
Algorithms for the Combinatorial Best Barbeque
Problem

Patric R. J. Österg̊ard∗ and Vesa Vaskelainen†

Department of Electrical and Communications Engineering
Helsinki University of Technology

P.O. Box 3000
02015 TKK, Finland

Email: patric.ostergard@tkk.fi,vvaskela@cc.hut.fi

Axel Mosig
Lehrstuhl für Bioinformatik

Universität Leipzig
Haertelstrasse 16–18

04107 Leipzig, Germany
Email: axel@bioinf.uni-leipzig.de

Abstract

The best barbeque problem asks for the largest intersection of n sets that are

taken one from each of n given collections of subsets of some universal set. This

combinatorial optimization problem arises in the context of discovering so-called

cis-regulatory modules in regulatory DNA sequences. There are some similarities

between this problem and the problem of finding cliques in graphs. These similar-

ities are here utilized to develop novel branch-and-bound algorithms for the best

barbeque problem. The algorithms are evaluated using random data. Compared

with previously used algorithms, the new algorithms are capable of solving substan-

tially larger instances, which are crucial for some application scenarios.

∗Supported in part by the Academy of Finland under Grants No. 100500 and No. 107493.
†Supported by the Academy of Finland under Grant No. 107493 and by the Foundation of Technology

(Tekniikan edistämissäätiö).

(Received June 22, 2006)

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 58 (2007) 309-321

 ISSN 0340 - 6253

1 Introduction

In a recent study of phylogenetic footprints in genes [4], the third author together with

Bıyıkoğlu, Prohaska, and Stadler observe that one approach of detecting such footprints

leads to instances of a certain combinatorial optimization problem, which they term the

best barbeque problem. The best barbeque problem is a rather generic problem, and could

well have other applications than those mentioned in [4]. The generic nature of the

problem also makes it interesting from a discrete mathematics point of view. The best

barbeque problem can be formulated as follows.

Combinatorial Best Barbeque Problem (CBBQ). For positive integers m and

n, let Ci, 1 ≤ i ≤ n be collections of subsets of {1, 2, . . . ,m} and denote the subsets in a

collection Ci by Ci,j, where 1 ≤ j ≤ |Ci|. Determine the maximum value of

∣∣∣∣∣
n⋂

i=1

Ci,ν(i)

∣∣∣∣∣ , (1)

where ν : {1, . . . , n} → Z
+ with ν(i) ≤ |Ci| and optimization is done over all such ν.

Example 1. Let m = 4, n = 2, C1,1 = {1}, C1,2 = {2, 3, 4}, C2,1 = {1, 2, 3},

C2,2 = {1, 3, 4}. Then |C1,2 ∩ C2,1| = |{2, 3}| = 2 (and also |C1,2 ∩ C2,2| = |{3, 4}| = 2)

and it is easily seen that 2 is the maximum value.

Finding solutions to instances of the combinatorial best barbeque problem is compu-

tationally a hard problem. More precisely, the decision version of CBBQ—determining

whether the solution is greater than or equal to a given integer k—is NP-complete [4].

Consequently, we can only expect rather small instances to be solvable using a reasonable

amount of CPU time. Such exact algorithms are indeed considered in this paper. Other

lines of research would be to consider stochastic algorithms for obtaining lower bounds

for the solutions or approximation algorithms.

Exact algorithms for the combinatorial best barbeque problem are developed in Section

2 and evaluated—using random data—in Section 3.

- 310 -

2 Algorithms

The algorithms presented in this paper are backtrack algorithms [3, Ch. 4]. A backtrack

algorithm is a recursive method of building up feasible solutions to a combinatorial opti-

mization problem one step at a time. Due to its exhaustive nature, a backtrack algorithm

will always find an optimal solution. There are at least two general approaches for de-

veloping a backtrack algorithm for CBBQ. Either one may focus on the elements that

are to occur in the intersection, or on the values of νi (determining what subsets of the

collections are chosen), and build up a solution accordingly. Some naive ideas related

to these approaches are presented in [4], but no further study of (efficient) algorithms is

carried out in that paper. In this study we develop algorithms of both types, starting

with algorithms building up a desired intersection one element at a time.

