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Abstract

A graph invariant is a function of a graph G which does not depend on labeling of G’s vertices

or edges. An algebraic expression of one or several graph invariants is itself an invariant.

Graph theory is replete with theorems about graph invariants, which are either algebraic,

i.e., equalities or inequalities involving such invariants, or structural, i.e., characterizations

of which families of graphs are extremal for a given invariant, that is give it maximum or

minimum value. Both types of results can be conjectured by the system AutoGraphiX 2

(AGX 2), in an automated way, or, in some carefully distinguished cases, in an assisted

way. We report here on a systematic comparison of 20 graph invariants: for each pair of

them, AGX 2 considers the four operations +,−,×, / and derives best possible lower and

upper bounding functions of the number of vertices, as well as extremal graphs. Out of 1520

cases, AGX 2 recognizes 37 known results, derives automatically algebraic and corresponding

structural conjectures in 1260 cases (841 of which are proved automatically), and structural

conjectures only in 168 more cases, from which algebraic conjectures could be derived by

hand in 86 cases. No results were obtained in 55 cases. Manual or assisted proofs have been

obtained in 394 cases, 22 conjectures were refuted and 171 conjectures remain open. Many

examples are given. AGX 2 is also compared to the three operational systems GRAPH,

GRAFFITI and HR.
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1 Introduction

Computers have long been used in applications of graph theory to many fields, e.g. when solving

some optimization problem defined on a graph. But the role of computers in graph theory [37]

is not limited to applications. Indeed, computers can also be used to advance the theory per se,

i.e., to provide conjectures, refutations and proofs (or ideas of proofs).

While only a few attempts have been made at full automation of proofs in graph theory

[23, 24, 28, 29, 30], partial automation of complex proofs has been fruitful. The prominent

example is, of course, the 4-color theorem [6, 7, 8, 48]. Nowadays, computer help in proofs

having an enumerative character is quite frequent; to illustrate a ”dynamic survey” of small

Ramsey numbers [46] cites 93 cases of computer use among 327 papers.

Much work has also been devoted to assisted, or in some rare cases, automated discovery of

conjectures. Operational systems for that purpose (among others) are GRAPH [23, 24], GRAF-

FITI [26, 31, 32], AutoGraphiX (AGX) [3, 4, 16, 17] and HR [21]; some other systems such as

GRAPH THEORIST [28, 29, 30], INGRID [12, 13, 14] and NAUTY [42] can also be helpful in

that respect, see [38, 39] for review and discussions.

A graph invariant is a function of a graph G which does not depend on labeling of G’s vertices

or edges. Examples of graph invariants are the diameter, the radius, the average distance, the

independence number and the index (definitions will be given below). Graph theory is replete

with theorems involving graph invariants. They are either algebraic, i.e., equalities or inequal-

ities involving one or several invariants, or structural, i.e., characterizations of the families of

graphs for which an invariant takes an extremal value.

Both types of results can be conjectured by the system AGX, in a fully automated way, or in

some cases, to be carefully distinguished, in an assisted way. This system has been developed at

GERAD, Montreal, since about 10 years. Its principles, successive implementations and appli-

cations to numerous problems of graph theory and mathematical chemistry are described in a

series of papers, to which the present paper also belongs. For references to other papers in this

series see [4]. Recently, a new version of that program, called AGX 2 [3], has been developed

and systematically tested, focusing on its functions for conjecture discovery and proof of easy

propositions (AGX 2 can also be used for several other purposes, e.g. refuting, repairing or

strengthening conjectures and finding ideas of proof for more difficult propositions or theorems).

It is the purpose of the present paper to report on the results of these experiments. More pre-

cisely, we considered 20 invariants and sought expressions of the following form (called AGX

Form 1):

b(n) ≤ i1 ⊕ i2 ≤ b(n) (1)

where i1 and i2 are invariants of a graph G from the chosen set of 20, ⊕ denotes one of the 4

operations +,−, / and ×, b(n) and b(n) are, respectively, lower and upper bounding functions

depending on the order n, or number of vertices, of G which are best possible, i.e., such that
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for each value of n (except possibly very small ones, due to border effects) there is a graph G

for which the bound is tight. The order of invariants i1 and i2 in (1) is arbitrary. For ⊕ equal

to + or ×, changing this order has no effect; for ⊕ equal to − or /, such a change permutes

lower and upper bounds (bounds being multiplied by −1 in the former case and ratios in the

bounds inversed also in the latter one). Note that the form (1) is reminiscent of the well-known

Nordhaus-Gaddum relations [45]; however, it generalizes this last form in three ways:

(i) the operations − and / are considered in addition to + and ×,

(ii) the invariants i1 and i2 are independent instead of having i2(G) = i1(G), where G denotes

the complementary graph of G, in which an edge joins vertices vi and vj if and only if there is

no such edge in G,

(iii) it is mandatary that the lower and upper bounds be best possible (instead of this only

being desirable).

