledge about other 
variables; hence χ may also become relevant in mathematical chemistry. In the graph theory 
textbook by  Merris  (2001),  where  most  of  the  examples  and  applications  are  taken  from 
chemistry, just the second chapter (after the introduction) is dedicated to graph colourings. 
Some graph invariants with relevance to mathematical chemistry will be addressed in a proper 
place (Section 3).

The following sketch will show how structural knowledge on the one hand, and inequalities 
stored in a special software, on the other hand, can be used to proceed towards partial proofs. 
The system KBGRAPH, which is designed mainly for the support of graph theoretical proofs, 
will frequently be "in the background"; anyway the following text is written such that no prior 
knowledge about that system is needed. Therefore only a necessary short overview is given in 
the beginning (Section 3), whereas more details for interested readers are placed in a separate 
chapter (Section 5).

As a by-product, some new inequalities, partially connected with Reed's Conjecture, will be 
listed separately (Section 4.5), particularly some sufficient conditions for a strengthening of 
Brooks' inequality such that  χ  ≤  Δ  is replaced by  χ  ≤  Δ - 1. 

2.  Notation

Here "graph colouring" always refers to the vertex-coloration of graphs. All graphs considered 
are simple (finite, undirected, without loops and multiple edges). As usual, G is a graph with p 
vertices and q edges, and Gc is its complement. Special graph classes are the complete graphs 
Km, the cycles Cm, and the claw K1,3. Frequently occurring variables are the minimum degree δ 
and the maximum degree Δ, the clique number ω (number of vertices of the greatest clique), 
the independence number β0 and the vertex-cover number α0, the vertex connectivity κ, and 
the edge connectivity κ1. We will also write χ instead of χ(G), etc., if everything is clear.

3.  Overview of the System KBGRAPH

The knowledge-based system KBGRAPH pursues two purposes:

-  analysis of a given class of graphs, and
-  support to proofs of graph theoretical hypotheses.

At the moment, the knowledge base consists of more than 1500 entries. Each such entry has 
the form of a known property of a graph invariant (e.g., ω ≥ 2) or of a relation between graph 
invariants, which may be unconditional (e.g., χ ≥ ω) or conditional (IF … THEN …). Integer, 
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real, and Boolean variables are permitted, as well as logical connectors (AND, OR, NOT). 
Each entry (except for some trivial ones) is equipped with a reference.

About 50 graph invariants are implemented, including all which are mentioned in this paper. 
Graph invariants with particular relevance to chemistry are the greatest, second-greatest, and 
least adjacency eigenvalue,  the greatest  and the second-smallest  Laplacian eigenvalue,  the 
energy of a graph (the sum of the absolute values of all adjacency eigenvalues), and the sum 
of all squared degrees (also called the first Zagreb index). Material on the Wiener index and 
some other variables has been accumulated in the form of paper, but not yet entered into the 
knowledge base.

A problem description consists of a finite list of "user-defined restrictions". These have the 
same  shape  as  the  knowledge-base  entries:  conditional  or  unconditional  equations  or 
inequalities; in practice, the unconditional statements are more frequent. Any property of the 
considered class of graphs which is known in before can be entered here as a user-defined 
restriction (see the example in Section 4.2). In those cases where an attempt of a mathematical 
proof is made, a problem description lists known properties of a hypothetical counterexample. 

In the very onset of the evaluation process, just after reading the user-defined restrictions, an 
internal duplicate of the knowledge base is generated, and this is confronted with the user-
defined  restrictions.  The  main  evaluation  process  works  in  the  usual  mathematical  style 
(forward chaining): known numerical and Boolean values are inserted, and the formulas are 
simplified.  In  this  way,  the  temporary  duplicate  of  the  knowledge  base  is  permanently 
updated. As soon as the IF-part of a conditional statement is found to be true, this IF-part is 
deleted and the THEN-part remains as an unconditional statement. If a THEN-part turns out 
as false, the negation of the IF-part is kept as a true statement. The transitivity of equality and 
of inequality relations is taken into account  (e.g.,  κ ≤ κ1   and  κ1  ≤ δ  implies  κ ≤ δ). A 
special  table  is  set  up  and  permanently  updated  which  stores  the  currently  best  known 
numerical values for the lower and upper bounds of the numerical variables. 

