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Abstract

A fullerene is a molecule consisting of carbon atoms such that each atom is adja-

cent to three others, with the bonds forming the edges of pentagonal and hexagonal

faces. The study of fullerene reactivity has motivated the concept of closed-shell

independent sets. Such sets specify the location of bulky addends on a fullerene such

that the residual π system is a closed shell. The cardinality of the maximum-sized

set is the closed-shell independence number. This paper presents a backtracking

algorithm to calculate this number for fullerenes. The algorithm was run on all

fullerene isomers with 100 or fewer carbons and from the results, some observations

are made related to the properties of the fullerene isomers that indicate a minimum

or maximum closed-shell independence number. It is conjectured that exactly three

isomers have identical closed-shell independence and independence numbers.

1 Introduction

Fullerenes are all-carbon molecules that have polyhedral structures in which each of the

atoms is directly bonded to its three neighbors and in which all faces of the polyhedron

are either pentagonal or hexagonal. Thus the molecular graph is cubic and polyhedral,

with face sizes limited to five and six. A fullerene with n carbon atoms is denoted

by Cn. In chemical terms, these molecules are unsaturated: the fourth valence of each

carbon atom is used to form a more or less delocalized π system on the surface of the
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polyhedron, augmenting the localized σ bonds along the edges. A general discussion of

theoretical chemistry aspects of fullerene structure, isomerism and properties is given in

[11]. At accessible values of n, there are typically many combinatorially distinct polyhedra

(isomers) satisfying the fullerene definition, of which only a few (if any at all) have been

isolated in experiment. The archetypical icosahedral [60]-fullerene, C60, for example, is

one of 1812 isomeric possibilities, and is apparently the only one of this large set that

can be isolated in quantity from the products of the arc synthesis. Evaluation of graph

invariants is one strategy for the identification of the experimentally most relevant isomers

from the mass of mathematical possibilities. Hence, the development of fast algorithms

for construction of fullerenes [2, 3] and computation of invariants is of practical chemical

as well as theoretical computer-science interest.

Applicability of fullerenes in functional compounds, materials and devices will require

the ability to tune stability and properties. Here too, graph invariants have a part to play

in rationalization of the chemistry of fullerene derivatives. Even the simplest addition

reactions—of atoms of a single type X to a single fullerene Cn—generate a combinatorial

explosion of possible isomers CnXq differing in the number and placing of addends, and

may lead to difficult experimental problems of separation and characterization. One way

to avoid such problems may be to drive the reaction to completion, when the product

distribution may become simpler, and the question then arises: what is the maximum

number of addends of a given type that will ultimately attach to a given fullerene, if

the addends are too bulky to occupy neighboring carbon sites? In the absence of other

restrictions on addition, the answer will be represented by taking the X positions to be

a maximum independent set of the vertices of the fullerene graph, and the stoichiometry

CnXq will reflect the independence number q of the graph.

However, chemical theory does impose a further restriction in that the set of carbon

atoms that do not bear an addend constitute a (possibly disconnected) unsaturated system

and should have a stable distribution of π electrons. This amounts to the requirement

that every component of the graph induced by the complement of the independent set

must have a closed-shell, i.e., an adjacency matrix in which exactly half of the eigenvalues

are positive. An independent set with this additional property in the complement is

called a closed-shell independent set and has been studied in the context of fullerenes

[6, 10, 12, 13, 16]. The cardinality of such a set is the closed-shell independence number

of the fullerene. In the case of icosahedral C60, the final product of bromination, C60Br24,

is explained in stoichiometry, symmetry and structure by the unique maximum closed-

shell independent set [10].

The problem of finding a maximum independent set has been studied on general

graphs [1, 4, 15, 17] and fullerenes both theoretically [9, 14] and algorithmically [12].
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Backtracking methods have been used to search for a maximum independent set of all

fullerenes with 120 or fewer vertices [12]. It is clear that the closed-shell independence

number is at most the independence number, since the former is a restricted version of

the latter. For icosahedral fullerenes, it has been shown that these values are equal only

on the two fullerene isomers with 20 and 60 carbon atoms [12]. There has been a proposal

to predict the relative stabilities of fullerene isomers themselves by minimization [8], but

the performance of the independence number as an index of stability is not good [9, 12].