Results for a pair of invariants can be complete, i.e., consist of both conjectured best possi-

ble functions b(n) and b(n) and the corresponding characterizations of the extremal graphs, or

structural, i.e., consist of the characterizations of extremal graphs only. This last case occurs

when algebraic expressions for b(n) and b(n) are too difficult for AGX 2 to obtain, or when such

expressions do not exist, e.g. because they correspond to solutions of an equation of degree 5 or

more.

In some fairly frequent cases, complete results are simple and can be proved by AGX 2 in a fully

automated way; we then refer to them as observations. If results are structural, algebraic expres-

sions for b(n) and b(n) can sometimes be deduced, in an assisted way, from the characterization

of extremal graphs. In some fairly rare cases the graphs obtained by AGX 2 and conjectured to

be extremal present very little or no regularity and no results are obtained.

The paper is organized as follows. The principle of AGX 2, i.e., the way it applies to graph

theory the Variable Neighborhood Search metaheuristic [40, 44], and the three ways it analyzes

results to derive conjectures, are summarized in the next section. Experiments are discussed

in Section 3. Results are reported, and illustrated by examples in Section 4. A comparison of

AGX 2 with the three systems GRAPH, GRAFFITI and HR is made and illustrated by examples

in Section 5. Brief conclusions are drawn in the last section.

2 Principles of AGX 2

Let Gn and Gn,m denote respectively the sets of all graphs with n vertices, and with n vertices

and m edges. Two basic ideas underly the systems AGX 1 and AGX 2:

(i) Most problems of extremal graph theory can be viewed as problems of parametric combinatorial

optimization of the form

min / max
G∈Gn

i(G) or min / max
G∈Gn,m

i(G) (2)
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for some invariant i(G) with parameters n and m, or the exploitation of their solutions;

(ii) All problems of the form (2) can be solved approximately by a generic heuristic.

To obtain such a heuristic, the Variable Neighborhood Search metaheuristic (VNS) [40, 44], a

general framework for building heuristics, is specialized. VNS exploits systematically changes in

neighborhoods used in the search, both in a descent phase to obtain a locally extremal graph,

and in a ”shaking” phase, to get out of the corresponding valley (or away from the corresponding

mountain) in order to find a better graph. Neighborhoods correspond to changes brought to the

graph G, e.g. all ways to add, or to remove an edge, and so forth.

Rules of VNS applied in AGX 1 and AGX 2 are the following:

(0) Select the set of neighborhood structures Nk, k = 1, . . . kmax that will be used in the search

for a better locally optimal graph, and a stopping condition. Choose an initial graph G.

Repeat until the stopping condition is met:

1. Set k = 1;

2. Until k = kmax, repeat the following steps:

(a) (shaking) generate a graph G′ from the kth neighborhood of G (G′ ∈ Nk(G));

(b) (descent) apply Variable Neighborhood Descent (VND) with G′ as initial graph; denote

with G′′ the locally optimal graph obtained;

(c) (improvement or continuation) if i(G′′) is better than i(G), best value of i for a

previously visited graph, move there, i.e., replace G by G′′, and continue search

within N1(G); otherwise, set k ← k + 1.

The stopping condition is usually a maximum computing time. The VND routine is a descent

one in which one considers in turn various transformations applied to G; if one is beneficial, G

is modified accordingly; if not one proceeds to the next move (or neighborhood) until a local

optimum for all moves is attained. In AGX 1 the moves considered were rotation of an edge,

addition of an edge, removal of an edge, displacement of an edge (removal followed by addition),

detour (replacing an edge by a path of two edges), short-cut (reverse of the previous move) and

a few others. In AGX 2, all possible moves on 2 vertices, then on 3, then on 4 are considered

in turn. Moreover, moves which have been useful at the beginning of the search are emphasized

automatically, i.e., applied more frequently than others.

Once a set of (presumably) extremal graphs has been found, bounding functions b(n) and b(n)

are deduced by one of the following 3 approaches [17]:

(i) a numerical method [15] which applies the mathematics of Principle Component Analysis to

determine, in polynomial time, a basis of affine relations between invariants, satisfied by the

extremal graphs found. This method must be applied in a different way in the case of relations

of AGX Form 1. Indeed one seeks nonlinear inequalities instead of linear equalities. Considering
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minimum, or maximum values of i1 ⊕ i2 for all n in the chosen range it reduces to fitting exactly

to those points a function of the single variable n. This function is a linear combination of terms

in n, n2, 1/n,
√

n − 1 and possibly other similar terms which often appear in graph theory. If

successful, this gives an analytical expression for b(n), or b(n). Numerous formulae are obtained

in this way, as a true inequality of AGX Form 1 exists for all i1, i2 and ⊕. So the numerical

method is far from being limited to the discovery of linear equalities, as erroneously stated in

