
FuiGui: A Graphical User Interface for Investigating

Conjectures About Fullerenes

Wendy Myrvold ∗ Bette Bultena Sean Daugherty

Bradley Debroni Sameer Girn Marsha Minchenko

Jennifer Woodcock

Department of Computer Science, University of Victoria,

Victoria, B.C., CANADA, V8W 3P6

Patrick W. Fowler †

Department of Chemistry

University of Sheffield

Sheffield, S3 7HF, UK

Abstract

Fullerenes are all-carbon molecules whose molecular structures correspond to

3-regular planar graphs that have face sizes equal to five or six. FuiGui (FUllerene

Interactive Graphical User Interface) is a Java program under development whose

goal is to aid the exploration of fullerenes and their parameters. This paper describes

FuiGui and the design challenges faced when trying to make a fun and effective

research tool.

1 Introduction

Fullerenes are all-carbon molecules whose underlying structures are planar graphs which

have face sizes equal to five or six. There have been many publications on their chemistry.

∗wendym@cs.uvic.ca, Research supported by an NSERC discovery grant
†P.W.Fowler@sheffield.ac.uk, Supported by the Royal Society/Wolfson Research Merit Award

Scheme

(Received July 31, 2006)

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 58 (2007) 403-422

 ISSN 0340 - 6253

Theoretical aspects of their chemistry and physics are discussed in An Atlas of Fullerenes

[5]. Various properties of the graphs are of interest to chemists. For example, independent

sets play a role in describing the the structure of addition patterns when bulky atoms bond

to the carbon cage [6]. Perfect matchings correspond to the Kekulé structures (double

bonds) in the carbon cage. There are various other parameters, such as the number of

Hamilton cycles, that are of interest from a graph theory perspective.

Our goal is to develop a tool which aids researchers desiring to investigate conjectures

about graph theoretic parameters of fullerene graphs. The new system is called FuiGui

(FUllerene Interactive Graphical User Interface).

This paper describes the design of FuiGui. Although the initial focus is on fullerenes,

there is no reason why the template could not also work for other classes of graphs.

2 Existing Software

Various programs for automated conjecture generation have been written, with Graffiti

being the first to make interesting research conjectures [3, 2]. Larson [13] provides a

survey of these types of systems. Our approach is currently very different from these

types of systems because the goal is to aid the graph theorists in making the conjectures

rather than developing them automatically.

There are also several programs available that enable visualization of graphs and

computation of some of their parameters. The one closest to what we have created is

the CaGe program [11]. For fullerene pictures, this program is superior in many cases

to FuiGui and it offers both 2-dimensional and 3-dimensional views. However, it was

not created to facilitate exploration of fullerene parameters. Also, it is currently only

available on machines running a Bourne-style shell (which rules out most laptops and

personal computers).

Kocay’s Groups and Graphs [12] program is another system which creates nice pictures

of fullerenes. But it is awkward to explore large sets of them as each one is placed in a

file by itself before the pictures are created. Also, this program only has full functionality

on Macintosh systems.

There is a large collection of graph algorithms in the Combinatorica package of Math-

ematica [15]. GRaph INterface (GRIN) [14] is a stand-alone system which allows graph

editing, visualization and computation of some parameters. Various other drawing sys-

tems are also available but do not have the parameter browsing capabilities of FuiGui.

The AutoGraphiX program [1] has a very appealing interface for graphing the ranges

of parameter values which allows easy access to the extremal cases. No similar interface

is currently included in FuiGui but it is being considered for future addition.

- 404 -

3 Using Java

Java was selected as the language for creating FuiGui. It has the disadvantage in that

Java code can run significantly slower than code written in other languages such as C.

However, it has the major advantage that it is very easy and fast to design user interfaces

and draw pictures.

Java has a further advantage in that it is very portable. FuiGui has been run on a wide

variety of computer types (both Mac’s and PC’s) and operating systems (including Win-

dows XP, Solaris, Linux, and Mac OS/X) and there have been no problems encountered

because of porting it to other machines.