Before this work, the closed-shell independence number was known for only six fuller-

enes [13, 12]. This paper describes a backtracking algorithm that was used to calculate the

closed-shell independence number of all fullerenes with 100 or fewer atoms. The algorithm

seeks early detection of the nonexistence of a closed-shell independent set of a given order

or larger. This is done using a combination of dynamic upper bounds, prioritized vertex

selection, and the identification of special cases to avoid lengthy eigenvalue calculations

when possible.

This paper is organized as follows. First, the problem is formalized (§2). Then the

high-level pseudo-code for the algorithm is discussed (§3). Next, specially designed data

structures used to implement the algorithm are described (§4) as well as some additional

approaches to reduce the run time (§5). Some observations are made on the computational

results (§6) and the results are compared with previous calculations of the independence

number (§7). Finally, ideas for further improvement and research are discussed (§8).

2 Definitions and Notation

A fullerene can be modeled as a graph by using vertices for atoms and edges for bonds.

The next definition describes the structure of the graphs representing fullerene skeletons.

Definition 2.1 (Fullerene Graph). A graph for a fullerene molecule with n carbon atoms

is a 3-regular planar graph3 on n vertices with face sizes equal to five or six. Such a graph

is denoted by Cn.

The notation Cn is ambiguous because n does not uniquely characterize the structure

of the fullerene. For n > 26, multiple isomers exist, resulting in non-isomorphic represen-

tative graphs. To specify the structure of the fullerene, one provides the isomer number

i with the notation Cn:i. Isomer numbers are determined by sorting the fullerenes based

on their lexicographically smallest face spiral sequence [11, §2.6].

To model a closed-shell independent set, a characterization of a closed-shell graph is

needed. A mathematical interpretation is given by the eigenvalues of a graph because

3All graphs are assumed to be simple, connected, and undirected.
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they correspond directly to the molecular-orbital energy levels in the simplified model of

electronic structure given by Hückel theory [19].

Definition 2.2 (Closed Shell). A graph G = (V,E) is said to be closed shell if

(i) n is even and

(ii) exactly half of the eigenvalues of the adjacency matrix of G are positive.

This definition refers to a properly closed shell [11, p. 47], which is shortened to closed

shell throughout this paper. A closed shell restriction is added to the definition of an

independent set to yield the definition of a closed-shell independent set below.

Definition 2.3 (Closed-Shell Independent Set). On a graph G = (V, E), a vertex subset

S ⊆ V is called a closed-shell independent set if

(i) ∀u, v ∈ S, (u, v) /∈ E (independence) and

(ii) each component of G − S is closed shell.

The largest such set is useful for studying fullerene reactivity. The following definition

gives a corresponding invariant for a graph.

Definition 2.4 (Closed-Shell Independence Number). The closed-shell independence

number of a graph is:

α−(G) = max
S⊆V

|S|

where S is a closed-shell independent set.

The algorithm to be presented relies on two important properties of closed-shell inde-

pendent sets.

Property 2.5. Every closed-shell independent set of a fullerene has an even number of

vertices.

This property follows from the facts that every fullerene has an even number of vertices

and that for a closed-shell independent set S, each component of G−S has an even number

of vertices. The next property follows from this one and the theorem in [13, eqn. (7)]

that states α−(G) ≤ 2n/5.

Property 2.6. For a fullerene, α−(G) ≤ 2 �n/5�.

Note that 2 �n/5� is the largest even integer less than or equal to 2n/5.
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3 The Backtracking Algorithm

This section discusses the general structure of the algorithm to find the closed-shell inde-

pendence number of a fullerene. The heart of the backtracking algorithm is recursive, as

shown in the pseudo-code of Algorithm 1.

The algorithm maintains the status of each vertex as red, blue, or uncolored. Red

denotes vertices in the closed-shell independent set and blue denotes those not in the set.