Given the collections Ci and an element s that is to occur in the desired intersection—

the element s must occur in some of the sets in Ci for all 1 ≤ i ≤ n—one arrives at a new

instance with collections C ′

i, 1 ≤ i ≤ n, where

C′

i = {C \ {s} : s ∈ C ∈ Ci}.

This leads to a complete backtrack algorithm after deciding procedures for choosing the

next element s and—for improved performance—for pruning the search. One possibility

for pruning is provided by the following formula that gives an upper bound on the number

of elements that can be added:

min
1≤i≤n

max
1≤j≤|Ci|

|Ci,j|. (2)

One can refine this idea even further to get the upper bound

max
1≤k≤m

min
1≤i≤n

max
1≤j≤|Ci|

{|Ci,j| : k ∈ Ci,j}. (3)

However, determining (3) is computationally harder than determining (2). It turns out

that utilizing (3) rather than (2) in the algorithms to be presented does not give an

improvement of the overall performance.

- 311 -

A basic backtrack algorithm utilizing these bounds is presented as Algorithm 1, which

is invoked with cbbq(C, 0). The size of the largest solution encountered is given by the

global variable record , whose initial value is 0, and the solution is saved in the global vari-

ables xi. Note that in describing the algorithm, our main focus is on its general principles,

so to optimize the performance of the algorithm it should obviously not be implemented

verbatim but some nontrivial but yet standard data structures and techniques should be

employed—see, for example, [3].

Algorithm 1 Backtrack algorithm for CBBQ

procedure cbbq(C: collection of collection of sets, l: integer)

1: S = ∩n
i=1 ∪

|Ci|

j=1 Ci,j; The elements of S are denoted by s1, s2,

2: if |S| = 0 then
3: if l > record then
4: record = l

5: Save the current solution x1, x2, . . . , xl

6: end if
7: return
8: end if
9: for c = 1, 2, . . . ,m do

10: if c �∈ S then
11: Delete c from all sets Ci,j

12: end if
13: end for
14: for c = 1, 2, . . . , |S| − record + l do
15: for i = 1, 2, . . . , n do
16: C ′

i = {C \ {s1, s2, . . . , sc} : sc ∈ C ∈ Ci}
17: end for
18: t = min1≤i≤n max1≤j≤|C

′

i
| |C

′

i,j|
19: if l + 1 + t > record then
20: xl+1 = sc

21: cbbq(C ′, l + 1)
22: end if
23: end for
24: return
end procedure

The following example illustrates Algorithm 1.

Example 2. Let m = 7, n = 2, C1 = {{1, 2, 5, 6}, {2, 3, 5, 6}, {1, 4, 6}, {1, 2, 3, 5}} and

C2 = {{2, 3, 6}, {3, 4, 6}, {1, 2, 5, 7}, {1, 2, 3, 4, 6}}. The execution of cbbq(C, 0) produces

the search tree in Figure 1. The operation carried out in lines 9 to 13 of the algorithm is

- 312 -

shown by a directed edge. The branches that are outside the loop in line 14 are indicated

by one crossing line, and the pruning carried out in line 19 is indicated by two crossing

lines. The execution terminates with the solution {1, 2, 3} of cardinality 3.