Within the general frame of forward chaining, some specific techniques applied within the 
inference process can be sketched here (only in a selection):

-  rounding in the case of integer variables: e.g.,  χ < 9/2 is replaced by χ ≤ 4;
-  deletion of formulas which are inferior to other entries in the set of transformed formulas;
-  conclusions derived from the monotonicity of arithmetic functions: If, e.g., y = f(x) is a 

monotonically increasing function for  a ≤ x ≤ b  (a < b), then it can be derived that  f(a) < 
f(b). (Monotonicity of a function can be recognized for linear or quadratic expressions and 
for functions of the type y = c*log(x) + d.)

(Further special methods of evaluation are described in Section 5.)

When an inference run has ended, then generally concrete values for some variables have been 
identified, and improved bounds to some numerical variables have been found. These values 
and bounds are displayed to the user. Another part of the intermediate results consists of those 
knowledge-base  entries  which  were  altered  by  the  evaluation  runs.  These  formulas  can 
optionally be displayed on a screen, either completely or in a selective manner by use of the 
retrieval function. After any evaluation run, the user may enter further knowledge – possibly 
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triggered by studying the recent results – and restart the evaluation. This may be repeated 
recursively as long as some improvement will be found by the system.

If, in the case of an attempted proof, a contradiction is found, this means that the underlying 
class of graphs – that is the class of hypothetical counterexamples - is empty, or, equivalently, 
that the hypothesis has been proved. This is signalled to the user, together with data about the 
formulas which led to that contradiction.

KBGRAPH is consequently organized for interactive working. After the end of an evaluation 
run the user has the chance
-  to enter additional knowledge in the same style as the initial user-defined restrictions
-  to edit a single formula (e.g., to simplify an arithmetic expression by hand)
-  to enter the knowledge that some If-part is true or some THEN-part is false
-  to tentatively insert numerical values for a numerical variable (in the case of a contradiction 

it can be possible to lift a lower or to reduce an upper bound).

For each result, a "derivation tree" can be displayed, which shows how the result has been 
derived.  The numbers of  the formulas lead to the references from which formulas of  the 
original knowledge base had been taken. 

Some  advanced  evaluation  techniques  are  implemented,  too,  e.g.,  working  with  case 
distinctions. For Boolean variables, the two alternatives can analysed separately (e.g., regular 
/  not regular);  in the case of a numerical variable, its domain is decomposed into partial 
intervals  (see an example in  Section 4.2).  There can be an identical  improvement for  the 
different cases,  which had been detected in quite distinct ways of derivation.  (For further 
advanced evaluation techniques see Sections 4.2 and 5.2.)

A characteristic phenomenon appearing in evaluation processes can be dubbed  knowledge 
propagation: improved knowledge about one variable is likely to advance the knowledge about 
some other variables. Inspection of the ways in which surprising results come up suggests the 
term  "crossword-puzzle  phenomenon".  When  a  crossword  puzzle  is  solved,  a  single  new 
finding can trigger a "chain reaction" of further new findings, such that finally entries for 
distant places will be found. Hence any raising of a lower or shrinking of an upper bound can 
be considered a chance for further progress. Furthermore, some conditional formulas will be 
activated as soon as a bound in a condition will be reached.

The system supplies improved knowledge about the considered class of graphs, in particular: 
exact values for some graph invariants, sharper bounds for most of the other variables, and 
restrictions in the form of equations or inequalities to be fulfilled by graph invariants. If no 
proof is derived (which is the regular case for long-standing graph theoretical conjectures), 
then the new knowledge about properties of a counterexample may simplify the remaining 
task.

4.  Reed's Conjecture
4.1  Problem Statement

Brooks (1941) proved that for all connected graphs the inequality 
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        χ  ≤  Δ + 1                                                                                                                        (2)

holds, with equality if and only G is a complete graph or an odd cycle (here only the case of 
connected graphs with  χ ≤ Δ  is of interest). This was strengthened by Reed (1998, 1999), 
whose conjecture was quoted above as (1). Neither a proof nor a counterexample are known. 
This conjecture is trivial for ω = Δ and for ω = Δ + 1. Reed (1998) gave a proof for graphs 
with a maximum degree Δ = p - 1. A proof for all line-graphs was presented at a conference in 
Berlin (June 2005, see King et al. (2005)); this proof stood in the context of a harder claim on 
multi-edge  graphs.  A  quick  proof  for  line-graphs  -  restricted  to  simple  graphs  -  will  be 
obtained below as a by-product (Section 4.2, step 2). Some contributions in two recent papers 
(Rabern 2006a, b) will be compiled below (Section 4.3).