Uncolored vertices are the ones for which set membership has not yet been decided. A blue

component is a maximal connected subgraph in which all vertices are blue. A closed-shell

independent set has no adjacent reds and any blue component surrounded by reds must

be closed shell.

Initially, all of the vertices are uncolored. At each step of the algorithm, an uncolored

vertex is selected. It is first colored red and then blue. For each case, extensions to

the partial coloring are explored by applying the algorithm recursively. When a coloring

is complete, it corresponds to a closed-shell independent set. In order to achieve faster

performance, the algorithm aborts exploration of partial colorings for which it can be

concluded that either there are no feasible completions or that any feasible completions

result in a closed-shell independent set size that is less than or equal to the best found so

far.

Three parts of Algorithm 1 will now be described in more detail: how to select an

uncolored vertex (line 6), how to determine if a partial coloring is feasible (lines 8 and

12), and how to detect when it is no longer possible to complete a partial coloring to

obtain a new larger-sized set (lines 9 and 13).

3.1 Selecting an Uncolored Vertex

Uncolored vertices are stored in a priority queue as they await coloring. The priority is

assigned such that vertices with the least color flexibility are chosen first. Thus, infeasible

colorings are detected faster. A vertex is assigned the highest possible priority according

to the following descriptions:

Highest vertices with at least 1 red neighbor�⏐⏐ vertices with 3 blue neighbors

vertices with 2 blue neighbors

vertices with 1 blue neighbor

Lowest vertices with 0 blue neighbors

A vertex with a red neighbor has the highest priority, since those must be colored blue

to avoid adjacent reds. The priority of a vertex is increased as appropriate until it is
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ClosedShell (F )
Input : A fullerene F
Returns: Closed-shell independence number of F
begin

mark all vertices of F as uncolored1

return ClosedShellLevel(F , 0, 0)2

end

ClosedShellLevel (F , NumColored, LargestSeen)
Input : A fullerene F with a feasible partial coloring having NumColored

colored vertices and LargestSeen: the size of the largest c.s.i. set found
previously

Returns: The larger of (i) the input value of LargestSeen and (ii) the size of the
largest c.s.i. set possible by completing the given partial coloring

begin
if NumColored = n then no uncolored vertices remain3

LargestSeen ← max(LargestSeen, red vertex count)4

return LargestSeen5

end
Select an uncolored vertex v from F6

Color v red7

if current coloring is feasible then8

if larger set size may be possible then9

LargestSeen ← ClosedShellLevel(F , NumColored + 1, LargestSeen)10

end

end
Color v blue11

if current coloring is feasible then12

if larger set size may be possible then13

LargestSeen ← ClosedShellLevel(F , NumColored + 1, LargestSeen)14

end

end
Uncolor v15

return LargestSeen16

end
Algorithm 1: Essentials of the backtracking algorithm
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eventually selected and removed from the queue. Vertices are selected from the highest

occupied priority in a first-in first-out manner.

3.2 Feasibility

After an uncolored vertex is selected, it is colored first red then blue. Then the algorithm

proceeds with this coloring only if it is feasible (lines 8 and 12 of Algorithm 1). This section

gives the conditions under which a coloring is feasible and how feasibility is determined.

At all times, the fullerene has a partial coloring with each vertex being either red, blue,

or uncolored. Such a coloring is said to be feasible if it does not violate any requirements

of a closed-shell independent set. Thus, a feasible partial coloring obeys the following

rules:

1. No two red vertices are adjacent.

2. All blue components not adjacent to uncolored vertices (surrounded by red vertices)

are closed shell.

To maintain feasibility, these rules are checked after a selected uncolored vertex is

colored. Rule 1 is only checked after a vertex is colored red.

Rule 2 is checked after a vertex is colored either red or blue. If the selected vertex was

colored blue, then the algorithm examines the blue component containing the selected

vertex. A blue component is first checked to see if it is surrounded by red vertices. In

such a case, the blue component is tested to see if it is closed shell. If a blue component

is not surrounded by red vertices, then one of the adjacent uncolored vertices may be

colored blue in the future, so no decision is made at this time as to whether or not it is

closed shell. The application of rule 2 after coloring a selected vertex red is similar to

the blue case. Here, the algorithm considers the blue components that contain the blue

neighbors of the selected vertex.