CaGe [11] uses a mixture of C and Java in order to take advantage of the interface

capabilities of Java and the speed of C. But this means that it is not as easy to port it to

other systems.

4 Fullerenes

FuiGui requires files of fullerenes for its operation. For an input format, we wanted some-

thing compact so that the system could more easily handle large quantities of fullerenes.

But it is also desirable to have a format which is human readable since this makes it easier

to create the files and to understand input problems. For this reason a format based on

fullerene face spirals (defined below) is used as the fullerene input format.

One way to select a path in an embedded graph is as follows. First, select a direction

(clockwise or counterclockwise) and a starting edge (u, v). When the last edge of the

path being created is (w, x), augment by adding edge (x, y) where y is the first unvisited

neighbor of x which comes after w in the chosen direction. Continue until the last vertex

has no unvisited neighbors. If such a path is a Hamilton path then it is called a vertex

spiral of the embedded graph.

A face spiral of a fullerene is a vertex spiral of its dual. Not all fullerenes have face

spirals. The smallest known example of a fullerene without one has 380 vertices [5, pp.

36-37]. The number of vertices in a smallest fullerene without a face spirals is still an

open question. Gunnar Brinkmann has confirmed that all fullerenes on up to 200 vertices

have face spirals (the result up to 176 is published [9] and he has continued the search

since then).

Face spirals formed the basis of the first algorithm for generating fullerenes [5, pp. 27-

31]. Because not all fullerenes have face spirals, the algorithm will not generate all of them.

However since the approach becomes too slow before reaching the region where face spirals

do not exist, this is not a problem for practical purposes. The spirals can be described by

a sequence of 5’s and 6’s by writing down the degrees of the dual vertices in the order that

- 405 -

they are traversed. The lexicographically smallest face spiral sequence has been selected

by chemists as a canonical form for a fullerene. The nomenclature for the fullerenes is

then derived by sorting all canonical forms for the n vertex fullerenes in lexicographic

order and then using Cn : k to denote the kth n-vertex fullerene. For example, the 1812

different 60-vertex fullerenes are denoted as isomers C60 : 1 to C60 : 1812.

The isolated pentagon fullerenes have a similar notation of Cn : k where it is just the

isolated pentagon fullerenes which are considered. So to avoid confusion, it is necessary to

specify when using this notation if it refers to all fullerenes or just the ones with isolated

pentagons if this is not clear from the context.

Instead of listing a long sequence of 5’s and 6’s to represent a face spiral, it suffices to

specify n and then list the 12 positions in the sequence of the five pentagons (in FuiGui

fullerene files, these positions are numbered starting with 0). For example, the fullerene

in Figure 1 with the face spiral indicated can be specified as:

40 0 1 5 8 9 11 12 14 15 17 19 21.

This is a lexicographically smallest face spiral - cases which start with three pentagons

all short circuit before completing.

The fullerene files for FuiGui consist of spiral sequences of individual fullerenes, typ-

ically one per line. This allows the flexibility to group a set of fullerenes into a file for

easy comparison. Such a group could be for example, all fullerenes of a given order, or

fullerenes of various orders which share a certain property. This flexibility is helpful when

exploring conjectures.

The fullgen program [10] offers formats which are more sparse but we are currently

not using them because they are not human readable. A rotation system (an adjacency

list with the neighbors of each vertex listed in clockwise order) is even easier to manage

from a human perspective. We computed these as well and have been using them for

computing parameters.

There are 285,914 fullerenes on 100 vertices. Listing the pentagon positions takes

roughly 14MB of space. The adjacency list format uses 356MB.

The face spiral fullerene generation algorithm works well for small fullerenes but be-

comes far too slow for the larger ones. The fullgen program [10] is much faster and it

is the only practical approach for generating the larger fullerenes. But it does not gen-

erate them in the order corresponding to the chemistry nomenclature. In order to take

advantage of the speed of fullgen yet still retain the chemical ordering, we created a file

of n-vertex fullerenes for each n ranging from 20 to 120 by generating them with fullgen

and then sorting the minimum face spirals.

