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Abstract

In the paper spectral properties of line distance matrices, associated with bio-
logical sequences, are studied. It is shown that a line distance matrix of size n > 1
has one positive and n−1 negative eigenvalues. Furthermore, a recently introduced
conjecture that line distance matrices belong to a class of well known squared dis-
tance matrices, is confirmed. The interlacing property for line distance matrices is
considered.

1 Introduction

One of the main areas of Bioinformatics is the study of biological sequences. It is well

known that finding an optimal structural alignment between two protein sequences is

an NP-hard problem [6], therefore only heuristics for comparison of sequences, based on

computer techniques are known. Recently, alternative routes for quantitative measure

of the degree of similarity of DNA sequences were considered [10, 11, 13], which have
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also been extended to protein sequences [12, 14]. The novel methodology starts with a

graphical representation of DNA, such as proposed by Nandy [7] and Jeffrey [4], which

are subsequently numerically characterized by associating with the selected geometrical

object that represents DNA, a matrix [8].

Another approach is to associate a matrix to a given sequence and study its prop-

erties instead. Such a representation, based on the sequential labels of each of the four

nucleotides A, T, G, and C separately for construction of matrix elements is given in [9].

In this paper we study line distance matrices. A line distance matrix represents dis-

tances between points on the real line, therefore it gives a natural way of studying bio-

logical sequences. For example, one can associate four vectors, indicating the distances

between the consecutive nucleotides of the same kind, with a given DNA sequence. The

corresponding matrices for each of the four nucleotides A, T, G, and C give a represen-

tation of the DNA sequence. The study of spectral properties of the matrices and their

principal submatrices gives us an insight into the DNA sequence.

The novelty of this particular approach is association of a matrix with partitioned

lines, which allows construction of a set of invariants to characterize such lines. In this

paper we study the eigenvalues of line distance matrices D ∈ R
n×n and prove that their

spectrum consists of only one positive and n − 1 negative eigenvalues. Further, we prove

that line distance matrices belong to a class of well known squared distance matrices

[3, 15].

2 Spectral properties

Let ttttttttt = (t1, t2, . . . , tn), t1 < t2 < · · · < tn, ti ∈ R, be a given position vector (i.e., a list of

points on the real line). A line distance matrix D ∈ R
n×n, associated with ttttttttt is defined

as

dij = |ti − tj|.

Let us consider a DNA sequence (of four nucleotides A, T, G, C) and represent distances

between occurrences of A (or distances between T, or G or C) in a vector ttttttttt. We associate a

line distance matrix with the vector ttttttttt. A similar construction gives us matrices associated

with nucleotides T, G and C. Those four distance matrices represent (part of) the given

DNA sequence. A valuable insight into matrix properties can be obtained by the study

of the distribution of its eigenvalues. Clearly, since line distance matrices are symmetric,

their eigenvalues λi are real. Here is the main result of the paper.

Theorem 1 Let D ∈ R
n×n be a line distance matrix, associated with a vector ttttttttt and let

D(i) := D(1 : i, 1 : i), i = 1, 2, . . . , n be its principal submatrices. Let

λ
(i)
i ≤ λ

(i)
i−1 ≤ · · · ≤ λ

(i)
2 ≤ λ

(i)
1

be the eigenvalues of the matrix D(i). Then λ
(i)
1 > 0, λ

(i)
2 < 0 for i > 1 and λ

(1)
1 = 0.
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Since D = D(n), we obtain the following corollary.

Corollary 1 The spectrum of a line distance matrix D of size n > 1 consists of one

positive and n − 1 negative eigenvalues.

The definition of line distance matrices contains the assumption tj �= tj+1,∀j for a position

vector ttttttttt. Obviously, the relation tj = tj+1 implies linearly dependent rows and columns

of the line distance matrix D. If this assumption is neglected, we obtain the following

result.

Corollary 2 Let D ∈ R
n×n be a line distance matrix, associated with a position vector ttttttttt

and n > 2. Then λ
(i)
2 = 0, i > 1 iff tj = tj+1 for some j < i.

Proof of Theorem 1: Let pi(x) := det(D(i) − xI) denote the characteristic polynomial

of the matrix D(i). Clearly, λ
(1)
1 = 0. By using ideas of Krattenthaler [5] it is easy to

prove

det D(i) = (−1)i+12i−2(ti − t1)
i−1∏
j=1

(tj+1 − tj). (1)

Since trace D(i) =
∑i

j=1 λ
(i)
j = 0 and det D(i) =

∏i

j=1 λ
(i)
j �= 0,

λ
(i)
1 > 0, λ

(i)
i < 0, i > 1,

in particular λ
(2)
2 < 0. Cauchy’s interlacing theorem [16] implies

λ
(3)
3 ≤ λ

(2)
2 ≤ λ

(3)
2 ≤ λ

(2)
1 ≤ λ

(3)
1 .

Since p3(0) > 0 by (1), λ
(2)
2 < 0, λ

(2)
1 > 0 and p3(x) = (λ

(3)
1 − x)(λ

(3)
2 − x)(λ

(3)
3 − x),

therefore λ
(3)
2 < 0.

Now let by inductive supposition λ
(i−1)
2 < 0. Cauchy’s interlacing theorem implies

λ
(i−1)
3 ≤ λ

(i)
3 ≤ λ

(i−1)
2 ≤ λ

(i)
2 ≤ λ

(i−1)
1 ≤ λ

(i)
1 .