3.3 Improvement After Coloring

Once a coloring is determined to be feasible, two dynamic upper bounds are calculated

based on the current partial coloring (lines 9 and 13 of Algorithm 1). These values bound

the total number of red vertices that can be present if the remaining uncolored vertices

are colored according to the feasibility rules. The bounds are compared to LargestSeen

and if they indicate that LargestSeen cannot be improved by coloring the rest of the

vertices, then the algorithm does not continue with the current partial coloring.

The first upper bound is calculated after a vertex is colored either red or blue. Define

an uncolored edge to be an edge incident to at least one uncolored vertex. Each additional
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red vertex will require 3 uncolored edges and because red vertices are non-adjacent, these

edges are disjoint. Hence, the number of additional red vertices is at most 1/3 the number

of uncolored edges. Furthermore, by Property 2.5, every closed-shell independent set must

have an even number of vertices. Thus, the algorithm proceeds with the current coloring

only when the current red vertex count plus 1/3 the number of uncolored edges is at least

LargestSeen + 2.

The second upper bound is calculated only after a vertex is colored blue (line 13 only).

This bound relies on the following property [13].

Property 3.1. Every closed-shell independent set of a fullerene satisfies

r = (2n − b2 − 2b3)/5

where r is the number of red vertices and bi is the number of blue vertices with i blue

neighbors.

A new maximum-sized set would have cardinality r such that r ≥ LargestSeen + 2.

Hence, the algorithm proceeds with the current coloring only when

5(LargestSeen + 2) ≤ 2n − b2 − 2b3.

Blue vertices with uncolored neighbors are included in this calculation because the future

addition of blue neighbors cannot increase the right-hand side. Implementation of this

second upper bound resulted in the algorithm running approximately 20 times faster than

when only the first upper bound is used.

4 Data Structures

As mentioned earlier, the algorithm considers components induced by the blue vertices in

order to detect violations to feasibility. As well, there is a priority queue used to order the

selection of the uncolored vertices. This section describes the specialized data structures

used to maintain and access this information.

4.1 Priority Queue

As described earlier, the uncolored vertex selection order is maintained in a priority queue.

The algorithm requires the ability to remove the highest-priority vertex, change (increase)

the priority of a vertex, and undo either of these changes when the algorithm backs up.

Each of these operations has been implemented to run in constant time. This is crucial

- 392 -



because approximately one quarter of the execution time of the algorithm is spent on

these operations.

Because there are only five priority levels, the priority queue is implemented as five

queues. The vertex at the head of each queue, if any, is stored. Predecessor and successor

values for each vertex are used to create a circular doubly-linked list for each queue.

Arrays of size n are used to store the priority, predecessor, and successor of each vertex.

Each operation is performed in constant time. When a vertex is removed, it is taken

from the head of the highest-priority nonempty queue. When the priority of a vertex

changes, due to the coloring of a neighbor, the vertex is removed from its current linked list

and added to the tail of the list for the new priority. When the algorithm backs up, either

of these changes is undone by remembering the old priority, predecessor, and successor

of the vertex and using these values to re-insert the vertex into its earlier position. By

returning vertices to their original position in the queue instead of simply adding them

to the tail of the appropriate queue, the algorithm runs in less than a third of the time.

4.2 Blue Components

The algorithm maintains information about the components induced by the blue vertices.

This information includes the vertices in the component as well as descriptive values such

as whether or not a closed-shell calculation should be run on the component, the cached

result of such a calculation, and other values that identify components with faster methods

of calculation as described in Section 5.

Each blue vertex is in exactly one blue component, allowing a disjoint-set data struc-

ture using rooted trees to store these components. For an overview of disjoint sets and

their use in connected components, see [5, Ch. 21]. An implementation without path

compression was chosen because the data structure must be able to quickly undo previ-

ous union operations when the algorithm uncolors a vertex. For the same reason, each

parent-child relationship is doubly-linked instead of only the child-to-parent direction.