[41] page 311;

(ii) a geometric method which views extremal graphs as points in invariants space and applies

a ′′gift-wrapping′′ algorithm to find their convex hull and linear inequality relations associated

with its facets. Note that a similar approach is used in the recent system GraPHedron [18, 43];

(iii) an algebraic method [1, 3] which recognizes to which family (or families) of graphs the

extremal graphs belong, then uses a database of formulae for invariants in function of the order of

G to obtain bounding functions. After substitution of formulae for i1 and i2 in (1), simplification

is made with a symbolic computation tool. The database presently contains information for 44

families of extremal graphs. For each of them, formulae giving the values for the 20 invariants

in function of n have been obtained. This is usually an easy task using AGX 2. In a few cases

however, e.g. for the index λ1 for some families, no formula could be found.

In the experiments described in this paper, approaches (i) and (iii) are used. The approach

(iii) has also been adapted to prove simple conjectures: the relevant families of extremal graphs

for the invariants i1 and i2 are considered and if they have a non-empty intersection a proved

and best possible bounding function is obtained. Moreover, this reasoning can be extended to

consider the second best values as explained and illustrated in Section 4.

3 Experiments

We need a few definitions. Let G = (V,E) denote a graph with vertex set V , n = |V | vertices

i.e., of order n, edge set E and m = |E| edges i.e, of size m. An edge ek is a pair of vertices

{vi, vj}, with which ek is incident, and which are adjacent. The adjacency matrix A = (aij) is

such that aij = 1 if vi and vj are adjacent and aij = 0 otherwise. The largest eigenvalue λ1 of

the matrix A is the index of G.

A path joining vi and vj is a sequence of edges such that vi is the first vertex of the first edge,

the second vertex of each edge is the first one of the next edge and so on, and the second vertex

of the last edge is vj . If vi = vj the path becomes a cycle. The length of a path (cycle) is the

number of its edges. The length of the shortest cycle of G is called its girth and noted g. The

distance lij between vertices vi and vj is the length of a shortest path joining vi and vj . One of

the invariants we will consider is the average distance between pairs of vertices, noted l. If there

is a path between any pair of vertices vi and vj of G, then G is connected. In this paper, we only

consider connected graphs, moreover, to avoid border effects, we assume that the order of G is at
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least 3. The largest distance between a vertex vi and another vertex of G is vi’s eccentricity; the

minimum eccentricity of a vertex of G is G’s radius r and the maximum is G’s diameter D. The

average eccentricity is noted ecc. The sum of distances between a vertex vi and all others is vi’s

transmission. In order to better compare such values with the eccentricity, a normalization, i.e.,

dividing by n− 1, is appropriate: then the normalized transmission of vi is the average distance

to all other vertices of G. We call the minimum normalized transmission of G its proximity,

noted π, and the maximum its remoteness, noted ρ. The degree di of a vertex vi is the number

of edges of G incident with vi. We denote by Δ, d and δ respectively the maximum, average

and minimum degree of G. The Randić index [47] of G is defined by

R =
∑

i,j|{vivj}∈E

1√
didj

; (3)

where di denotes the degree of a vertex vi. It is used extensively in mathematical chemistry. The

Laplacian matrix L of G is defined by: Lii = di and Lij = −aij(i �= j) where di is the degree of

the vertex i and A = (aij) is the adjacency matrix of the graph. The second smallest eigenvalue

of L, noted a, is the algebraic connectivity of G. The smallest number, ν, of vertices whose

deletion disconnects a graph G or reduces it to a single vertex is G’s (node) connectivity. The

smallest number, κ, of vertices whose deletion disconnects a graph G is its edge connectivity. The

independence number α of G is the cardinality of a largest set of pairwise non-adjacent vertices.

The clique number of G is the maximum cardinality of a set of pairwise adjacent vertices. A

vertex subset S of G is dominant if any vertex is in S or has a neighbor in S. The minimum

cardinality of a dominant set is the domination number and is denoted by β. The matching

number μ of G is the smallest number of pairwise disjoint edges.

A graph is complete, and noted Kn, if all pairs of vertices are adjacent; it is a tree if it is connected

and has no cycles; it is a star if it is a tree and has a dominant vertex, i.e., a vertex adjacent

to all others; it is bipartite if it consists of two sets, of order p and q, of pairwise non-adjacent

vertices, and edges joining vertices from one set to vertices of the other; it is complete bipartite,

and noted Kp,q, if it contains all such edges. An edge with a vertex of degree 1 is a pending

edge. A cut vertex is a vertex whose removal disconnects the G; a cut edge (or bridge) is an edge

whose removal disconnects the G.

