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Abstract

This article is a brief description of the main features of the
Groups & Graphs software package.

1. Introduction

Groups & Graphs is a software package for graphs and related discrete
structures, and their automorphism groups. It began as software for
graph editing and display, for computing automorphism groups, and com-
paring graphs for isomorphism. Today it includes algorithms for many
aspects of graph theory, and related areas, including digraphs, graph em-
beddings on the plane, projective plane, sphere, and torus, as well as
3D polyhedra, projective configurations, and also fractals in the complex
plane. It is useful for studying special graphs important in mathematical
chemistry, such as fullerenes. Such molecular graphs can be drawn either
on the plane, or on the surface of the sphere. Symmetric drawings of
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graphs can often be automatically constructed. The number of Hamil-
ton cycles can be counted, and maximum matchings can also be found.
Kirchhoff or Laplacian matrices can be exported for finding eigenvalues
with programs like Mathematica or Matlab. Groups & Graphs also in-
cludes many algorithms for permutation groups, with interaction between
an automorphism group, and the graph/digraph it acts on.

The user interface is mostly menu, window, and mouse driven. Each
graph is drawn in its own window. A number of graph editing tools are
available. Groups & Graphs includes a number of algorithms for drawing
graphs, including a “draw-symmetric” feature for finding drawings illus-
trating various symmetries, and also algorithms for drawing graphs on
the plane, sphere, projective plane, and torus. Batch processing is also
available, where files containing many thousands of graphs can be input
for fast isomorphism testing. Graphs can be input either in G&G binary
format, or in an ascii text format.

Figure 1, A graph drawn on the sphere

A brief description of the main algorithms in Groups & Graphs fol-
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lows. The various tools for editing and constructing graphs and other
mathematical objects are not described here, but descriptions can be
found in the software, which can be downloaded from http://bkocay.cs.
umanitoba.ca/G&G/G&G.html. Groups & Graphs currently runs on the
OS X operating system. A GNU version for unix of the Hamilton cycle
algorithm is also available.

2. Graph Algorithms

Automorphism Group

The automorphism group of a graph is computed by an algorithm
described in Kocay [6]. Once the automorphism group of a graph
has been computed, a certificate that identifies the isomorphism type
of the graph is available. To compare large files of graphs for iso-
morphism, and to remove duplicates, it is only necessary to sort the
file of certificates. The automorphism group is also used for finding
symmetric drawings of a graph.

Hamilton Cycles

The “extended multi-path algorithm” is used to determine whether
a graph is Hamiltonian. It is described in Kocay [9]. As HamCycle is
an NP-Complete problem, there are graphs for which this algorithm
must take a long time. These are usually non-Hamiltonian graphs.
The algorithm is quite effective for most Hamiltonian graphs of rea-
sonable size. It can be used to simply find a single Hamilton cycle,
or to count the number of Hamilton cycles, or to save all Hamilton
cycles to a file. It can also determine equivalence classes of Hamilton
cycles, up to isomorphism.

Long Paths

If a graph is non-Hamiltonian, or too large for the HamCycle algo-
rithm, an algorithm to find a long path is available, based on the
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“crossover technique”, described in Kocay and Li [7]. There are no
guaranteed bounds on the length of a path that it will find, but it is
extremely fast.

Planarity

The algorithm used to determine whether a given graph is planar
is based on the Hopcroft-Tarjan algorithm [5,16]. Once a graph is
found to be planar, its planar dual is constructed. A planar drawing
can also be constructed.

Maximum Matchings

The Edmonds-Karp algorithm [13] is used to find a max-matching
in a graph.

Line Graph, Inverse Line Graph, Graph Products

The line-graph and a number of graph products can be computed,
including the direct product and lexicographic product of graphs.
The inverse line graph can also be computed – if a graph G is the
line graph of some graph H, then H can be constructed.

k-Factors

A k-factor of a graph G is a spanning subgraph of degree k. For
example, a perfect matching is a 1-factor. The algorithm used to
find a k-factor, where k ≥ 1, is based on the technique of balanced
flows, described in Kocay and Stone [8].

Subgraph Counts

Given a graph G, the numbers of subgraphs isomorphic to various
small graphs are available (eg., triangles, quadrilaterals, other small
cycles or small cliques).

Separating Sets

A separating set of a graph G is a set of vertices U such that G−U is
disconnected. This is also called a vertex-cut . A minimum separating
set is found using a max-flow algorithm.
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Graph Colouring

Two graph colouring algorithms are available – a breadth-first and a
depth-first colouring. They are not optimal in any sense. If a graph
is known to be planar, a 4-colouring algorithm is available. It is
described in Carr and Kocay [2].