4.2  A First Attempt with Reed's Conjecture

Unless otherwise stated, G is to denote a counterexample to Reed's Conjecture. It is our goal 
to find more and sharper constraints which the class of counterexamples will have to fulfil.

Step 1:  We can restrict our study to colour-critical graphs with chromatic number χ (χ-critical 
graphs). Every graph with chromatic number χ contains a χ-critical subgraph with the same 
number of vertices. If such a graph obeys (1), then in any other graph generated from it by 
inserting some edges, Δ and ω can only remain constant or increase, such that (1) will remain 
valid. So we can make use of the known properties of colour-critical graphs. (The property 
"colour-critical"  cannot  be  found automatically,  but  it  is  implemented  in  the  system as  a 
Boolean variable and it will be used if stated by the user.)

Step 2:  By inserting  ω = χ  and  ω = χ - 1  into (1), it turns out that (1) is fulfilled for these 
values. Hence G has to satisfy the constraint

        χ  ≥  ω + 2                                                                                                                        (3)

Some consequences of this property are stored in the system. Furthermore, it is known from 
the literature (Kierstead and Schmerl 1986) that graphs obeying (3) must contain K1,3 and/or 
K5-e as an induced subgraph. These graphs are forbidden induced subgraphs for line-graphs, 
and so it is quickly proved that (1) holds for line-graphs. 

Here the restriction (3) was found by the user. In principle, it would be possible to start a 
program run without entering (3) as a user-defined restriction – the program would be able to 
exclude  ω =  χ  and  ω =  χ - 1  in later phases. But by doing so, the program run would 
become longer, and the intended demonstration would become rather clumsy. Furthermore, it 
should also be shown that the user's additional prior knowledge can be entered here.

Step 3: Next we will check whether  χ = ω + 2,  ω = χ - 2  is possible. Since counterexamples 
are studied we have

        χ  >  ⎡(Δ + ω + 1)/2⎤ 

or equivalently
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        χ  >  (Δ + ω + 1 + ε)/2,
        χ  >  Δ - 1 + ε

with ε = 1 if Δ + ω is even, and ε = 0 if Δ + ω is odd. The case ε = 1 must be excluded since 
here χ ≤ Δ.  Only the case ε = 0 remains.  Then χ = Δ, and χ = ω + 2 implies χ ≡ ω (mod 2), 
Δ ≡ ω (mod 2),  Δ + ω ≡ 0 (mod 2),  ε = 1, contrary to ε = 0. Hence χ = ω + 2 is excluded, and 
with (3) we obtain

        χ  ≥  ω + 3                                                                                                                        (4)

This derivation cannot be accomplished by the system.

Step 4: As a next step we can compile the user-defined restrictions:

R1:  χ  >  ⎡(Δ + ω + 1)/2⎤
R2:  Δ  ≤  p – 2
R3:  colour-critical
R4:  χ  ≥  ω + 3

Here R1 is the negation of (1) since we are looking for a counterexample. R2 is a consequence 
of Reed's additional restriction as cited above. R3 was explained before (Step 1), and R4 goes 
back to Step 3. 

Step 5: With these user-defined restrictions a first evaluation run is started. Among the results 
only two points are worth reporting: a counterexample G is not completely multipartite, and it 
has  p ≥ 11. The latter finding is mainly due to a theorem by Nenov (1998): here χ ≥ 5, and for 
ω ≤ 3 and p ≤ 10 it would follow that χ ≤ 4; for omega ω ≥ 4, with χ ≥ 7, the derivation is 
different.

Step 6: After the end of the first standard evaluation run, the special evaluation technique 
"working with case distinctions" is activated. We consider the complete case distinction {ω = 
2,  3,  4,  ≥ 5}, which means that the program will consecutively (but independently) handle 
the four cases

        ω = 2,   ω = 3,   ω = 4,   ω ≥ 5.