Inv. Name Lower Extremal Upper bound Extremal

bound graphs b(n) graphs

b(n) for b(n) for b(n)

Δ Maximum

degree

2 Pn, Cn n − 1 G with a dom-

inating vertex

(Kn, Sn, . . .)

δ Minimum

degree

1 G with a pend-

ing vertex (Tree,

Pn, Sn, . . .)

n − 1 Kn
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d Average de-

gree

2 − 2
n Tree (Pn, Sn,

. . .)

n − 1 Kn

l Average dis-

tance

1 Kn
n+1

3 Pn

D Diameter 1 Kn n − 1 Pn

r Radius 1 G with a dom-

inating vertex

(Kn, Sn, . . .)

⌊
n
2

⌋
Pn, Cn, . . .

g Girth 3 G with a trian-

gle (Kn, . . .)

n Cn

ecc Average ec-

centricity

1 Kn

3n+1
4 · n−1

n if n is odd
3n−2

4 if n is even
Pn

π Proximity 1 G with a dom-

inating vertex

(Kn, Sn, . . .)

n+1
4 if n is odd

n
4 + n

4n−4 if n is even
Pn and Cn

ρ Remoteness 1 Kn
n
2 Pn

λ1 Index 2cos π
n+1 Pn n − 1 Kn

R Randić index
√

n − 1 Sn
n
2 G regular (Kn,

Cn, . . .)

a Algebraic

connectivity

2 − 2cosπ
n Pn n Kn

ν Node con-

nectivity

1 G with a cut

vertex

n − 1 Kn

κ Edge connec-

tivity

1 G with a cut

edge

n − 1 Kn

α Independence

number

1 Kn n − 1 Sn

β Domination

number

1 G with a dom-

inating vertex

(Kn, Sn, . . .)

⌊
n
2

⌋
K�n

2 � + �n
2 	 dis-

joint pending

edges

ω Clique num-

ber

2 Cn, Pn, Tree, . . . n Kn

χ Chromatic

number

2 G bipartite,

(Tree, Pn, . . .)

n Kn

μ Matching

number

1 Sn

⌊
n
2

⌋
Kn, Pn, Cn, . . .

Table 1: Selected invariants together with lower and upper bounds

for all connected graphs with at least 3 vertices.

The 20 selected invariants are listed in Table 1 together with their lower and upper bounds as
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functions of n and the corresponding extremal graphs. This was input for the system. Note that

from the definitions, and known results [19, 25, 33]:

δ ≤ d ≤ λ1 ≤ Δ; π ≤ r ≤ α; r ≤ D; π ≤ l ≤ α; l ≤ D; l ≤ ρ. (4)

These relations were also considered as input, together with the further relations of [33] α ≤
n − δ; α ≤ n − r; R ≤ n

2 ; r ≤ D ≤ 2r which are proved or folklore.

When a pair of invariants are combined together with an operation ⊕, AGX 2 first checks if there

is a known and tight bound or if one can be derived from Table 1. If yes, this relation is given

as output. Otherwise, presumably extremal graphs are sought. Then the numerical method

is applied to find b(n) or b(n). If it succeeds, AGX 2 then checks if the relation follows from

known equalities or inequalities. Otherwise, it examines whether extremal graphs correspond to

a known family, for which formulae giving the value of the invariants as functions of n are known.

If so, they are substituted, the resulting expression possibly simplified and given as output. If

not, the structural result, or the presumably optimal graphs if none was found, are the output,

to be studied unassisted or with the interactive component of AGX 2.

4 Results

There are 1520 cases. In each case graphs with 5 to 20 vertices were considered. Computing time

on Intel Xeon with 2.66 GHz and 2 Gb RAM, varied from less than 1 second in the frequent case

in which a bound could be obtained automatically, without using VNS, up to 75 seconds per

graph in the most complex cases, weither results were obtained or not. Trying longer computing

times did not give better results.

All results will be posted in a site under construction. They break down as follows.

4.1 Known results reproduced (37 cases)

AGX 2 reproduced, without making use of them, the 4 known relations r ≤ α; l ≤ α; α ≤ n− r

and α ≤ n − δ of [33] which are proved and tight. The system also obtained further relations

of the list (4) or which follow by transitivity, and which are also tight. (It is quite possible that

some other relations among those found are known and described somewhere in the vast graph

theory literature).

4.2 Complete results following from definition (32 cases)

When both invariants considered come from the same vector or matrix, say S, by taking its

minimum (m = minS), average s = (
∑

s∈S s)/|S|) or maximum value (M = maxS), it is

obvious that

m ≤ s ≤ M
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with equality if and only if the entries of S are equal. Immediate consequences of this double
inequality are

M − s ≥ 0, s − m ≥ 0, M − m ≥ 0,
M

s
≥ 1,

s

m
≥ 1 and

M

m
≥ 1.

