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Abstract. We derive some basic facts about the Randić connectivity index. Many

corollaries for chemical graphs are then discussed – in particular, we give exact formu-

lae for benzenoids, coronoids, and diamondoids which depend only on the frequency of

certain edge types. Many of these results about benzenoids are rediscoveries – but we

generalize them to larger families of graphs and shorten and simplify the arguments.

One interesting corollary we observe is that the Randić index correlates to branching in

cata-condensed benzenoids oppositely as it does for trees – namely, cata-condensed ben-

zenoids with more branched inner duals have higher Randić indices while more branched

trees have lower Randić indices.

1. Introduction

The Randić connectivity index is a graph invariant introduced to mathematical chem-

istry by Milan Randić [3], and since has found many applications [2] in correlations to

various physico-chemical and bio-chemical properties. Basically, it is a number arrived at

by summing the weights of all the edges, with the weight of an edge being the reciprocal

of the square root of the product of the degrees of its vertices. That is,

(1) χ =
∑

vw∈E

1
√

dvdw

,

where the sum is over all edges vw, from the edge set E of a graph G = (V,E), whose

vertices have degrees dv and dw. Many authors have since proven an assortment of results

about the Randić index and generalized Randić indices of the form

(2) χp =
∑

vw∈E

(dvdw)p.

In this form, the original Randić index has p = − 1
2
. [4, 7]

In this paper, we derive a simple formula for the traditional Randić index of a graph

and pursue consequences first for graphs with maximum degree four (which we here call
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chemical graphs), and then particularly, specialization to benzenoids is considered – where

we give n-linear best lower and upper bounds for χ. All of the graphs here are assumed

to have no isolated vertex.

2. Preliminaries

The formula we are interested in deriving comes simply from applying a counting iden-

tity which is closely equivalent to the famous handshaking theorem. Namely, given a

graph G = (V,E),

(3)
∑

vw∈E

(
1

dv

+
1

dw

) = n,

where n is the number of vertices in G. Subtraction of Equation 1 from half of Equation

3 yields

(4)
n

2
− χ =

1

2

∑
vw∈E

(
1

dv

+
1

dw

−
2

√
dvdw

).

Thus we arrive at the following theorem.

Theorem 1.

χ =
n

2
−

1

2

∑
vw∈E

(
1

√
dv

−
1

√
dw

)2

This formula was already discovered in [5], and was advocated as “justifying” Randić’s

choice of the p = −1
2

exponent in the generalized Randić index.

A few things are immediately apparent from this formulation of the Randić index.

First, for edges vw where dv = dw, there is no contribution to the summation. Hence, it

is precisely for graphs which consist only of regular components that the Randić index

attains its maximum value of n
2
. Incidentally, this upper bound of n

2
has been noticed

before by several authors [8, 9, 10, 11]. It readily comes from applying the Cauchy-Schwarz

inequality to a pair of appropriately chosen vectors. Of course, since the terms under the

summation in the formula above are always non-negative, we deduce this upper bound

quite easily from Theorem 1.

Corollary 2. Let G be a graph with minimum degree at least two and maximum degree

at most four. Then

χ =
n

2
−

5 − 2
√

6

12
m23 −

3 − 2
√

2

8
m24 −

7 − 4
√

3

24
m34

where mij denotes the number of edges with vertices of degree i and j.

This is trivially extended to allow degree one (or degree larger than four) sites, but in

the present form this gives the Randić index of diamondoid hydrocarbons, also known as

polymantanes, which are three dimensional analogues of benzenoids. Further specializa-

tion may be made for benzenoid, coronoid, and multi-coronoid hydrocarbons.
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Corollary 3. Let G be a graph with vertices having only degree two or degree three. Then

(5) χ =
n

2
−

5 − 2
√

6

12
m23.

This shows that for these types of graphs, the number m23 of (2, 3) edges is all one

needs to determine the Randić index. For the special cases of benzenoids and the closely

related cata-condensed “phenylenes”, this formula was found in [6] by a slightly longer

argument.