Neighboring blue vertices are always in the same component. In the union operation,

a newly colored blue vertex v is merged with the blue components that contain v’s blue

neighbors. Vertex v is assigned to be the root of the merged component and its children

are the unique roots of its blue neighbors’ components.

When the algorithm backs up by uncoloring a blue vertex, the previous union operation

must be undone. The algorithm guarantees that vertices are uncolored in the opposite

order in which they were colored. Hence, a newly uncolored vertex is always the root of

its component and its removal splits the component into the original components.

Values that describe the component and aid future closed-shell calculations are as-

sociated with the root. When performing a union, these values are calculated from the
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corresponding values of the children. When a union is undone, the previous values are

recovered because they are still associated with the roots of the resulting components. For

example, each root stores the number of vertices of each degree (within the component),

0 to 3. This compact storage of the degree sequence can be used to identify paths, cycles,

and trees.

A blue component with no adjacent uncolored vertices cannot be extended and there-

fore may be tested to see if it is closed shell. To identify this situation, a count of the

number of edges from a vertex in the component to an uncolored vertex is stored at the

root. When this count is zero, the closed-shell calculation is performed.

The last value stored at a root is a cache of the result of the relatively slow closed-

shell calculation. This avoids re-calculations that would otherwise occur when multiple

neighbors of a newly colored red vertex are in the same blue component.

5 Decreasing the Run Time

A large run time bottleneck is the closed-shell calculation that is performed each time a

blue component becomes surrounded by red vertices. From the definition of a closed-shell

independent set, the distribution of the eigenvalues must be known to determine if exactly

half of them are positive. It is desirable to avoid lengthy explicit eigenvalue calculations,

which is possible for a large percentage of the cases that are encountered.

For paths and cycles, the closed-shell calculation is very easy. It has been shown [18]

that the eigenvalues of a path satisfy the equation

λk = 2 cos

[
πk

n + 1

]

and the eigenvalues of a cycle satisfy the equation

λk = 2 cos

[
2πk

n

]

for 1 ≤ k ≤ n. One may assume that n is even because this is a requirement for closed

shells. It follows from the equations above that all even-length paths are closed shell

and an even-length cycle is closed shell if and only if n is not divisible by 4. Hence, the

calculation only requires knowledge of n for paths and cycles.

Although not as fast as paths and cycles, the closed shell calculation for trees is also

quick. For any bipartite graph, if λ is an eigenvalue then −λ is an eigenvalue with the

same multiplicity [7, Theorem 3.11]. A direct application of [7, Theorem 1.3] shows that

0 is an eigenvalue if and only if the tree has no perfect matching. Because trees are
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bipartite, their eigenvalues are symmetric and therefore a tree is closed shell if and only

if it has a perfect matching. This reduces the calculation to one taking linear time.

After filtering out the blue-component graphs having fast eigenvalue computations,

some graphs remain to be tested using numerical eigenvalue computations. Many methods

exist to compute the eigenvalues, but the relatively robust representation (RRR) method

was selected for the implementation due to its speed. The DSYEVR subroutine of the

LAPACK libraries was used for the computation. The computations were carried out

using double precision for the highest precision possible using LAPACK. In practice,

there was always a significant gap between the magnitudes of the observed non-zero

eigenvalues and those eigenvalues that lay within the specified tolerance of zero. This

yields confidence in the accuracy of the computations. The results were also reproduced

using matrix inertia computations (using the DSPTRF subroutine to factor the matrix

using Bunch-Kaufman diagonal pivoting) and identical conclusions were obtained.

There are ways to improve the run time other than avoiding eigenvalue calculations.

Note that the dynamic upper bounds discussed in Section 3.3 become more restrictive

as larger-sized sets are found. However, test runs of the algorithm showed that for most

isomers large-sized sets are not found quickly. It is desirable to have restrictive bounds

so that more partial colorings are eliminated from consideration, thereby decreasing the

run time. Property 2.6 states that α−(G) ≤ 2 �n/5�. The test runs indicated that the

closed-shell independence number is not far below this value for fullerenes with 100 or

fewer vertices. Furthermore, by definition, every closed-shell independent set has an even

number of vertices.