Example 1 (Observations 1 and 2) : For all connected graphs G with n ≥ 3 vertices, radius r,

diameter D and average distance l,

D − l ≥ 0 and
D

l
≥ 1.

Moreover, the equality holds, in both cases, if and only if G is a complete graph.

The above inequalities follow from the fact that the diameter D is the maximum of all distances

between pairs of vertices, and the average distance l is the average of all such distances.

4.3 Complete results proved from intersection of families of extremal graphs

(776 cases)

Example 2 (Observations 3 to 6) : For all connected graphs G with n ≥ 3 vertices, Randić

index R and radius r

1 +
√

n − 1 ≤ R + r ≤ n
2 +

⌊
n
2

⌋
, (5)

and
√

n − 1 ≤ R · r ≤ n
2 · ⌊n

2

⌋
, (6)

Moreover, the equality holds for both lower bounds if and only if G is a star, and for both upper

bounds if and only if G is a cycle.

Proof : From Table 1, the star is the only graph that minimizes the Randić index R and the

radius r (also called the centric index [9] in chemical graph theory); the complete graph is the

only graph that simultaneously minimizes α and maximizes R. The results follow. �

4.4 Complete results proved from recognizing extremal graphs and using

second extremal value (33 cases)

Example 3 (Observation 7): For any connected graph G with n ≥ 4 vertices, diameter D and

average degree d

4 − 4
n
≤ D · d (7)

Moreover, the bound is attained if and only if G is a star.

Proof : If D = 1, G is a complete graph, with d = n − 1 and D · d = n − 1. If D ≥ 2, as G is

connected d ≥ 2− 2
n and the lower bound follows by multiplication. Moreover d = 2− 2

n implies

that G is a tree, and D = 2 that it is a star. �
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4.5 Complete results proved or refuted by hand or in an assisted way or still

open (419 cases: 349 proved, 54 open, 16 refuted)

Example 4 (Proposition 1): For any connected graph G with n ≥ 3 vertices, average distance

l and Randić index R

R · l ≤ n + 1
3

· n − 3 + 2
√

2
2

. (8)

Moreover, the bound is attained if and only G is a path.

Proof : If m = n − 1, i.e., G is a tree, it is known that both the Randić index and the average

distance are maximum for the path [27, 51]. If m ≥ n, R ≤ n
2 (as for all graphs, [33]). Moreover,

removing edges one at a time without disconnecting G or eliminating all cycles augments strictly

l. Thus G must have m = n edges. Then, the maximum average distance of a graph G is attained

for a triangle with an appended path of length n − 3. It follows by easy computations that for

m ≥ n

l ≤ (n3−7n+12)
3n(n−1) ≤ n

3 ,

and

R · l ≤ n
2 · n

3 < n+1
3 · n−3+2

√
2

2 .

This completes the proof. �

Example 5 (Proposition 2): For any connected graph G with n ≥ 3 vertices, remoteness ρ and

maximum degree Δ

ρ + Δ ≤ n + 1 − 1
n − 1

. (9)

Moreover, the bound is attained if and only if G has at least one dominant vertex and one pending

edge.

The proof [1], which takes 2/3 of a page, is omitted here.

Example 6 (Theorem 1): For any connected graph G with n ≥ 3 vertices, index λ1 and average

distance l

λ1 + l ≤ n. (10)

Moreover, the bound is attained if and only if G is a complete graph.

A proof, which is several pages long, as well as a shorter one for a stronger result are given in

[5].

We next turn to cases in which AGX 2 only provides structural conjectures.
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4.6 Structural conjectures followed by algebraic conjectures obtained by hand

or in an assisted way (86 cases: 40 proved, 40 open, 6 refuted)

A first reason for not obtaining algebraic relations in an automated way is that extremal graphs

may belong to 2 or more families.

Example 7 (Proposition 3): For any connected graph G with n ≥ 3 vertices, Randić index R

and index λ1

R − λ1 ≤
{

n−3+2
√

2
2 − 2cos π

n+1 if n ≤ 9

(n − 4)/2 if n ≥ 10
(11)

R/λ1 ≤
{

(n−3+2
√

2
2 )/(2cos π

n+1 ) if n ≤ 26

n/4 if n ≥ 27
(12)

Moreover, in the case of the difference, equality holds if and only if G is a path for n ≤ 9, and a

cycle for n ≥ 10; in the case of the ratio, equality holds if and only if G is a path if n ≤ 26, and

a cycle if n ≥ 27.