- 406 -

Figure 1: A lexicographically minimum face spiral of isomer C40 : 40.

5 Parameters

There are many interesting graph parameters (for example, the number of Hamilton

cycles) that are difficult to compute. As a result, it is not possible to compute these on

the fly and still have a system which is interactive. FuiGui overcomes this limitation by

computing these parameters in advance.

The parameters can be integers (e.g. maximum independent set order), strings (e.g.

the name of the automorphism group) or floating point values (e.g. an eigenvalue of the

adjacency matrix). Given a file of fullerenes, each of its parameters is stored in another

file where the parameter values are listed in the same order as the fullerenes.

The parameter values are designed to be “plug and play”. A user can compute the

parameter using any programming language (e.g. Fortran). A header file is used to

specify the names, types and file names for each of the parameters associated with a

file of fullerenes. Each parameter also has an associated text file which can be used to

summarize the data. For example, a header file for the collection of 40-vertex fullerenes

might look like this:

40-vertex fullerenes

f040 3

“Group Name” String gn040 gn040.summ

- 407 -

“Maximum Independent Set” int ind040 ind040.summ

“HOMO Eigenvalue” double homo040 homo040.summ

The first line gives a name (40-vertex fullerenes) for the collection of fullerenes. The

second line gives the name of the fullerene file (f040) and the number of parameters (3).

Each following line lists the name of a parameter, its type, the file that contains the

parameter values and the summary file name.

Most previous systems have the code for computing the parameters as part of their

system. The major advantages of FuiGui’s approach are:

1. Parameter addition requires no collaboration with the FuiGui developers and so

parameters which we have not considered can easily be added.

2. The code for FuiGui does not require modification to add a new parameter, and

users wanting to add a parameter do not need to know how to program in Java.

3. Parameters that are difficult to compute (e.g. number of Hamilton cycles) can be

computed in advance and then browsing is fast and interactive.

4. Even for parameters that are fast to compute (e.g. the number of face spirals), the

system would slow down substantially on large files of fullerenes (e.g. the 285,914

fullerenes on 100 vertices) if computed on the fly.

6 The Interface

FuiGui is launched as a stand-alone applet. This must be done with an appletviewer.

Trying to run it from a web browser does not work because for security reasons, this

prevents access to the files which drive FuiGui.

A typical screen shot is shown in Figure 2. The first step is to select a file of fullerenes.

Clicking on the “Select File” button results in a prompt for the header file name. The

second button is a drop down menu which permits the selection of one of the fullerene

parameters from the header file or the graph number. The top window on the left hand

side displays the parameter information for the currently displayed fullerene. The window

below that is the summary information for the parameter selected.

The summary window in Figure 2 shows that there are three 40-vertex fullerenes that

have maximum independent set order 18. The first of these can be viewed by typing 18

into the box next to the parameter name and then clicking on the “First one” button.

The user can then navigate forwards and backwards through the fullerenes which have

maximum independent set order 18 by using the “+1” and “-1” buttons.

- 408 -

Figure 2: The interface for FuiGui

- 409 -

As mentioned earlier, we started with one file of fullerenes for each n up to 120 sorted

so that the graph number is the isomer number. To get a specific isomer number, select

graph number from the pull down menu, type the isomer number in the box beside that,

and then use the “First one” button. The “+1” and “-1” buttons work slightly different

in this case taking the user from graph number k to k + 1 or k − 1. In cases where the

graphs are an arbitrary collection (for example, one such set we created had for each n all

fullerenes with a minimum number of Hamilton cycles), the isomer number can be added

as another parameter since in these cases, it will not be the same as the graph number.