A selection of the results is given by the table:

        ω =      2      3      4      ≥ 5
        p ≥     22    12    13      15
        q ≥     47    34    43      58
        χ ≥       5      6     7         8
        γ ≥       2      1      2        2

where γ is the orientable genus. First, we notice a little improvement from  p ≥ 11  to  p ≥ 12. 
The lower bound p ≥ 22 for ω = 2 can be traced back to a result by Jensen and Royle (1995): a 
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graph with ω = 2 and χ = 5 has p ≥ 22 (this lower bound also holds for χ ≥ 6).For the lower 
bounds to q, there is quite a lot of inequalities in the knowledge base, some of which also use 
parameters like  ω and  Δ; one of the most efficient lower bound for q in the case of colour-
critical-graphs was found by Kostochka et al. (1999, see Section 4.5, nr. 2). The lower bounds 
for χ follow from (4).

In three of the four cases we have  γ ≥ 2. Before we proceed to the case with  γ ≥ 1, we can 
study the functioning of the program module "working with case distinctions".  The same 
result,  γ ≥ 2, was derived in three different ways for the three cases (at the same time, it can 
be noticed here that after a program run the derivation of each result can be displayed). In this 
particular case, we can identify the underlying knowledge-base entries:

-  Case 1,  ω = 2: 
        IF  γ ≤ 1  and  ω = 2  THEN  χ ≤  4  (Kronk 1969)
-  Case 3:  ω = 4: 
        IF  χ ≥ 7  and  ω ≤ 6  THEN  γ ≥ 2  (Thomassen 1994)
-  Case 4:  ω ≥ 5:
        IF  γ ≤ 1  THEN  χ ≤ 7  (Kronk 1969)

Step 7: In view of the preliminary lower bounds for  γ,  the user may decide to handle the 
troublemaker – Case 2 with  γ ≥ 1 – separately. To this purpose, a new program run is started 
for Case 2 with the "hypothesis"  γ = 1 as a new user-defined restriction. This program run 
uses all known results for this case and all restrictions defined earlier, particularly  ω = 3  and 
χ ≥ 6. Mainly on the basis of a formula by Dirac (1952), the program supplies  χ = δ = Δ = 6, 
such that G would be regular. But according to Gould (1988, p. 247), a colour-critical graph 
with  δ ≥ 3,  δ =  χ  cannot be regular. This contradiction, which is displayed to the user, 
excludes  γ = 1, and so  γ ≥ 2  has been proved for this case.

Just to illustrate the flexibility of the system, we show an alternative proof for γ ≥ 2 in Case 2: 
a "semi-automatic", computer-assisted proof, which starts from the known facts  ω = 3  and  χ 
≥ 6. The retrieval function is activated, and as a response to the query "χ and  γ", about 20 
formulas containing  χ and  γ are  displayed on the screen.  Stimulated by a formula due to 
Thomassen (1994) the user can look up the original printed version. According to this source, 
most of the graphs with  γ = 1  have  χ ≤ 5, and hence can be ignored here. Two exceptional 
graphs have  ω ≥ 4,  contrary to ω = 3. For the third of Thomassen's exceptional cases, one can 
combine the fact that here  p ≥ 12  with findings by Albertson and Hutchinson (1980), with 
the consequence that also this last exceptional graph can be omitted. So we derived that G has 
γ ≥ 2, or, in other words, that (1) holds for planar and for toroidal graphs.

4.3  Contributions from the Theory of Graph Associations

The following inequalities, valid for all graphs, are taken from two papers recently published 
or  just  under  the  press  (Rabern  2006a,  b).  Through the  concept  of  graph associations,  a 
theorem is found which permits us to derive new bounds for χ by choosing special types of 
induced subgraphs.
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Definition: Given a graph G and non-adjacent vertices a and b, we write G/[a,b] for the graph 
obtained  from G by  associating  (i.e.  identifying)  a  and  b  into  a  single  vertex  [a,b]  and 
discarding multiple edges.