Proof : Difference: If m = n − 1, i.e., the graph is a tree, it is known that R is maximum and

λ1 is minimum for a path [25]. Then substituting values of R and λ1 as functions of n gives

the first relation of (11). If m ≥ n, it is also known that R is maximum and λ1 is minimum for

a cycle. Then substituting values for R and λ1, i.e., n
2 and 2 gives the second relation of (11).

Easy algebraic manipulations show when one bound is better than the other.

Ratio: The proof follows similar lines as for the difference; it is therefore omitted here. �

Another reason for difficulty in getting explicit algebraic relations is that some invariants such

as the index rapidly imply complicated computations.

Example 8 (Theorem 2): For any connected graph G with n ≥ 3 vertices, index λ1 and mini-

mum degree δ

1 ≤ λ1/δ ≤ n − 2 + t, (13)

and

0 ≤ λ1 − δ ≤ n − 3 + t, (14)

where t satisfies 0 < t < 1 and the equation t3 + (2n − 3)t2 + (n2 − 3n + 1)t − 1 = 0. The lower

bound, in both cases, is attained if and only if G is a regular graph, and the upper bound, in

both cases, is attained if and only if G is a graph which is a ”short kite”, i.e., a clique on n− 1

vertices with a pending edge.

The proof (see [5]) involves long algebraic manipulations and is omitted here.

Some relations are difficult to obtain in an automated way as well as to prove. A first reason

may be the presence of floor or ceiling operators: �x	 denotes the floor of x, i.e., the largest

integer not larger than x and �x� denotes the ceiling of x, i.e., the smallest integer not smaller

than x.
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Example 9 (Conjecture 1): For any connected graph G with n ≥ 3 vertices, Randić index R

and independence number α

R · α ≤
⌈

3n − 2
4

⌉√⌈
3n − 2

4

⌉⌊
n + 2

4

⌋
. (15)

Moreover, the bound is attained if and only if G is a complete bipartite graph Kpq with p = α =

�3n−2
4 � and q = �n+2

4 	.

4.7 Structural conjectures only (82 cases: 5 proved, 77 open, 0 refuted)

Example 10 (Conjecture 2): Among the set of all connected graphs on n ≥ 3 vertices with

index λ1 and average degree d, some pineapples, i.e., a clique together with pending edges all

incident with the same vertex from the clique and each with a vertex of degree one, maximize

λ1 − d.

This conjecture remains open and no formula for bounding λ1 − d from above is known for such

graphs [2]. Note that λ1 − d was proposed as an irregularity index in [20]. It is compared with

other irregularity indices in [36].

4.8 No results as extremal graphs are too irregular (55 cases)

5 Comparison of AGX 2 with other systems

In this section, we compare formulae obtained in our experiments with similar or simpler ones

found by the systems GRAPH, GRAFFITI and HR, when available. Note that this comparison

is limited as all systems cited can and do find formulae which do not fit in AGX Form 1.

5.1 GRAPH

The GRAPH system, which pioneered the man-machine type of research in graph theory, was

developed by Cvetković and co-workers [23, 24] between 1980 and 1984. This system was exten-

sively used to find conjectures and prove theorems in graph theory (usually the latter only being

published), with an emphasis on algebraic graph theory. It comprises a bibliographic component

(BIBLI), a theorem proving component (THEOR) and an algorithmic component (ALGOR).

We focus on the last one.

ALGOR is directly connected to conjecture-making. The aim of this component is checking,

disproving or making conjectures in graph theory. ALGOR solves a series of problems on partic-

ular graphs: setting and displaying values of the mentioned objects, creating common or random

graphs, obtaining new graphs by performing graph-theoretic operations, relabeling graphs, de-

termining integer or real invariants of a graph, checking properties of graphs and listing families

of graph characteristics.

Using GRAPH, Cvetković and his collaborators got, among many others, the following results:
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Example 11 (Theorem 3 [25]):

(i) If T is a tree of index λ1(T ), then

2cos(
π

n + 1
) ≤ λ1(T ) ≤ √

n − 1.

Equality holds if the graph is a path for the lower bound, and if and only if the graph is a star

for the upper bound.

(ii) If U is a unicyclic graph of index λ1(U), then

2 ≤ λ1(U) ≤ λ1(Sn + e),

where Sn + e is a star with an added edge. Equality holds if the graph is a cycle for the lower

bound, and if and only if the graph is Sn + e for the upper bound.

The bounds stated in Example 11 were tested using AGX 2, and reproduced in different ways.

The lower bound in (i) is obtained automatically as a structural conjecture, and then, the

algebraic expression is λ1(Pn), where Pn is a path on n vertices. The upper bound of (i)

and the lower bound in (ii) are obtained automatically as conjectures (both structural and

algebraic). The upper bound of (ii) is obtained as a structural conjecture by AGX and no

algebraic expression could be obtained. Many results obtained with the help of GRAPH are

discussed in the survey [24]. As, with a few exceptions, they do not fit into AGX Form 1,

comparison with this system was not pursued further.