This information leads to a method that decreases the run time by looking for a set of

a given large size rather than any size. Instead of setting LargestSeen to be 0 initially, it

is set to 2 �n/5� − 2. This makes the algorithm search only for sets of size 2 �n/5�. The

bounds are then more restrictive and the algorithm runs faster. If such a set is found,

then the search can stop immediately because it matches the theoretical upper bound of

α−(G). If no such set is found, the algorithm is restarted with LargestSeen = 2 �n/5�−4.

Then if a set of size 2 �n/5� − 2 is found, the algorithm can stop immediately because it

already checked for larger sets. Otherwise, the initial value of LargestSeen will continue

to decrease by 2 until a set is found. One disadvantage of this method is that the run

time may increase if either the closed-shell independence number is far below 2 �n/5� or if

a large set would be found quickly by the original (LargestSeen = 0) method. However,

in most cases of interest this method decreased the run time of the algorithm.
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n x = 6 x = 4 x = 2 x = 0 n x = 6 x = 4 x = 2 x = 0
20 - - - 1 62 - 1 2347 37
24 - - - 1 64 - - 2789 676
26 - - 1 - 66 - 651 3827 -
28 - - - 2 68 - 4 6200 128
30 - - 3 - 70 - 6005 2144 -
32 - - 3 3 72 - 1072 10107 11
34 - - - 6 74 - 2 13841 403
36 - - 13 2 76 - 12681 6470 -
38 - - 2 15 78 - 1308 22773 28
40 - - 39 1 80 2 30753 1169 -
42 - - 35 10 82 - 23058 16660 -
44 - - 2 87 84 - 1641 49854 97
46 - - 115 1 86 1 60544 3216 -
48 - - 117 82 88 - 41480 40258 -
50 - 2 268 1 90 1748 98095 75 -
52 - - 416 21 92 - 118707 7702 -
54 - - 211 369 94 - 67341 86152 -
56 - - 924 - 96 1958 189627 254 -
58 - - 1074 131 98 1 213326 17690 -
60 - 460 1344 8 100 107378 178536 - -

Table 1: Number of fullerenes Cn with α−(G) = 2 �n/5� − x

6 Computational Results

The algorithm was run on all 1,456,598 fullerene isomers on up to 100 vertices. Table 1

shows the number of fullerene isomers on n vertices with α−(G) a given distance below the

theoretical upper bound of 2 �n/5�. This data set is useful for checking how the quality

of the upper bound and the spread of α−(G) vary with increasing n. The bound remains

a reasonable estimate as n grows.

A characterization of the fullerenes that maximize α−(G) for a given n is useful for

understanding the closed-shell independent set problem. Notice that 2 �n/5� increases

when n ≡ 0 or n ≡ 6 (mod 10). As expected, Table 1 shows a step away from 2 �n/5� for

most isomers at these values of n. The shifts are somewhat larger at multiples of 10, as

expected.

An interesting observation is that there seems to be a correlation between α−(G) and

the isomer number, i.e., the index of the isomer in the list of canonical face spirals [11,

§2.6]. For values of n with relatively few isomers having the largest α−(G), the isomer

numbers tend to be larger. Fullerenes with larger isomer numbers tend to have fewer

pentagon adjacencies : the number of edges incident to two pentagons. Now consider only

the values of n in which relatively few isomers achieve the maximum α−(G): 60, 62, 68,

72, 74, 78, 84, 90 and 96. Of the 1041 isomers that maximize α−(G) for these values of n,
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the number of pentagon adjacencies ranges from 0 to 7 with a mean of only 2.68. Note,

however, that on these values of n there is a plethora of isomers that have few pentagon

adjacencies but do not achieve the maximum α−(G). Furthermore, for values of n not in

this group, the isomer numbers with maximum α−(G) are more evenly distributed.