3. Best Linear Bounds on the Randić Index of Benzenoids

It is a quite natural to seek out the best possible bounds on the Randić index for a given

family of graphs. In particular, we seek here the best lower and upper bounds on this

invariant as linear functions of the number of vertices for benzenoids. There is a partial

ordering of the bounds of the form αn + β, for constants α and β, such that one upper

bound is better than a second if and only if, for any of the graphs under consideration, i.e.

benzenoids, the first never exceeds in value the second and has a strictly smaller value for

at least one graph. Similarly, one lower bound is better than a second if and only if, for

any of the graphs under consideration, the first is never smaller in value than the second

and has a strictly larger value for at least one graph. There are non-comparable linear

bounds for benzenoids, such as the two upper bounds, 3
5
n and 5

7
n − 1. In the case that

both n-linear upper and lower bounds are unique bests for a given class of graphs, we say

that this invariant is best-bounded for the class.

Theorem 4. For the class of benzenoids, the Randić connectivity index is n-linearly best-

bounded as
1 + 2

√
6

12
n +

5 − 2
√

6

2
≤ χ ≤

n

2
.

Both of these bounds are tight, with equality holding from above for and only for benzene,

and equality holding from below for and only for polyacene chains.

Before proceeding to the proof of this theorem, it might be noted how close these

bounds are to each other, differing by less than one hundredth. Namely,

49

100
n = .49n <

1 + 2
√

6

12
n +

5 − 2
√

6

2
≤ χ ≤ .5n =

50

100
n.

This shows that, at least for benzenoids, the dominant dependence of χ seems to be, up

to proportionality, just the carbon atom count n. Thence it becomes natural to ask about

the difference between these invariants, say by defining

r = c(
n

2
− χ),

where c = 6
5−2

√

6
≈ 59.394. This is an invariant with non-negative values and indeed

for benzenoids, is just half the number of (2, 3) edges, to which has been given a further
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interpretation in [6]. In that paper, r is called the number of inlets of a benzenoid and

is equal to the sum of the number of bays, coves, fjords, lagoons, and fissures (interested

readers are referred to [6]). One can also think of r in the following informative way.

Starting at a vertex of degree three, every walk around the boundary of a benzenoid has

disjoint sequences of degree two vertices, each of which contributes two (2, 3) edges. Hence

r is the number of these disjoint sets, which we can call ring exposures.

Proof. (Theorem 4) From Theorem 1 and Equation 5, the upper bound is obvious. Con-

sider whether B1 = α1n + β1 might be a better upper bound on χ than n
2
. First, it

cannot be the case that α1 < 1
2
, since the Randić index of some benzenoids can be made

arbitrarily close to n
2

so that B1 could not have been an upper bound after all regardless

of how large β1 is (repeatedly circumscribing benzene with hexagons will suffice as an

example). Next, suppose that α1 = 1
2

+ ε for some ε ≥ 0. Since, in particular, B1 must

be satisfied for benzene with n = 6 and χ = 3,

(
1

2
+ ε)6 + β1 ≥ 3

so that β1 ≥ −6ε. But now,

B1 = (
1

2
+ ε)n + β1 ≥ (

1

2
+ ε)n − 6ε =

n

2
+ ε(n − 6) ≥

n

2
.

So that n
2

is a better upper bound than B1 when α1 ≥ 1
2
. Thus, the upper bound in the

theorem is the best possible. Also, it is clear from Theorem 1 (and is well known) that

χ = n
2

only for regular graphs (or graphs where each component is regular) [5, 7, 11] so

benzene is clearly the only case of equality for the upper bound among benzenoids.