Theorem 1: Let G be a graph. Then, for any induced subgraph H of G

        χ(G)  ≤  χ(H) + (p(G) + ω(G) – p(H) – 1)/2                                                                    (5)

There are two immediate applications. If G is connected, and if the subgraph H is identified 
with a longest induced path Pm of G  (m ≥ 3, such that the diameter  d(Pm)  =  d(G)  =  m - 1  ≥ 
2), then (5) leads to

        χ(G)  ≤  (p(G) + ω(G) – d(G) + 2)/2                                                                                (6)

Next, suppose that G has  g ≥ 5  (where the girth g is the length of the shortest cycle), and take 
for H a subgraph induced by a shortest cycle together with its neighbourhood, then

        χ(G)  ≤  (p(G) – g(G)(δ(G) - 1) + 7)/2                                                                             (7)

Theorem 2: Let G be a graph. Then

        χ(G)  ≤  (p(G) + ω(G) - β0(G) + 1)/2                                                                                (8)

or equivalently (with Gallai's relation  α0 + β0 = p)

        χ(G)  ≤  (ω(G) + α0(G) + 1)/2                                                                                          (9)

For triangle-free graphs it follows that

        χ(G)  ≤  (p(G) – Δ(G) + 3)/2                                                                                           (10)

The following three inequalities are related to Reed's Conjecture. It was found that (1) holds 
for decomposable graphs, that is for graphs G with a disconnected complement  Gc, such that 
G can be written as a direct sum  G = A + B  (A + B  means that each vertex of A is connected 
with each vertex of B). If G is a counterexample to (1), then Gc has a perfect matching if p is 
even; for odd p, Gc is nearly matching-covered, that is,  Gc-v  has a perfect matching for any 
vertex v (see also Stehlík (2003)); furthermore Gc is bridgeless, that is,  κ1(Gc) ≥ 2.

Any counterexample to (1) must satisfy the inequalities

        χ(G)  ≤  ⎡p(G)/2⎤                                                                                                            (11)
        Δ(G)  ≤  p(G) – sqrt(p(G) + 2β0(G) + 1)                                                                        (12)
        β0(G)  ≥  3                                                                                                                       (13)

4.4  Example for an Advanced Evaluation Technique
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As  remarked  before,  a  proof  for  Reed's  Conjecture  has  not  yet  been  found.  Some 
experimenting  with the  program (and material  from literature)  suggest  that  there  are  two 
graph classes for which a solution may seem relatively easy: the triangle-free graphs and the 
claw-free graphs.  The following episode is  to show – based on an example – one of the 
advanced features of the program, which the user can apply after the usual inference runs.

Triangle-free  graphs  are  characterized  by   ω =  2.  After  an  ordinary  program  run  (for 
counterexamples to Reed's Conjecture), including the new constraint  ω = 2, a run with a case 
distinction (cf. Section 4.2, step 6) followed. The case distinction  {g = 4,  g ≥ 5}  led to the 
result that  γ ≥ 2  for  g = 4, and  γ ≥ 3  for  g ≥ 5. This suggests a test whether  γ ≥ 3  could be 
proved for  g = 4, too. The output of a new program run with the recent constraints  g = 4  and 
γ = 2  consists of fixed values for nine numerical variables (e.g., χ = Δ = 5), whereas for all 
other numerical variables both lower and upper bounds are supplied.

So this is an ideal candidate for a program function called "automatic insertion": for each 
integer variable which is constrained from both sides, all admissible values are inserted into 
the formulas of the knowledge base, and a contradiction close to a bound leads to an increase 
of a lower or a decrease of an upper bound (an extension to intervals bounded at one side and 
to real variables can only be mentioned here, cf. Section 5.2). In the concrete case, e.g., the 
interval  22 ≤ p ≤ 86  was replaced by  22 ≤ p ≤ 56, and  47 ≤ q ≤ 176 was converted into  47 ≤ 
q  ≤ 116;  in  a  similar  way,  the  inclusions  for  most  of  the  other  integer  variables  were 
strengthened.

Other advanced techniques of evaluation were applied to Reed's Conjecture, too, but in this 
special  case they did  not  lead to  significant  progress.  Therefore these  techniques  will  be 
handled in a general form in Section 5.2; a summary of partial results is to follow in Section 
4.6.