{{1, 2, 5, 6}, {2, 3, 5, 6}, {1, 4, 6}, {1, 2, 3, 5}}

{{2, 3, 6}, {3, 4, 6}, {1, 2, 5, 7}, {1, 2, 3, 4, 6}}

{{1, 2, 5, 6}, {2, 3, 5, 6}, {1, 4, 6}, {1, 2, 3, 5}}

{{2, 3, 6}, {3, 4, 6}, {1, 2, 5}, {1, 2, 3, 4, 6}}

{1} {2} {3} {4} {5} {6}

{{2, 5, 6}, {4, 6}, {2, 3, 5}}

{{2, 5}, {2, 3, 4, 6}}

{{5, 6}, {3, 5, 6}, {3, 5}}

{{3, 6}, {5}, {3, 4, 6}}

{{5, 6}, {5}}

{{6}, {4, 6}, {4, 6}}

{{2, 5, 6}, {4, 6}, {2, 3, 5}}

{{2, 5}, {2, 3, 4, 6}}

{{5, 6}, {3, 5, 6}, {3, 5}}

{{3, 6}, {5}, {3, 6}}

{2} {3} {4} {5} {6} {3} {5} {6}

{{5, 6}, {3, 5}}

{{5}, {3, 4, 6}}

{{5}}

{{4, 6}}

{{6}}

{{6}}

{{5, 6}, {5}}

{{6}, {6}}

{{5, 6}, {3, 5}}

{{5}, {3, 6}}

{3} {5} {6}

{{5}}

{{6}}

{{}}

{{}}

record = 3

0 :

1 :

2 :

3 :

Figure 1: Search tree for Algorithm 1

As the reductions in [4] suggest, the best barbecue problem is somewhat related to

the maximum clique problem. In fact, the principle ideas underlying Algorithm 1 are

motivated from and work analogously to the backtracking algorithm for the maximum

clique problem presented in [1]. Note, however, that CBBQ has more parameters than the

maximum clique problem. An important trait of maximum clique algorithms is that the

order in which the vertices of the graph are considered significantly affects the computation

- 313 -

times; consequently, reordering the input also has an impact on our algorithms for CBBQ.

Due to the analogy of Algorithm 1 with the maximum clique algorithm presented in

[1], it seems plausible that ideas from other types of maximum clique algorithms could

also be utilized to develop efficient algorithms for the current problem.

Algorithm 1 considers the elements in ascending order. It is also possible to develop a

so-called Russian doll search algorithm [6] for this problem; this is done for the maximum

clique problem in [5]. A Russian doll search algorithm for a problem with n variables

proceeds by solving n subproblems, where the ith subproblem considers the last i variables.

The solutions of the subproblems then give additional possibilities for pruning.

A Russian doll search algorithm for CBBQ is presented as Algorithm 2 and is invoked

with russian doll(C). Subproblem i considers only elements in the set {m − i + 1,m −

i + 2, . . . ,m} and the largest barbeque with respect to those element is recorded in the

global array b[i]. The possibility for pruning provided by b[i] is implemented in line 16 of

the algorithm. Specifically, if we search for a barbeque of size greater than record, then

we can prune the search if we consider i to be the next element in the barbeque and

the difference between the largest encountered solution and the size of the current partial

solution is greater than or equal to b[i]. The same variables are used as in Algorithm 1.

The boolean variable found is used to render an early return from the routine possible;

namely, b[i + 1] = b[i] or b[i + 1] = b[i] + 1, so whenever a solution of size b[i] + 1 is found

we can immediately return. Algorithm 2 leads to the search tree in Figure 2 when applied

to the instance in Example 2. In Figure 2 the new pruning in line 16 of Algorithm 2 is

indicated by three crossing lines.

Algorithm 3 focuses on the values of νi and is the simplest of these three presented

algorithms. Compared with the previous two algorithms this algorithm does not consider

elements at all. The variable l indicates the collection rather than the element that we are

examining. The current record can be updated only on the last level, where l = n+1. The

global variable record has initial value 0 and the algorithm is invoked with cbbq2 (C, 1).

Algorithm 3 leads to the search tree in Figure 3 when applied to the instance in Example

2. In Figure 3 pruning carried out in line 9 is indicated by one crossing line, and pruning

in line 14 is indicated by two crossing lines.

- 314 -

Algorithm 2 Russian doll search algorithm for CBBQ

procedure cbq(C: collection of collection of sets, l: integer)

1: S = ∩n
i=1 ∪

|Ci|

j=1 Ci,j; The elements of S are denoted by s1, s2,

2: if |S| = 0 then
3: if l > record then
4: record = l

5: found = true

6: Save the current solution x1, x2, . . . , xl

7: end if
8: return
9: end if

10: for c = 1, 2, . . . ,m do
11: if c �∈ S then
12: Delete c from all sets Ci,j

13: end if
14: end for
15: for c = 1, 2, . . . , |S| − record + l do
16: if l + b[sc] ≤ record then
17: return
18: end if
19: for i = 1, 2, . . . , n do
20: C ′

i = {C \ {s1, s2, . . . , sc} : sc ∈ C ∈ Ci}
21: end for
22: t = min1≤i≤n max1≤j≤|C