5.2 GRAFFITI

The GRAFFITI system is due to Fajtlowicz [26, 31, 32] and was developed since the mid-

eighties, with from 1990 onward collaboration of DeLaVina, notably in the development of its

Dalmatian version. This system generates a large number of a priori conjectures, under the form

of algebraic relations between graph invariants, then selects among them, by eliminating false or

uninteresting conjectures through testing them on a database of graphs, applying heuristics and

building counter-examples. Conjectures which pass these correctness and interestingness tests

are proposed, after further selection, to the mathematical community in the large electronic file

Written on the Wall [33].

Eight conjectures of this file involve 2 invariants of the set of 20 given in Table 1, and possibly

the order n of the graph.

In 4 cases, proved GRAFFITI conjectures were reproduced using the AutoGraphiX system, but

under the AGX Form 1. They are the following :

GRAFFITI form : α ≤ n − δ; α ≤ n − r; r ≤ α; l ≤ α.

AGX Form 1 : 3 ≤ α + δ ≤ n; 2 ≤ α + r ≤ n; r − α ≤ 0; l − α ≤ 0.

In addition to the difference in form, the AutoGraphiX conjectures give the structure of extremal

graphs associated to the bounds, e.g. the lower bound on α + δ is attained for path-complete
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graphs [50] of diameter 2 or 3, and the upper bound on α + δ is attained for a graph that is the

complement of a Turan graph (a set of disjoint cliques of order as equal as possible). Note that,

as pointed out by an anonymous referee, it is shown in [11] that α + δ ≤ n with equality if and

only if the complement of G has a component consisting of a clique and all other components

(if any) have maximum degree less than or equal to that of the degree of the clique.

In another case, the open GRAFFITI conjecture a ≤ n/l was also reproduced.

In the 3 remaining cases, AGX 2 was able to improve upon GRAFFITI conjectures. One of

the stronger results, next discussed could be proved and led in turn to a proof of the open

GRAFFITI conjecture mentioned.

Example 12 (Proposition 4): For any connected graph G with n ≥ 2 vertices, minimum degree

δ and average distance l.

δ · l ≤ n − 1. (16)

Moreover, the bound is attained if and only if G is complete.

Proof: According to Beezer et al. [10],

l ≤ (n + 1)n(n − 1) − 2m
(δ + 1)n(n − 1)

=
n + 1
δ + 1

− 2m
n

· 1
(δ + 1)(n − 1)

·

If we substitute 2m
n by d, multiply by δ, and use the fact that δ ≤ d, we get

l · δ ≤ (n + 1 − d

n − 1
)

δ

δ + 1
≤ (n + 1 − δ

n − 1
)

δ

δ + 1
.

The last expression is maximum if and only if δ = n− 1, i.e., when the graph is complete. (This

proof was obtained by the first author in April 2004; another proof was obtained independently

by B. Smith [49] from the AGX 2 conjecture). �

Formula (16) improves upon the conjecture WOW 127 of GRAFFITI, δ · l ≤ n. It has several

consequences: (i) conjecture WOW 62, d · l ≤ n, where d is the common degree of the vertices of

a regular graph, is immediately improved to d · l ≤ n− 1, which is also sharp; (ii) recall that the

chromatic number χ of a graph G is the smallest number of colors to be assigned to G’s vertices

such that no pair of adjacent vertices have the same color. Conjecture WOW 231, if G is a

regular connected graph, χ · l ≤ n is sharpened to if G is a regular connected but not complete

graph, χ · l ≤ n− 1; (iii) recall that the Laplacian matrix of a graph G is defined by L = D−A

where D is a diagonal matrix with degrees of G’s vertices on the main diagonal and A is the

adjacency matrix of G. Let a denote the algebraic connectivity of G [35], which is equal to the

second smallest eigenvalue of L. Then conjecture WOW 128, a · l ≤ n can be proved. Indeed, it

is known (see e.g. [35]) that

a ≤ n

n − 1
δ (17)

and the result follows by substituting for δ. Moreover, if G is not a complete graph a ≤ (n−1)/l

(WOW 128 was open since 1988 and studied by several researchers).

- 378 -



As another example, AGX 2 reproduced automatically the improvement, already obtained by

AGX 1 [16], of WOW 3, l ≤ R for all connected graph G, to

R − l ≥ √
n − 1 − 2 +

2
n

(18)

and the bound is tight for stars.

5.3 HR

The system HR (for Hardy - Ramanujan), due to S. Colton [21], is a program which forms

concepts and makes conjectures in pure mathematics such as group, number and graph theory.