For the lower bound, note that the total number of boundary edges mb equals the total

number of boundary vertices nb – which is smaller than the total number of vertices. Then

with the realization (widely recognized as in [13]) that at least 6 boundary edges are of

the type (2, 2), we have

m23 + 6 ≤ mb = nb ≤ n

whence m23 ≤ n − 6. Substituting this into Equation 5 we find,

(6) χ =
n

2
−

5 − 2
√

6

12
m23 ≥

n

2
−

5 − 2
√

6

12
(n − 6) =

1 + 2
√

6

12
n +

5 − 2
√

6

2
,

proving the lower bound.

To characterize equality, suppose first that the benzenoid is a polyacene chain with

h ≥ 2 hexagons (note that for benzene with h = 1, equality is satisfied). Let us call

hexagons with four degree two vertices pendants. Note that each non-pendant hexagon

has four (2, 3) edges and each of the two pendant hexagons has two (2, 3) edges. Together

this yields, m23 = 4(h − 1) = n − 6, since n = 4h + 2. As can be seen from Equation 6

above, this indicates that polyacenes satisfy Theorem 4 with equality.
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Conversely, suppose that

χ =
1 + 2

√
6

12
n +

5 − 2
√

6

2
=

n

2
−

5 − 2
√

6

12
m23,

implying that m23 = n − 6. Again with m22 ≥ 6 and n ≥ nb ≥ m22 + m23 we deduce

that m22 = 6 and that all the vertices are on the boundary cycle, whence the benzenoid is

cata-condensed. We also deduce from this that the benzenoid has no branches or kinks,

for any branch would imply at least three pendant hexagons and at least nine (2, 2) edges

while any kink would imply at least seven (2, 2) edges (six for the two pendant hexagons

and another for each kink), both of which are contrary to the fact that m22 = 6. To

conclude we note that the only cata-condensed benzenoids with no branches and no kinks

are the polyacenes.

To see that this lower bound is best possible, let B2 = α2n+β2 be a lower bound which

is no worse than the one in the theorem. Since polyacenes satisfy the lower bound from

the theorem with equality, it cannot be the case that α2 > 1+2
√

6
12

. Otherwise, regardless

of how small β2 was, there would be a large enough polyacene chain whose Randić index

would be less than B2 – contradicting the fact that B2 was a lower bound. So suppose, for

ε ≥ 0, that α2 = 1+2
√

6
12

− ε ≤ 1+2
√

6
12

. We know that the lower bound B2 must be satisfied

for benzene, the smallest benzenoid with n = 6 and χ = 3, so

B2 = (
1 + 2

√
6

12
− ε)6 + β2 ≤ 3

β2 ≤ 3 −
1 + 2

√
6

2
+ 6ε =

5 − 2
√

6

2
+ 6ε.

Thus for all other benzenoids,

B2 = (
1 + 2

√
6

12
− ε)n + β2

≤ (
1 + 2

√
6

12
− ε)n +

5 − 2
√

6

2
+ 6ε

=
1 + 2

√
6

12
n +

5 − 2
√

6

2
− ε(n − 6)

≤
1 + 2

√
6

12
n +

5 − 2
√

6

2
.

Thence B2, being less than or equal to the lower bound of the theorem, we conclude that

the stated lower bound is best possible. �

This theorem illuminates an interesting observation. First, from Theorem 1 we see that

for alkanes, the Randić index decreases as the amount of branching increases (we use the

word branching in an intuitive but reasonable sense). Thus, as reported in [12], paths

have largest indices while chemical graphs amalgamated out of stars have smallest indices.

This trend is reversed in the class of cata-condensed benzenoids, which resemble trees with
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maximum degree three in that this is what their inner duals are. Here, as illustrated by

the last theorem, the polyacenes have the smallest Randić indices by attaining equality

with their lower bound, while branches and kinks (in the inner dual) increase the value of

this invariant. Roughly speaking, branches and kinks increase the number of (2, 2) edges

and, as a consequence, for a fixed number of hexagons, decrease the relative ratio of (2, 3)

edges thereby increasing the Randić index. Thus it may be said that benzenoids, rather

than alkanes, have their branching extent correlated positively to the Randić index.
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