Draw Symmetric

Given a graph G, whose automorphism group aut(G) has been com-
puted. An element σ ∈ aut(G) can be selected, and a drawing of
G illustrating the symmetry σ can be constructed, when possible.
The algorithm for doing this is described in Carr and Kocay [3].
Alternatively, a random σ ∈ aut(G) can be chosen, and a drawing
constructed based on σ.

A number of other algorithms for graphs are available, which are not
described here.

3. Digraph Algorithms

Several of the graph algorithms are also available for digraphs. Some
algorithms specific to digraphs are also available.

Automorphism Group, Long Paths, Line Graphs, and Sub-

graph Counts

These graph functions are also available for digraphs. The subgraphs
counts are available for a number of small digraphs, such as transitive
tournaments, diamonds, and directed cycles.

Strong Components

A strong component of a digraph is a maximal subgraph with the
property that there is a directed uv-path connecting any two vertices
u, v in the subgraph. The algorithm used is the depth-first search
algorithm of Tarjan [15].
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Converse

The converse of a digraph is obtained by reversing the orientation of
each edge.

4. Group Algorithms

All the groups constructed by Groups & Graphs are permutation
groups. They are usually constructed as automorphism groups of discrete
objects. A group is represented by a recursive data structure that is built
using the Shreier-Sims algorithm [1,6]. Once a group G acting on a set
X has been constructed, a number of subgroups and quotient groups can
be found. If σ ∈ G and u ∈ X, then uσ denotes the image of u under
the permutation σ. Permutations are multiplied from left to right, so
that στ means “first σ, then τ”. The orbit of u is represented by uG. A
group window shows the generators and orbits of G. Clicking in an orbit
highlights the points of that orbit in the associated graph window. The
subgroups of G which Groups & Graphs can construct are as follows.

Stabilizer

Given u ∈ X, the stabilizer of u is Gu = {σ ∈ G | uσ = u}.
Centralizer

Given σ ∈ G, the centralizer of σ is Zσ = {τ ∈ G | στ = τσ}.
Centre

The centre of G is Z = {τ ∈ G | στ = τσ,∀σ ∈ G}.
Sylow Subgroups

Given a prime p, a Sylow p-subgroup of G is a subgroup of order pk,
where k is as large as possible.

Commutator Subgroup

Given σ, τ ∈ G, the commutator of σ and τ is [σ, τ ] = στσ−1τ−1.
The commutator subgroup is generated by all the commutators of
elements of G.
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Once a subroup H of G has been constructed, the cosets of H in G can
also be found. Given σ ∈ G, a right coset of H is a set Hσ = {τσ | τ ∈ H}.
A number of coset graphs can be constructed, as well as quotient groups.
The kernels associated with the quotient groups are also constructed.

Normalizer

Given a subgroup H of G, the normalizer of H is N(H) = {σ ∈
G | Hσ = σH}.
G mod H

The elements of G permute the cosets of H according to the rule
(Hσ)τ = Hστ . Thus, the elements of G induce a permutation of the
cosets of H. The resulting group is denoted G mod H.

Orbit Constituent

Given an orbit uG, the orbit constituent of G is the quotient group
obtained by ignoring the other orbits of G.

Pair Group and Edge Group

Given u, v ∈ X and σ ∈ G, (u, v)σ = (uσ, vσ) and {u, v}σ = {uσ, vσ}.
Thus G induces a group acting on ordered pairs (the pair group of
G) and on unordered pairs (the edge group of G).

Symmetrize

This function is used for constructing graphs with a given group G

acting as a group of symmetries. Given G acting on a set X, where
|X| = n. Create a graph window containing n points, and add an
edge {u, v} to the graph. The Symmetrize command will construct
the orbit {u, v}G, and add all these edges to the graph. This can be
used for constructing circulant graphs and other symmetric struc-
tures, such as block designs, via their bipartite incidence graphs.
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Coset Graphs, Double Coset Graphs, Cayley Graphs

Given a subgroup H of G, a Schreier coset graph is formed by taking
the right cosets of H as the vertex set, and edges determined by a
set of generators of G mod H: given a generator τ of G, there is a
directed edge connecting cosets Hσ and Hστ . If H is the identity
subgroup, then the Schreier coset graph is a Cayley graph. A double
coset of H is a set HσH, where σ ∈ G. It is a union of one or more
right cosets of H, say HσH = Hσ1 ∪ Hσ2 ∪ . . . ∪ Hσk. A double
coset graph of H for the double coset HσH is formed by taking
the right cosets of H as the vertex set. Each coset Hτ is joined to
Hσ1τ,Hσ2τ, . . . , Hσkτ .