′

i
| |C

′

i,j|
23: if l + 1 + t > record then
24: xl+1 = sc

25: cbq(C ′, l + 1)
26: end if
27: if found = true then
28: return
29: end if
30: end for
31: return
end procedure

- 315 -

Algorithm 2 (cont.) Russian doll search algorithm for CBBQ

procedure russian doll(C: collection of collection of sets)
32: record = 0
33: Preprocess the instance so that ∩n

i=1∪
|Ci|

j=1Ci,j = {1, 2, . . . ,m} = S, and delete all other
elements

34: for i = m,m − 1, . . . , 1 do
35: found = false

36: for j = 1, 2, . . . , n do
37: C ′

j = {C ∩ {i + 1, . . . ,m} : i ∈ C ∈ Cj}
38: end for
39: x1 = i

40: cbq(C ′, 1)
41: b[i] = record

42: end for
43: return
end procedure

{{1, 2, 5, 6}, {2, 3, 5, 6}, {1, 4, 6}, {1, 2, 3, 5}}

{{2, 3, 6}, {3, 4, 6}, {1, 2, 5, 7}, {1, 2, 3, 4, 6}}

{{1, 2, 5, 6}, {2, 3, 5, 6}, {1, 4, 6}, {1, 2, 3, 5}}

{{2, 3, 6}, {3, 4, 6}, {1, 2, 5}, {1, 2, 3, 4, 6}}

{6}

{{}}

{{}}

b[6] = 1

{5, 6}

{{6}, {6}}

{{}}

b[5] = 1

{4, 5, 6}

{{6}}

{{6}, {6}}

{{6}}

{{6}, {6}}

{6}

{{}}

{{}}

b[4] = 2

{3, 4, 5, 6}

{{5, 6}, {5}}

{{6}, {4, 6}, {4, 6}}

{{6}}

{{6}, {6}, {6}}

{6}

b[3] = 2

{2, 3, 4, 5, 6}

{{5, 6}, {3, 5, 6}, {3, 5}}

{{3, 6}, {5}, {3, 4, 6}}

{{5, 6}, {3, 5, 6}, {3, 5}}

{{3, 6}, {5}, {3, 6}}

{3}

{{5, 6}, {5}}

{{6}, {6}}

{{6}}

{{6}, {6}}

{6}

{{}}

{{}}

b[2] = 3

{1, 2, 3, 4, 5, 6}

{{2, 5, 6}, {4, 6}, {2, 3, 5}}

{{2, 5}, {2, 3, 4, 6}}

{{2, 5, 6}, {4, 6}, {2, 3, 5}}

{{2, 5}, {2, 3, 4, 6}}

{2}

{{5, 6}, {3, 5}}

{{5}, {3, 4, 6}}

{{5, 6}, {3, 5}}

{{5}, {3, 6}}

{3}

{{5}}

{{6}}

{5}

{3}

1 :

2 :

3 :

Figure 2: Search tree for Algorithm 2

- 316 -

Algorithm 3 Backtrack algorithm for CBBQ focusing on subsets

procedure cbbq2 (C: collection of collection of sets, l: integer)
1: if l = n + 1 then
2: if | ∩n

i=1 Ci,xi
| > record then

3: record = | ∩n
i=1 Ci,xi

|
4: Save the current solution ∩n

i=1Ci,xi

5: end if
6: return
7: end if
8: for j = 1, 2, . . . , |Cl| do
9: if |Cl,j| > record then