4.5  Miscellaneous Inequalities

Some related inequalities, vastly scattered in literature, should be registered here (with a short 
derivation  or  reference).  The  following  formulas  were  found  by  the  retrieval  function  of 
KBGRAPH upon the query  "χ and  Δ".  Some of  them have immediate  consequences  for 
Reed's Conjecture. (The references are supplied by the system; a selection and some editing 
for the sake of easy reading were required.)

1.  Brooks' well-known result, that all connected graphs (except for complete graphs and odd 
cycles) satisfy  χ ≤ Δ, suggests to ask for conditions under which the stronger property 

        χ ≤ Δ - 1                                                                                                                          (14)

will hold. Some sufficient conditions are: 

a.)  If  ω = 2  then  χ ≤ 2(Δ + 2)/3 + 1
      (Stacho 2001)
      →   ω = 2  and  Δ ≥ 8  implies (14).
b.)  If  ω ≤ 3  then  χ ≤ 3(Δ + 2)/4
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      (Borodin et al. 1977)
      →   ω ≤ 3  and  Δ ≥ 7  implies (14).
c.)  If  Δ ≥ 7  and  ω ≤ (Δ - 1)/2  then  χ ≤ Δ - 1
      (Borodin et al. 1977)
d.)  If  χ ≥ ω + 1  and  Δ > (p + 1)/2  then  χ ≤ Δ - 1
      If  χ ≥ ω + 1  and  Δ ≥ 9  and  Δ > p/2  then  χ ≤ Δ - 1
      (Beutelspacher and Hering 1983)
e.)  If G has no C4 (induced subgraph or not) then  χ ≤ 2Δ/3 + 2
      (Catlin 1978)
      →   If G has no C4 then  Δ ≥ 7  implies (14). 
f.)  If G is colour-critical, and  κ = 2  with a cutset {u, v}, then u and v are non-adjacent, and
      Δ ≥ (3χ - 5)/2  (Gould 1988, p. 227)
      →   Under these conditions  Δ ≥ 6  implies (14).

2.  For colour-critical graphs, given χ and p, a good lower bound for q is required. At present, 
the best such bound is given by Kostochka et al. (1999), under the reservation that two classes 
of  exceptional  graphs  are  excluded;  this  restriction  can  be  by  expressed  by  the  three 
"or"-connected properties:
      If G is colour-critical and  4 ≤ χ ≤ p - 2  and  (2χ ≠ p + 1  or  β0 ≥ 3  or  ω < (p – 1)/2)
      then  q ≥ p(χ - 1)/2 + χ - 3

3.  If G contains neither C4 nor 2K2 as induced subgraphs, then  χ(G) + χ(Gc) ≥ p(G)  and  χ
(G) ≤ ω(G) + 1  (Blázsik et al. 1993). So, due to (3), also for this special class of graphs (1) 
holds.

4.6  Summary of Partial Results

Reed's Conjecture was proved for the following classes of graphs:

-   line-graphs
-   graphs with  χ ≤ ω + 2
-   completely multipartite graphs
-   planar and toroidal graphs
-   decomposable graphs
-   {C4, 2K2}-free graphs.

In  any  counterexample,  variables  have  to  satisfy  the  following  lower  bounds  (a  small 
selection):  p ≥ 12,  q ≥ 34,  χ ≥ 5,  δ ≥ 4,  Δ ≥ 5,  β0 ≥ 3,  α0 ≥ 8,  γ ≥ 2. Necessary properties 
of the complement Gc are compiled in Section 4.3.

5.  Further Details on the System KBGRAPH
5.1  Starting Point and General Properties

The project KBGRAPH was started in 1985, stimulated by the appearance of a compilation of 
relations between graph invariants (Brigham and Dutton 1985). This list with 262 entries –an 
offspring of the project INGRID - formed the core of the knowledge base in the first version 
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of  KBGRAPH.  A  publication  on  INGRID  (INteractive  GRaph  Invariant  Delimiter)  had 
appeared earlier (Dutton and Brigham 1983); a comprehensive report was finished in 1986, 
but printed later (Dutton, Brigham and Gomez 1989). Apparently, the project INGRID was no 
more continued after the publication of a supplement to the compilation quoted before (nr. 
263 – 458; Brigham and Dutton 1991).