There are various options for drawing the fullerenes. The current selection from the

pull-down menu is “Black and White” which is useful for journal paper figures that cannot

be made in color. The other options are:

1. The default picture can be selected to be face, vertex or edge-centered.

2. The graph displayed can be one of the primal, the dual, the primal and the dual

superimposed, the primal plus the dual dots (dots means that just the vertices but

not the edges are drawn), the dual plus the primal dots, the primal dots, and the

dual dots.

3. There are various ways in which the fullerene can be colored. The default coloring

has a cyan background, yellow vertices and red edges in the primal and blue vertices

and purple edges in the dual. A “Pentagon Patches” coloring makes it very easy

to see the locations of the pentagons. Vertices in three pentagons are colored blue,

those in one or two are purple and those in no pentagons are yellow. Edges in two

pentagons are blue, those in one are purple, and the rest are yellow. A “Site Group”

coloring makes it easier to see the fullerene symmetries. The edges and vertices are

given different colors to indicate the ways that there are automorphisms which map

them back to themselves.

4. There are several options for labeling the vertices. The “Vertex Numbers” option

labels them from 0 to n − 1 according to the initial creation of the graph from the

face spiral. The “No Labels” option can be used to get pictures without labels.

The “Num Spirals” option changes the labels to indicate the number of successful

vertex spirals starting at each vertex. If the dual dots are also displayed, their

labels indicate the number of successful face spiral starts of the primal graph. An

example of this is given in Figure 3. This might help to provide insight into when

spirals fail, which could help in either finding a smaller fullerene with no spirals

than the one on 380 vertices or proving that no such example can exist. The “Site

Groups” option labels each vertex with the number of automorphisms mapping it

- 410 -

Figure 3: Labeling with the number of successful spiral starts.

to itself. By displaying the dual dots, the number mapping a face to itself can also

be seen. The “Canonical Form” option labels the vertices from 1 to n according

to the clockwise breadth first search which results in a lexicographically smallest

adjacency matrix (following [7]).

5. The options “Specified Vertex Center”, “Specified Face Center”, and “Specified

Edge Center”, when selected, result in the picture being recentered on the closest

vertex, face or edge, respectively, when a user clicks on the picture of the fullerene.

The option of having the picture recentered on the closest graph component was

not used because it could be too hard to determine, for example, if a given click was

intended to be on an edge or on a face.

- 411 -

7 Fullerene Pictures

Some of the other drawing packages which can draw fullerenes result in pictures that have

very dense regions where the faces are very small and condensed and other regions where

the faces are much larger. The intent in designing the fullerene pictures was to make

them look as much as possible like the Schlegel diagrams that a chemist would draw.

Internally, the vertex locations are recorded as having a level and an angle, where level

zero is the middle of the picture. The other levels represent concentric circles. The angle

varies from 0 to 359 and gives the position on the circle with radius equal to the level.

The level can be any double value but for starting purposes, the even integral levels were

the only ones used for vertex placement.

To draw the picture, the part of the graph at the center is labeled to be at level two

if it is a face or an edge or level 0 if it is a vertex. The rest of the vertices are labeled in

a breadth-first search type of way such that any vertex on a face with a vertex already

labeled as level k is placed on level k + 2. If the edges are then given labels equal to

the average of their vertex labels, the resulting labeling is the same as the one used in

preparation to reduce a graph in [4].

The next step is to place the vertices in the appropriate cyclic order evenly spaced

on each level on a circle with radius equal to the level. Then working from the inside

out, each circle is rotated and a penalty is computed which reflects the differences in the

angles between the vertices on that level and their neighbors on the level below it. The

rotation with minimum penalty is selected for the picture.

The resulting pictures can have glitches. One common problem occurs when a vertex

v on a level k is adjacent to two vertices at level k − 2 and hence only one vertex on the

circle at its level. The two vertices beside v on level k are then adjacent, and this edge

crosses the edges from v to its level k − 2 neighbors. To fix the glitch, the vertex v is

removed from its circle and the other vertices on its circle and at higher levels are pushed

out two levels.