10: for i = l + 1, l + 2, . . . , n do
11: C ′

i = {C ∩ Cl,j : C ∈ Ci}
12: end for
13: t = minl+1≤i≤n max1≤j≤|C

′

i
|
|C ′

i,j|

14: if t > record then
15: xl = j

16: cbbq2 (C, l + 1)
17: end if
18: end if
19: end for
end procedure

{{1, 2, 5, 6}, {2, 3, 5, 6}, {1, 4, 6}, {1, 2, 3, 5}}

{{2, 3, 6}, {3, 4, 6}, {1, 2, 5}, {1, 2, 3, 4, 6}}

{1, 2, 5, 6}

{{2, 6}, {6}, {1, 2, 5}, {1, 2, 6}}

{2, 3, 5, 6}

{{2, 3, 6}, {3, 6}, {2, 5}, {2, 3, 6}}

{1, 4, 6} {1, 2, 3, 5}

{{2, 3}, {3}, {1, 2, 5}, {1, 2, 3}}

{{2, 6}, {6}, {1, 2, 5}, {1, 2, 6}}

{2, 6} {6} {1, 2, 5} {1, 2, 6}

record = 2 record = 3

1 :

2 :

3 :

Figure 3: Search tree for Algorithm 3

- 317 -

3 Evaluation of the Algorithms

The performance of the presented algorithms was evaluated using randomly generated

data. The results are presented in Tables 1–4. The computation times are in CPU

seconds on a 1.4-GHz PC with Linux operating system. Algorithm 2 is usually the fastest

for all types of data but if n is small then Algorithm 3 is the best choice.

The running times of our three algorithms are affected significantly by the order in

which the input is given. Obviously, the input can be shuffled in several ways while

leaving the instance of the best barbecue problem unchanged. First of all, the elements

of the universal set can be permuted arbitrarily. Secondly, we can change the order of the

collections as well as the order of the sets within each collection. We will refer to changing

those orders as sorting.

In order to study the influence of shuffling the elements in the universal set, we tested

several different permutation heuristics. The following permutation led to the best per-

formance with Algorithm 1. We first determine how often each element occurs in the

data. Then, the smallest element is relabelled to a least frequent element, the second

smallest element is renamed to the element which is the next least frequent, and so on.

This ordering is also good for Algorithm 2 and is used in the evaluations. Occasionally

some other orderings perform better; for Algorithm 2 more research could be carried out

to further optimize the performance of this algorithm for various type of data.

With Algorithm 3, as a heuristic for sorting, we order the sets within each collection

descending with respect to their cardinalities, while the collections themselves are ordered

descending with respect to the cardinality of the largest subset in them. If all subsets have

the same size, as in our experiments with random data, this sorting heuristic obviously

does nothing.

Since the instances have many parameters, we have divided the evaluation into four

cases, in each of which all but one of the values n, |Ci|, |Ci,j| and m are fixed. For each

entry, ten random instances were considered and the average solution and computation

time is listed for the three algorithms (A1, A2 and A3).

- 318 -

Table 1: Computational results for |Ci| = 20, |Ci,j| = 50 and m = 100
n maximum A1 A2 A3
10 7.2 7.95 3.41 1.28
20 5.0 7.51 3.68 22.99
30 4.0 6.62 4.12 111.55
40 4.0 5.69 3.25 380.03
50 3.1 6.06 5.27 2056.05

Table 2: Computational results for n = 20, |Ci,j| = 50 and m = 100
|Ci| maximum A1 A2 A3
10 3.4 0.36 0.22 1.98
20 5.0 7.29 3.50 20.51
30 5.6 41.11 26.29 191.37
40 6.0 165.75 98.47 377.01
50 6.3 471.95 325.93 1392.41

Table 1 shows that Algorithms 1 and 2 are rather immune to the growth of n and

Algorithm 3 becomes impractically slow when n grows. However, Algorithm 3 is the

fastest if n � 10. Table 2 shows that all algorithms slow down quite uniformly when |Ci|

grows. Tables 3 and 4 present the influence of |Ci,j|/m → 1.

Table 3: Computational results for n = 20, |Ci| = 20 and m = 100
|Ci,j| maximum A1 A2 A3
30 2.0 0.10 0.09 0.41
40 3.1 0.87 0.64 3.12
50 5.0 7.60 3.73 23.04
60 7.2 159.87 95.88 455.58
70 12.0 12877.21 5919.67 6395.50

To give some hints on the performance of these algorithms for real-world biological

data from phylogenetic footprinting, we present the results from two computational tests.