Although KBGRAPH owes much to the publications just  cited, it  has been independently 
developed further. Whereas forward chaining (Section 3) has been maintained as the central 
evaluation strategy, KBGRAPH is now characterized by a quantitative increase (number of 
graph invariants and size of the knowledge bases) and by a series of novel features, mainly 
related to

-  the user interface and the options for flexible post-processing,
-  the advanced evaluation techniques (Section 5.2),
-  the options for an external control of the inference process (Section 5.3).

At the moment,  51 graph invariants are implemented.  The three knowledge bases include 
about 2000 entries: about 1500 in the "main knowledge base", and the rest in two "auxiliary 
knowledge  bases"  required  for  one  of  the  special  evaluation  techniques  (Section  5.2). 
According to individual requirements, graph invariants can be newly defined, cancelled, or 
renamed. The knowledge-base is permanently updated: adding, deleting or altering of entries 
is possible. From time to time a single entry is replaced by a stronger version.

Based upon forward chaining as the central inference method (thus following the example of 
Brigham and Dutton),  the inference mechanism was programmed  ad hoc, to  adapt  to the 
specific requirements of working with formulas (no foreign software was used). Options for 
an external control of the inference will be outlined in Section 5.3.

After  the  end of  an  inference  run,  the  user  can  enter  additional  knowledge and start  the 
inference process again, or apply one or the other of the "advanced evaluation techniques" 
(Section 5.2); all this can be done repeatedly, as long as some progress is expected. After the 
end of each inference run, it is possible to display a derivation tree for each single result, and, 
in the case where more than one way of derivation led to the same single result, this fact is 
disclosed  to  the  user,  too.  So  all  findings  can  be  checked  and  rewritten  in  the  usual 
mathematical style.

5.2  Advanced Evaluation Techniques

After  an  ordinary  program run  the  user  may decide  to  use  one  of  the  following special 
techniques, which are all optional:

-  working with case distinctions
-  automatic insertion of values
-  editing of a formula
-  transition to a "related graph".

Working with case distinctions was already explained and illustrated in Section 4.2 (step 6). 
The user is free to define a decomposition of the domain of a variable (up to 9 segments). No 
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closed interval is required – a decomposition can have the shapes, e.g.,  ω = {2, 3, ≥ 4}  or  {3 
≤ Δ ≤ 6,  Δ ≥ 7}. The decomposition into sub-classes, sub-sub-classes, … is supported by the 
system up to 4 hierarchy levels; within the same hierarchy level up to 9 descendants of the 
same direct ancestor are permitted. If the same improvement is achieved for all subcases of the 
same case, then this new knowledge can be "reached upward" to the next common ancestor. 
The idea behind this – supported by experience – is the chance that the same improvement can 
be derived in different ways within the different subcases. Optionally, the system can make 
proposals for plausible case distinctions.

The automatic insertion of values was exemplified in Section 4.4. It should be supplemented 
here that no closed interval is required. If an integer variable is bounded only from one side, 
then the tentative insertion of numerical values starts at that bound, and continues as long as 
the formula just considered leads to a contradiction and thus permits to narrow that bound. For 
the case of very large intervals and/or real variables, heuristic procedures exist, which supply 
preliminary data to the user, who has to decide whether a proposed problem reduction seems 
plausible.

Editing is possible for each of the formulas which were transformed by the inference run. The 
user can

-  simplify an arithmetic expression "by hand",
-  insert numerical or Boolean values for a variable,
-  delete an IF-part if it is considered true,
-  replace a THEN-part by "false",
-  delete a formula (e.g.,  if  it  is recognized that an IF-part cannot be satisfied, or that an 

inequality is inferior to another one – the latter point is supported by the system).

Transition to a "related graph": Some successful proofs in graph theory show that a transition 
from the given class of graphs to  another class - called "related graphs" for short - may be 
advantageous. Such a transition can be defined by any unique unary graph transformation. 
There  are  formulas  which  connect  variables  of  the  original  graphs  with  variables  of  the 
"related graphs" - by the example of a transition to the complementary graph: theorems of the 
Nordhaus-Gaddum type or formulas like  ω(G) =  β0(Gc).  After an ordinary inference run, 
which yields new information on the original class of graphs, the user may switch over to a 
class of "related graphs" in order to start an inference process with respect to that second 
class.  Then  the  new  knowledge  about  the  second  class  of  graphs  can  be  automatically 
transferred back to the original class of graph. The transitions to complementary graphs and to 
line-graphs are implemented in the system. The required "interconnection knowledge bases" 
exist; these are the two "auxiliary knowledge bases" mentioned before. The user is free to 
define further types of derived graphs; in this case, of course, a corresponding interconnection 
knowledge base must be set up.