The next natural question is whether or not there is a correlation with the isomer

number or number of pentagon adjacencies for those isomers that minimize α−(G) for

a given n. Consider only the values of n for which relatively few isomers achieve the

minimum α−(G): 50, 62, 68, 74, 80, 86 and 98. In these cases the isomer numbers have

no preference toward higher or lower values, but the number of pentagon adjacencies tends

to be high. Of the 13 isomers that minimize α−(G) for these values of n, the number of

pentagon adjacencies ranges from 8 to 20 with a mean of 12.85. However, there are many

isomers with a large number of pentagon adjacencies that do not achieve the minimum.

7 Relationship to the Independence Number

There is a strong interest in the relationship between the independence number, α(G),

and the closed-shell independence number. The numerical difference between the two is of

particular interest. Table 2 summarizes this relationship by giving the number of isomers

on n vertices with a given distance between α−(G) and α(G).

Table 2 shows that there are exactly three isomers in which α(G) = α−(G). These

are C20, C40 : 40, and C60 : 18124. Though the calculations here only go as far as 100

vertices, α(G) has been calculated for all fullerenes on 120 or fewer vertices [12]. These

results confirm that no additional fullerenes exist with α(G) = α−(G) through 120 vertices

because all values of α(G) are strictly greater than 2 �n/5� for fullerenes on at least 100

vertices. Hence, the following conjecture is made.

Conjecture 7.1. The only fullerene isomers with α−(G) = α(G) are C20, C40 :40, and

C60:1812.

It has already been shown [12] that the only icosahedral fullerene isomers with α−(G) =

α(G) are C20 and C60:1812. Data given in Table 2 and [12] further support Conjecture

7.1 by showing that α−(G) and α(G) move further away from 2 �n/5� as n increases.

The three isomers in Conjecture 7.1 have several things in common. They each have

α−(G) = 2n/5. Therefore, Property 3.1 implies that every blue component is a copy of

K2. The fullerene C20 has only one non-isomorphic maximum closed-shell independent

set, since the selection of two vertices for a blue component completely determines the set.

4C60:1812 is the icosahedral Buckminsterfullerene often referred to simply as C60.
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In [13], uniqueness (up to isomorphism) was shown for C60 :1812. Enumeration verifies

that C40:40 also has a unique maximum-sized set.

These isomers differ in the distribution of their pentagons. The dodecahedron C20 has

only 12 faces, all of which are pentagons. The pentagons of C40 :40 are in four groups

of 3, evenly spaced throughout the fullerene. The truncated icosahedron C60 :1812 has

isolated pentagons evenly spaced throughout the fullerene. The isomer C40 :40 has 24

automorphisms and its point group is Td, whereas the others have 120 automorphisms

and point group Ih.

8 Future Work

This paper has described an algorithm with an implementation that is fast, despite all of

the eigenvalue calculations. This enabled the calculation of the closed-shell independence

number of all fullerene isomers with 100 and fewer vertices. From this data set, some

interesting observations were made including a correlation with pentagon adjacencies.

Most notable is the conjecture that there are only three fullerene isomers that have a

maximum independent set that is closed shell.

Several opportunities exist to extend this work, including a more comprehensive data

analysis and speeding up the implementation to obtain fast calculations for larger fuller-

enes. A faster implementation may be possible by the use of better data structures or

solving some of the open problems below. It is desirable to have calculations that extend

as far as the 120-vertex fullerenes. In the initial implementation, the calculation for a

single fullerene with 120 vertices took about 12 minutes, compared to about 24 seconds

for a 100 vertex fullerene. At that rate, calculations for the 1,674,171 fullerenes only of

size 120 would take approximately 38 CPU years.

Additionally, the following problems remain open:

1. Identify infinite families of fullerenes that maximize or minimize α−(G) over all

isomers of the associated n.

2. In addition to paths, cycles, and trees, identify classes of graphs that are easily

recognizable and for which the closed-shell computation is fast.

3. Continue the calculations on larger icosahedral fullerenes. These are frequently-

studied highly-symmetrical models of general fullerenes.

4. Although most fullerenes have no symmetry, taking advantage of any symmetry

that is present is expected to speed up the algorithm by ignoring isomorphic sets.

This would greatly aid the search for sets on large icosahedral fullerenes.
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