For the first instance, n = 4, 273 ≤ |Ci| ≤ 711, 1 ≤ |Ci,j| ≤ 37, m = 52 with maximum

value 6, and for the second instance, n = 8, 2317 ≤ |Ci| ≤ 4289, 1 ≤ |Ci,j| ≤ 140, m = 307

with maximum value 30. The computational times (in CPU seconds) for the first instance

were 0.01, 0.02 and 0.01 with A1, A2 and A3, respectively, and for the second instance

they were 0.66, 10.20 and 3.14, respectively. Computing the second instance with the

algorithms presented in [4] takes several CPU months.

- 319 -

Table 4: Computational results for n = 20, |Ci| = 20 and |Ci,j| = 60
m maximum A1 A2 A3
100 7.3 155.26 88.05 399.09
150 3.2 2.79 1.88 11.76
200 2.0 0.51 0.42 2.21
250 2.0 0.40 0.41 0.42
300 1.3 0.42 0.36 0.43

Table 5: Biological meaning of the parameters involved
n Number of transcription factors ≤ 1000
m Number of related genes ≤ 30
|Ci| Binding sites within complete promoter sequence ≤ 3000
|Ci,j| Binding sites within 500 nucleotides ≤ 100

Relative easiness of these real-world instances are due to several reasons: after the

removal in the preprocessing step of elements not occurring in all Ci, the instances become

substantially smaller; and almost all elements in the preprocessed instances occur in a

solution. The first instance is reduced so that we get the parameters n = 4, 273 ≤ |Ci| ≤

710, 1 ≤ |Ci,j| ≤ 6, m = 6, and the second instance is reduced to n = 8, 2317 ≤ |Ci| ≤

4284, 1 ≤ |Ci,j| ≤ 31, m = 31.

While further studies of biological data with the new algorithms will be carried out

in subsequent work, it should be mentioned that the results here indicate suitability of

our algorithms for such instances. As can be seen in Table 5, the relevant parameters

considered in our artificial data sets comprise the complete range of relevant parameters

for the cis-regulatory module discovery instances discussed in [4]. It should be mentioned

that the parameters considered here are much larger than those considered in the com-

putational experiments in [4], which were essentially limited to m ≤ 3 and n ≤ 15. The

values in Table 5 are based on the assumption that a binding site is found at at most ev-

ery 5 nucleotides, which can be considered a minimum requirement for sufficiently specific

matches of transcription factor binding sites in a typical application setting. The number

of transcription factor binding sites n is derived from the number of known profiles in

databases such as TRANSFAC [2].

- 320 -

References

[1] R. Carraghan and P. M. Pardalos, An exact algorithm for the maximum clique prob-

lem, Oper. Res. Lett. 9 (1990), 375–382.

[2] T. Heinemeyer, E. Wingender, I. Reuter, H. Hermjakob, A. E. Kel, O. V. Kel,

E. V. Ignatieva, E. A. Ananko, O. A. Podkolodnaya, F. A. Kolpakov, N. L. Pod-

kolodny, and N. A. Kolchanov, Databases on transcriptional regulation: TRANSFAC,

TRRD, and COMPEL, Nucl. Acids Res. 26 (1998), 364–370.

[3] D. L. Kreher, D. R. Stinson, Combinatorial Algorithms: Generation, Enumeration,

and Search, CRC Press, Boca Raton, 1999.

[4] A. Mosig, T. Bıyıkoğlu, S. J. Prohaska, and P. F. Stadler, Detecting phylogenetic

footprint clusters by optimizing barbeques, submitted for publication.

[5] P. R. J. Österg̊ard, A fast algorithm for the maximum clique problem, Discrete

Appl. Math. 120 (2002), 197–207.

[6] G. Verfaillie, M. Lemâıtre, and T. Schiex, Russian doll search for solving constraint

optimization problems, in Proc. 13th National Conference on Artificial Intelligence

(AAAI-96), Portland, Oregon, August 4–8, 1996, AAAI Press, Menlo Park, Califor-

nia, 1996, pp. 181–187.

- 321 -