8 Recentering the Pictures

The default pictures are not always the most aesthetically pleasing ones. The options to

recenter on any of the vertices, edges or faces offer additional flexibility. One effective

tactic for finding a picture for a fullerene which has symmetries is first to select the

“Site Group Coloring” and the “Site Group” vertex labeling. The user can select graph

components to center the picture to give a better display of the symmetry.

For example, the graph on the left of Figure 4 has two faces with 10 symmetries

mapping the face to itself. Putting one of these faces in the middle results in the more

- 412 -

Figure 4: Recentering on a face.

symmetric picture on the right hand side. Similarly, the fullerene in Figure 5 has two

faces with 12 symmetries mapping the face to itself.

The fullerene in Figure 6 has a picture on the left which has what we call floaters (the

two degree one vertices are not actually vertices of the graph but are indicators that there

is an edge which can be reinstated by identifying these two points). The floater vertices

are green in the colored pictures to distinguish them from the other vertices. With a

vertex labeling, they are labeled with the name of the other vertex the edge connects to.

Recentering on the vertex which has 6 symmetries mapping it to itself results in the nicer

picture on the right.

Pictures can also be centered on an edge. The edge on the left hand side labeled with

e is colored red in the “Site Group” colored pictures to indicate that both a reflection

and a rotation map this edge to itself. This can be more easily seen in the picture on the

right of Figure 7 that is centered about this edge.

9 Automorphism Group Names

There are 28 different point groups that a fullerene can have [5, Ch. 5]. Knowledge of

the group is useful for many chemical purposes. It is not difficult to compute the group

names. However, writing the code was tortuously tedious. To save others the efforts of

- 413 -

Figure 5: Another example of recentering on a face.

Figure 6: Recentering on a vertex.

- 414 -

Figure 7: Recentering on an edge.

rediscovering conditions which identify the group names, pseudocode for an algorithm is

included here.

The first step is to label the fullerene with a clockwise breadth-first search starting with

a vertex on a pentagon (as done in [7]). The next step is to compute all the permutations

which are automorphisms. These correspond to the clockwise and counterclockwise BFS

renumberings which result in the same adjacency list as the initial clockwise BFS. Since

there can only be agreement if the BFS starts on a pentagon vertex (because the original

BFS did), only a constant number of such BFS steps must be performed and each takes

O(n) time.

The order of the automorphism group is the number of permutations in the group.

There is an inversion if some counterclockwise BFS results in an automorphism which

does not fix any of the edges. The order of a permutation is the least common multiple

of the cycles sizes when written in cycle notation. The fullerene is chiral if none of the

counterclockwise BFS’s result in automorphisms and achiral otherwise.

There is only one possible group if the group order is 1, 3, 10, 60, or 120. These easy

cases are handled first:

If the automorphism group order is

1: return(“C1”)

3: return(“C3”)

- 415 -

10: return(“D5”)

60: return(“I”)

120: return(“Ih”)

Otherwise, count the number of permutations with each order. Since there are at most

a constant number of permutations (120 is the maximum for a fullerene, but the order is

at most 24 if this part of the code is required), this step takes O(n) time. Note also that

determining if a fullerene is chiral is easily computed when finding the automorphisms,

and testing for an inversion takes at most O(n) time.

If the automorphism group order is

24: if there are 8 permutations of order 6 return(“Th”)

else if there are 6 permutations of order 4 return(“Td”)

else if there are 6 permutations of order 6 return(“D6h”)

else return(“D6d”)

20: if there is an inversion return(“D5d”)

else return(“D5h”)

12: if the fullerene is achiral

if there is an inversion return(“D3d”)

else return(“D3h”)

else

if there are 8 permutations of order 3 return(“T”)

else return(“D6”)

8: if there are 2 permutations of order 4 return(“D2d”)

else return(“D2h”)

6: if the fullerene is achiral

if there are 2 permutations of order 6

if there is an inversion return(“S6”)

else return(“C3h”)

else return(“C3v”)

else return(“D3”)

4: if the fullerene is achiral

if there are 0 permutations of order 4

- 416 -

if there is an inversion return(“C2h”)

else return(“C2v”)

else return(“S4”)

else return(“D2”)

2: if the fullerene is achiral

if there is an inversion return(“Ci”)

else return(“Cs”)

else return(“C2”)

None of the above steps takes more than O(n) time. Thus, this approach for computing

the group name takes O(n) time in total.