Recall λ
(i)
1 > 0 and λ

(i)
j < 0, j ≥ 3. Since pi(x) =

∏i

j=1(λ
(i)
j − x) and by (1) sign(pi(0)) =

(−1)i+1,

λ
(i)
2 < 0.

This concludes the proof.

It is interesting to consider a relation between line distance matrices and well-known

squared distance matrices. Recall that a matrix S ∈ R
n×n is a squared distance

matrix, if there are vectors xxxxxxxxx1, xxxxxxxxx2, . . . , xxxxxxxxxn ∈ R
r (r ≤ n), such that sij = ‖xxxxxxxxxi − xxxxxxxxxj‖

2
2 for all

i, j = 1, 2, . . . , n ([3, 15]). By using Theorem 1 and a characterization of squared distance

matrices ([3]), we can prove the following claim.
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Theorem 2 Line distance matrices are squared distance matrices.

Proof: Let D be a line distance matrix, associated with a position vector ttttttttt and let us

define eeeeeeeee := [1, 1, . . . , 1]T ∈ R
n. Since by Corollary 1 D has exactly one positive eigenvalue,

it is by characterization of squared distance matrices [3], Thm. 2.2, enough to prove, that

there exists wwwwwwwww ∈ R
n, such that Dwwwwwwwww = eeeeeeeee and wwwwwwwwwT eeeeeeeee ≥ 0. Let us define v := 1

tn−t1
and let

wwwwwwwww := [v, 0, . . . , 0, v]T . Clearly Dwwwwwwwww = eeeeeeeee and wwwwwwwwwT eeeeeeeee = 2v > 0. This confirms that D is a

squared distance matrix.

Recently, Alfakih in [1] computed the characteristic polynomial of a squared distance

matrix and studied properties of its nullspace and rangespace.

3 Interlacing property

Cauchy’s interlacing theorem [2, 16], applied in the proof of Theorem 1, together with

the results of Theorem 1, give us insight into the position of the eigenvalues of principal

submatrices of line distance matrices. Let us consider a visualization of this interesting

property.

For example, take the first exon of rabbit’s β-globin gene, which starts as:

ATGGTGCATCTGTCCAGTGAG. . . Positions of T in the sequence can be written in a

vector

ttttttttt = [2, 5, 9, 11, 13, 18] (2)

and its corresponding line distance matrix is

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 3 7 9 11 16

3 0 4 6 8 13

7 4 0 2 4 9

9 6 2 0 2 7

11 8 4 2 0 5

16 13 9 7 5 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

The positions of the nucleotide T in the DNA sequence are shown in Fig. 1. Note that the

entries on the superdiagonal 3, 4, 2, 2, 5 are the differences between adjacent components

of the vector (2) (Fig. 1).

The eigenvalues of the principal submatrices of the matrix (3) can be written in a pyra-

midal structure:

0
−3 3

−7.09 −2.48 9.57
−11.28 −2.91 −1.66 15.86

−15.52 −4.13 −2.22 −1.29 23.14
−21.54 −9.35 −3.03 −2.16 −1.25 37.33

(4)
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3 4 2 2 5
2 5 9 11 13 18

Figure 1: A path defines the line distance matrix (3).

−30 −20 −10 0 10 20 30 40

Figure 2: Cauchy’s interlacing property for the line distance matrix (3).

Their graphical representation is shown in Fig. 2. Another characterization may be ob-

tained by studying sequences of partial sums of eigenvalues
(∑j

i=1 λ
(k)
i

)
j
:

0
3 0

9.57 7.09 0
15.86 14.20 11.28 0

23.14 21.86 19.64 15.52 0
37.32 36.08 33.92 30.88 21.54 0

4 Remarks

We have considered line distance matrices, introduced in Bioinformatics in [9] and in

particular their spectral properties. Note that line distance matrices can be associated

to any (noninteger) position vector with non-decreasing components (or associated to a

path in graph theory). Line distance matrices have a structure similar to that of the

well-known Toeplitz and Hankel matrices, since they are determined by their first row

only. But here the rows are not simply shifts of the first row, but they represent distances

between different elements in the position vector. At first it seems that no new information

is obtained in this way, but the study of principal submatrices gives us novel information
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on the subsequences of the given biological sequence.

The leading eigenvalues of the principal submatrices of line distance matrices (shown as

the most right hand side entries of the pyramidal structure (4)), can serve as additional

line descriptors. From the leading eigenvalues we can construct a new position vector

ttttttttt′ = (λ
(1)
1 , λ

(2)
1 , λ

(3)
1 , . . . ) and construct a line distance matrix of the second order, and

continue the process.

Similarly, we can construct the Laplace matrix, associated with the given position

vector or generalize the outlined approach from DNA sequences to other biological and

non-biological sequences. A natural generalization is a study of protein sequences. Here

we can consider line distance matrices based on the distances between the 20 natural

amino acids in some prescribed order.

5 Software

Mathematica and Matlab programs for studying line distance matrices and their spectral

properties for various biological sequences are available at the website:

http://www.fmf.uni-lj.si/∼jaklicg/ldmatrix.html

Acknowledgement

Research was supported in part by grants P1-0294 and Z1-7330-0101 from Ministrstvo za
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