It represents pure mathematics concepts as data-tables, and definitions for concepts can be

generated when needed, using information about how they were constructed. It operates on

the data-tables according to a set of 10 production rules to turn old concepts into new ones,

and uses parameters to detail what to do. HR comprises a routine that estimates whether and

how much a concept is interesting, then it generates new concepts using only the interesting old

ones. During the concepts formation (e.g. equivalence between two concepts), some empirical

evidence appear and then HR states them as conjectures. Colton [22] sent us a series of 259

algebraic relations conjectured by HR and tested on all graphs with up to 6 vertices. Of these, 6

were bounds on single invariants in terms of n, present in Table 1; 28 other conjectures involve

2 invariants of the set of 20 given in Table 1, as well as, possibly the order n of the graph; in

18 of these 28 cases AGX 2 reproduced the HR conjecture; in the remaining 10 cases, AGX 2

gave stronger conjectures than HR. It would be noted, however, that in 5 cases of these 10 the

improvement is only due to a border effect, HR considering all graphs and AGX 2 all connected

graphs with at least 3 vertices. In the 5 remaining cases, AGX 2 gave better results than HR.

Example 13 : For all connected graphs G with n ≥ 2 vertices, average degree d and minimum

degree δ

d + 2 ≤ n + δ (HR)

and

d − δ ≤ n − 4 + 4
n (AGX 2)

moreover this last bound is tight if and only if G is a clique on n − 1 vertices with a pending

edge.

Proof: For any graph G of minimum degree δ and size m, we have

m ≤ δ +
(n − 1)(n − 2)

2
.

Then

d − δ =
2m
n

− δ ≤ 2δ
n

+
(n − 1)(n − 2)

n
− δ =

2 − n

n
δ +

(n − 1)(n − 2)
n

.
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The last expression being maximum if and only if δ = 1 and the corresponding extremal graph is

composed of a pending vertex together with all possible edges between the n− 1 other vertices.

�

Note that using a recent function of AGX 2, which proves algebraic relations from a database of

known ones by substitution of variables, 205 of the 259 relations were shown to hold, 16 more

were proved by hand, 37 refuted and one remains open.

6 Conclusions

A systematic comparison of graph invariants has been made using AGX 2. Results are summa-
rized in Table 2. The following conclusions can be drawn from this table: (i) complete results
are obtained in the vast majority of cases (85.33 %); among these a few known results were
reproduced (2.43 %) and a large number were proved automatically (55.33 %); a substantial
number were proved by hand (22.96 %); some remain open (3.55 %) and a few were refuted
(1.05 %). (ii) Among remaining cases structural results were obtained again in a large majority
of cases (11.05 %, of all cases, or 75.34 % of the remaining cases); a larger proportion of structure
results than of complete results remain open (8.36 % of all cases, or 75.6 % of structural results).
(iii) No results were obtained in some cases (3.62 %); they correspond to cases where AGX 2
could not find families of extremal graphs or, more frequently, where extremal graphs exhibit no
regularity. (iv) Only a very small proportion of the conjectures turned out to be false (1.38 %).

Known results reproduced 37 (2.43 %)

Complete results following from definition 32 (2.11 %)

Complete results proved by intersection rule 776 (51.05 %)

Complete results proved by second value rule 33 (2.17 %)

Complete results proved by hand 349 (22.96 %)

Open complete results 54 (3.55 %)

Refuted complete results 16 (1.05 %)

Proved structural results and formulae by hand 40 (2.63 %)

Open structural results and formulae by hand 40 (2.63 %)

Refuted structural results and formulae by hand 6 (0.4 %)

Proved structural results only 5 (0.33 %)

Open structural results only 77 (5.07 %)

Refuted structural results only 0 (0.00 %)

No results 55 (3.62 %)

Total 1520 (100 %)

Table 2: Summary of results.

To conclude, it appears that AGX 2 clearly performs well in obtaining best possible relations

of the AGX Form 1 and corresponding extremal graphs. Moreover, easy results are proved

automatically and others require short or sometimes somewhat longer proofs (mentioned but
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not given in this paper) or remain open.

In future work we plan to (i) present in detail in several papers currently in preparation the

results obtained for each of the main invariants together with their proofs (when we found some);

(ii) improve AGX 2’s discovery abilities in various ways, based upon the insights gained by the

experiments described; (iii) enrich that system by adding routines for computing many more

graph invariants and performing operations on graphs; (iv) obtain many more conjectures and

make them available at large; (v) consider different forms of algebraic conjectures then AGX

Form 1, e.g. an AGX Form 2 where the bounding functions would depend on both the order

n and the size m of the graphs under study; (vi) extend AGX 2 to tackle conjectures with a

different logical structure than those of AGX Form 1 and Form 2, e.g. sufficient conditions for

graphs to belong to a given family [39].
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