Block Systems

Given an orbit uG of G, it is often possible to partition the orbit into
sets U1, U2, . . ., Uk such that every σ ∈ G induces a permutation of
the Ui; that is, each Ui is mapped entirely to a Uj . Such a partition
of the orbit is called a block system. Groups & Graphs can find
a block system if one exists, and the quotient group acting on the
blocks.

A number of other algorithms for groups are available, which are not
described here.

5. Graph Embeddings

An embedding of a graph G on a surface Σ is a drawing of G on Σ
such that no edges cross. If the surface is then cut along the edges of
G, the surface is decomposed into regions called the faces of G. An em-
bedding is said to be a 2-cell embedding if every face is equivalent to an
open disc. Groups & Graphs requires that all embeddings constructed are
2-cell embeddings. It can draw graphs embedded on the plane, sphere,
projective plane, and torus. It can determine whether a given graph is
planar, but currently it does not have the ability to determine whether
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an arbitrary graph is projective or toroidal. However, such graphs can
be constructed by G&G and drawn. For small graphs, all distinct em-
beddings on the torus or projective plane can be found by an exhaustive
back-tracking algorithm. Effective drawing algorithms for graphs on the
sphere and torus have also been implemented. The book by Kocay and
Kreher [10] contains a chapter on graph embeddings.

Dual Graph

The dual graph of an embedding G, is a graph whose vertices are
the faces of G. Adjacent faces of G are adjacent vertices of the dual.
Dual graphs can be constructed for planar, spherical, projective, and
toroidal embeddings.

Graph Layout

Algorithms for finding a drawing of a graph on the plane, sphere,
projective plane, and torus [11] are available.

Truncation

Given an embedding of G on Σ, the truncation of G is formed by
replacing each vertex v of G by a cycle, determined by the cyclic
order of the edges incident on v. This results in an embedding of a
larger graph.

A number of other algorithms are available such as the double cover for
projective graphs; converting planar graphs to embeddings on the torus,
sphere, or projective plane; drawing a planar graph with an arbitrary
face as the outer face; rotating a sphere graph; constructing the medial
digraph.
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Figure 2, The unique embedding of the Petersen graph on the torus

6. Projective Configurations

An n3 configuration (see Hilbert and Cohn-Vossen [4]) is a set P of n

points and a set L of n lines such that each p ∈ P is contained in exactly
three lines of L, and each � ∈ L contains exactly three points of P . An
n3 configuration can sometimes be drawn in the projective plane, such
that each � ∈ L is represented by a straight line, and each p ∈ P is the
intersection of three straight lines. There are unique 73 and 83 configu-
rations, neither of which can be represented by straight lines. When an
n3 configuration cannot be represented by straight lines, it can always be
represented by a drawing in which one line is a circle, and the other lines
are straight. G&G can construct drawings for n3 configurations. It can
also find their incidence graphs, duals, and automorphism groups. It can
also move points and lines, while simultaneously preserving all incidences.
Various conics can also be drawn.
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Figure 3, A 93 configuration

7. Polyhedra and Fractals

A polyhedron is represented by the planar graph determined by its
vertices and edges. It is drawn as a 3D graphics object . It can be ro-
tated and scaled, and viewed from varying distances and magnifications.
The platonic solids are available as predefined polyhedra. The duals and
truncations of polyhedra can also be constructed. Polyhedra can also
be constructed from graphs drawn on the sphere, or by finding the con-
vex hull of an input file of 3D points. The incremental algorithm (see
O’Rourke [12]) is used to find the convex hull.

Some fractals in the complex plane can be constructed. They are
useful for studying dynamical systems, or convergence of iterated func-
tions in the complex plane. Fractals are also important in the theory of
computability of real numbers. Given a complex function g(z), where z

is a complex value (eg., g(z) = z2 + c, where c is a complex constant),
the function is iterated:

zn+1 = g(zn)
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starting from some value z0. If the iterations are unbounded, ie., |zn| →
∞, then z0 is said to be in the escape set of g(z). Otherwise z0 is said
to be in the prisoner set. The Julia set of g(z) is the boundary of the
prisoner set. The Mandelbrot set is the set of all complex values c such
that the iterates, starting from z0 = 0, of g(z) = z2 + c are bounded.
See Peitgen, Jürgens, and Saupe [14] for detailed information on fractals.
G&G can construct representations of the Mandelbrot set, as well as Julia
sets for a number of functions g(z). It can also zoom in to observe finer
and finer detail.
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