5.3  Options for an External Control of the Inference Process

The essential options for an external influence on the inference process are:

-  masking
-  ranking of the variables

- 456 -



-  working with or without a derivation tree
-  partitioning of the knowledge base.

Masking: Each graph invariant can be "masked", that is, it will be treated as inexistent during 
the same session. This tool is mainly used if the user is sure that a certain variable will not 
contribute to the solution. Also each single statement can be masked: so it is possible to make 
an inference run "with or without use of the 4CC".

Ranking of the variables: A ranking, i.e. a linear order, of all graph invariants is defined. In 
the  case  where  an  equality  between  two  numerical  variables  is  derived  in  the  inference 
process, it is ruled by this ranking whether x will be substituted for y or vice versa. This 
ranking also has an influence upon the order within output lists. The user can alter the ranking 
individually and store the new ranking for the future.

Working with or without a derivation tree: The user can decide whether or not a derivation 
tree is to be built up during an inference run. The derivation tree is required if the user later on 
wants  to  get  information  about  the  way how a  certain  result  had  been  derived.  Working 
without the derivation tree will cut the program runtime.

Partitioning of the knowledge base:  In view of the extended knowledge bases, strategies are 
recommendable to speed up the inference process. The main knowledge base is partitioned in 
the following way. Each of its entries is assigned to one of three subsets whose members may 
be named "very important", "important", and "less important". In the beginning, only the first-
class statements are used; in later inference runs also those in the second class will join, until 
finally all entries in the knowledge base will be active. In this way, some useful intermediate 
results can be achieved already in earlier  inference runs,  with the consequence that many 
expressions can be simplified rather soon. Four different strategies for a partitioning of the 
knowledge base were empirically tested. It was found that in most cases this technique leads to 
a considerable reduction of computing time. The user may choose among these four strategies 
– anyway, one of them is predefined as a standard (according to the empirical results). For the 
details only a reference can be given (Gernert 1993).

5.4  Technical Details, References, Availability

The implementation of the system started in 1985 and continued until 2000. Since 2000, no 
further  revision  of  the  program  was  possible,  but  the  knowledge  bases  are  permanently 
updated. Due to side conditions about the year 1985 (students' knowledge and equipment, also 
some administrative rules), the system was programmed in PASCAL (in the final stage about 
30000 lines of code) and on the basis of MS-DOS; the menus are in German. A transfer to 
modern computers is possible, and has already been successfully performed.

Further  information,  e.g.,  on  examples  of  application,  criteria  for  the  selection  of  graph 
invariants and formulas, parameter dependence of required computer runtime, and strategies 
to speed up computer runs with large knowledge bases, can be found in two papers listed 
below (Gernert 1989, 1999, with many references). The executable program is available for 
everybody (email: t4141ax@mail.lrz-muenchen.de), as well as the published and unpublished 
expertise acquired in many years of practical work with the system.
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6.  Short Outlook

Future research on Reed's Conjecture may start from the abundant literature on colour-critical 
graphs, of which only a small proportion was used until now. Another promising approach can 
be based upon the complements of possible counterexamples – some structural properties of 
these complementary graphs are compiled here.

The  practical  use  of  the  system  KBGRAPH  is  going  on.  The  knowledge  bases  are 
permanently updated; but nevertheless the system should by programmed totally from the 
beginning,  free  from  restrictions  imposed  by  earlier  hardware,  based  upon  a  modern 
programming language and operating system, and exploiting the expertise accumulated over 
the years with respect to design, updating, and practical work.

Note added in proof:  Meanwhile, by methods as shown above (Sections 4.2 and 4.4), the 
open case p = 12 could be settled. Reed's Conjecture is valid for all graphs with at most 12 
vertices.
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