In order to verify that this algorithm is correct, the results were checked with the

tables in the Atlas of Fullerenes [5, pp. 106-107]. The results matched exactly taking into

account that the book has a known typographical error. Table 5.2 states that there are

three isomers of C100 of T symmetry and none of Td but the correct result is that there

are two isomers of T symmetry and one of Td. This has been corrected in a soon to be

released reprinting of the book.

10 Animated Algorithms

FuiGui includes the capability to provide animated algorithms for instructional or research

purposes. Users wanting to add their own animated algorithms must update the Java file

Animated.java to plug the algorithm into the system and provide a class for implementing

the animated algorithm.

The current design results in only limited change to the existing system to plug in a

new algorithm and the process was successfully carried out by students in a recent Graph

Algorithms class. The five steps required for plugging in a new algorithm are:

1. Add the name of the algorithm to an array of strings which give the names of the

available animated algorithms.

2. Declare an object whose type corresponds to the new class in which the algorithm

is implemented. This is used to keep track of the current state of the algorithm.

3. Add a call to the constructor for the animated algorithm and set a delay increment

for the timer.

4. Add a call to the routine which implements the next step of the animated algorithm.

- 417 -

5. Add code to get rid of the object and do any necessary clean up when the algorithm

terminates.

It would be less cumbersome to be able to implement animated algorithms so that they

perform their task and when desired, the picture on the screen is updated. Unfortunately

though, because of the way Java works, the system can opt not to bother updating the

current picture when it is in the middle of executing a thread. For this reason, the

design approach has been to develop animated algorithms with a next step routine which

performs the next step of the animation and returns control to FuiGui after the picture

has been updated. The animation continues with repeated calls to this next step routine.

Buttons are available on the main interface which allow an animated algorithm to pause,

stop, or resume the execution.

Some of the animations currently available are:

1. An illustration of how the fullerene pictures are created by first placing an initial

pentagon or hexagon, assigning vertices to levels, and then rotating levels one at a

time in order to find an optimal placement for them.

2. The user can specify a starting vertex and then all six of the possible ways to create

a spiral at that vertex are attempted until a spiral is found or the path short circuits.

3. The steps of a simple backtracking algorithm for finding perfect matchings.

4. Feo and Provan’s algorithm [4] for finding a Delta-Wye-Delta reduction of a planar

graph.

5. The Hamilton cycles of the fullerene are shown one at a time.

6. The fullerene can be moved left, right, up or down, and also it is possible to zoom in

or out on the picture. Because of the way the pictures were designed it is extremely

easy to implement these.

11 Use on Research Problems

So far, time spent has been mainly focussed on development of the FuiGui system and it

has only seen limited use as a research tool. However, it has shown to be very valuable on

at least one application where it has been applied- in a search for pairs of non-isomorphic

graphs (fullerenes or fullerene duals) with adjacency matrices having identical multi-sets

of eigenvalues.

- 418 -

It is not known if there exists any fullerenes which are pairwise nonisomorphic yet the

adjacency matrices have the same eigenvalues. However, there are several examples of

pairs of fullerenes where the duals have the same same eigenvalues [8].

These fullerenes and their parameters were extracted from the files with a C program

applied to an input file which had for each interesting graph, the number of vertices and

its isomer number. One surprising result which was easily noticeable when FuiGui was

invoked on this collection of graphs is that for each pair of graphs, the two fullerenes have

the same number of Hamilton cycles. FuiGui facilitates exploration of the observation

that a reasonable conjecture is that there are infinite families of pairs. For example,

four graphs which start a family are shown in Figure 8. This observation is potentially

relevant to the chemistry of both carbon and boron, in that the primal graphs define

series of closed carbon nanotubes with specific shared invariants, and their duals define

structural candidates for tubular bare-boron clusters that would share π-electron energies,

with consequences for their spectroscopy and magnetic properties.

12 Future Enhancements

The code has already proven very useful in preparing pictures for journal papers and

presentations. It also makes it much easier to explore the fullerenes and their various

parameters. It is also valuable as a teaching tool, in particular, in the demonstration of

the algorithms that are animated.

Not all of the fullerene pictures are nice ones. Further experimentation with drawing

algorithms and addition of new approaches would be a benefit. There are also many

parameters and animated algorithms which could be added.

It would be interesting to extend the capabilities of FuiGui to handle other classes of

graphs. The only big difficulty in extending it is that a routine for drawing the graphs is

required.

FuiGui has capabilities that other systems do not and other systems have features

that FuiGui does not have. As a long term goal, an ideal approach would be to try to tie

together the capabilities of the various systems which have been created. Hopefully these

workshops on Computers and Discovery will result in a unified system which includes the

abilities of the various types of research tools which have been developed.

- 419 -

Figure 8: The first four fullerenes in an infinite family.

- 420 -

References

[1] G. Caporossi and P. Hansen. Variable neighborhood search for extremal graphs 1:

The AutoGraphiX system. Discrete Math., 212:29–44, 2000.

[2] Ermelinda DeLaVina. Some history of the development of Graffiti. In Graphs and

Discovery, DIMACS: Series in Discrete Mathematics and Theoretical Computer Sci-

ence, volume 69, pages 81–118, 2005.

[3] Siemion Fatlowicz. On conjectures of Graffiti. Discrete Mathematics, 72:113–118,

1988.

[4] T. A. Feo and J. S. Provan. Delta-wye transformations and the efficient reduction of

two-terminal planar graphs. Operations Research, 41:572–582, 1993.

[5] P. W. Fowler and D. E. Manolopoulos. An Atlas of Fullerenes. Oxford University

Press, 1995.

[6] P. W. Fowler, K. M. Rogers, K. R. Somers, and A. Troisi. Independent sets and the

prediction of addition patterns for higher fullerenes. J. Chem. Soc. Perkin 2, pages

2023–2027, 1999.

[7] Patrick Fowler, Daniel Horspool, and Wendy Myrvold. Vertex spirals in fullerenes and

their implications for nomenclature of fullerene derivatives. Chemistry: A European

journal, 13(8):2208–2217, 2007.

[8] Patrick Fowler, M. J. Roberts, and Wendy Myrvold. Cospectrality in fullerene duals.

In preparation, 2006.

[9] G.Brinkmann. Problems and scope of the spiral algorithm and spiral codes for poly-

hedral cages. Chemical Physics Letters, 272(3–4):193–198, 1997.

[10] G.Brinkmann and A. W. M. Dress. A constructive enumeration of fullerenes. Journal

of Algorithms, 23:345–358, 1997.

[11] G.Brinkmann, O. Delgado Friedrichs, A. Dress, and T. Harmuth. CaGe- a virtual

environment for studying some special classes of large molecules. Match Commun.

Math. Comput. Chem., 36:233–237, 1997.

[12] William Kocay. Groups & Graphs- Software for graphs, digraphs and their automor-

phism groups. See software corner of this issue, 2006.

- 421 -

[13] C. E. Larson. A survey of research in automated mathematical conjecture-making.

In Graphs and Discovery, DIMACS: Series in Discrete Mathematics and Theoretical

Computer Science, volume 69, pages 297–318, 2005.

[14] Vitaly Pechenkin. GRaph INterface (GRIN). http://www.geocities.com/pechv ru/,

2007.

[15] Sriram Pemmaraju and Steven Skiena. Computational Discrete Mathematics: Com-

binatorics and Graph Theory with Mathematica. Cambridge University Press, 2003.

- 422 -

