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Abstract

Alkanes are counted as stereoisomers or three-dimensional trees (3D-trees) by
means of Fujita’s PCI (partial-cycle-index) method (Fujita, S., Chem. Inf. Comput.
Sci., 2000, 40, 135–146; Fujita, S., Bull. Chem. Soc. Jpn., 2000, 73, 329–339)
after they are categorized according to the dichotomy between centroidal and bi-
centroidal 3D-trees. The centroidal alkanes are enumerated by using a tetrahedral
skeleton of Td-symmetry under the criterion of defining such centroidal 3D-trees,
where they are itemized in terms of the eleven subgroups of the Td-symmetry. On
the other hand, the bicentroidal alkanes are enumerated by using a two-nodal skele-
ton belonging to the K-symmetry, where they are itemized in terms of the five
subgroups of the factor group K = D∞h/C∞. Both the enumerations are based
on functional equations derived from partial cycle indices with chirality fittingness,
where the component functions a(xd), c(xd), and b(xd) (or their modifications) are
substituted for three kinds of sphericity indices, i.e., ad for homospheric orbits,
cd for enantiospheric orbits, and bd for hemispheric orbits. Respective functional
equations based on the itemization by subgroups are programmed by means of the
Maple programming language. The resulting programs are executed to give respec-
tive stereoisomer numbers up to carbon content 100, which are collected in tabular
forms with subgroup itemization.
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1 Introduction

Manual enumeration of alkanes as constitutional isomers is one of elementary topics in
an introductory course of organic chemistry, as found in most textbooks.1–3 Although the
enumeration is combined with the IUPAC nomenclature of alkanes as an introduction to
the systematic nomenclature, it is not been described from stereochemical viewpoints.
On the same line, combinatorial enumeration of alkanes has been conducted by regarding
alkanes as constitutional isomers, as described in books4–7 and reviews.8–11 In the 1870s, a
mathematician Cayley reported combinatorial enumeration of trees,12, 13 which he already
recognized to be models of alkanes in a chemical context. In the 1930s, Henze and Blair
accomplished a more chemical investigation,14, 15 were they used recursive equations in
the enumeration of alkanes. Later in the 1930s, Pólya reported a systematic enumeration
of alkanes as trees (constitutional isomers),16, 17 where he used cycle indices (CIs) derived
by a famous theorem bearing his name. Otter reported an alternative method for enu-
merating trees,18 where he used his dissimilarity characteristic equation. Because these
investigations depended on permutation-group theory which disregards inner structures
of ligands, they did not properly treat stereochemical problems such as pseudoasymmetry
and meso-compounds. More recently, Robinson et al. reported the enumeration of alkanes
as stereoisomers,19 where they used Pólya’s cycle indices (CIs) and Otter’s dissimilarity
characteristic equations after modification. Even their treatment, however, took no ac-
count of the problems of pseudoasymmetry and meso-compounds because of disregard for
the inner structures of ligands. Moreover, all of the previous works have not investigated
symmetry-itemized enumeration of alkanes as stereoisomers.

By paying much regard to the inner structure of ligands, we have developed the USCI
(unit-subduced-cycle-index) approach,20 where we put emphasis on the concept of spheric-
ities of orbits. Among the four methods provided by the USCI approach,20–23 we have
shown that the PCI (partial-cycle-index) method is especially useful because it gives
generating functions itemized with point-group symmetries.24, 25 We have developed an
additional approach named the proligand method,26–28 where we put emphasis on the
concept of sphericities of cycles. The concept of sphericities of orbits in Fujita’s USCI
approach20 and the concept of sphericities of cycles in Fujita’s proligand method26–28 are
closely related to each other through the concept of sphericities of orbits for cyclic groups
so that they are both capable of treating the inner structures of ligands properly and of
solving the problems of pseudoasymmetry and meso-compounds.

In this paper, we discuss the aforementioned enumeration of alkanes as a probe for
testifying the versatility of Fujita’s PCI method, where the number of alkanes as stereoiso-
mers is itemized so as to give respective numbers of point-group symmetries. In particular,
PCI-CFs (partial cycle indices with chirality fittingness) derived by Fujita’s PCI method
are correlated to CI-CFs (cycle indices with chirality fittingness) derived by Fujita’s pro-
ligand method.

2 Tetrahedral and Two-Nodal Promolecules

A promolecule is defined as a skeleton substituted by a set of proligands, which are in
turn defined as structureless objects having chirality/achirality.29 This section is devoted
to examine tetrahedral promolecules and two-nodal promolecules.
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2.1 Tetrahedral Promolecules

Tetrahedral promolecules are derived from a tetrahedral skeleton (1) belonging to the
Td-point group.

•
1

24
3

1

Figure 1: Td-skeleton (1) with four substitution positions. An solid circle (•) represents
a carbon atom.

The four positions (1 to 4) of the tetrahedral skeleton (1) construct an orbit governed
by a coset representation (CR) Td(/C3v). The corresponding unit subduced cycle indices
with chirality fittingness (USCI-CFs)30, 31 have been derived from the CRs and collected
in the Td(/C3v)-row of Appendix E.10 of Fujita’s book,20 which is cited as a tentative
row vector:

(b4
1, b

2
2, a

2
1c2, b1b3, c4, b4, a

2
2, a1a3, a4, b4, a4). (1)

According to Theorem 19.7 of Fujita’s book,20 this vector is multiplied by the inverse
mark table for Td listed in Appendix B.1 of the same book to give the corresponding
PCI-CFs as follows:25

PCI-CF(C1, $d) =
1

24
b4
1 −

1

8
b2
2 −

1

4
a2

1c2 − 1

6
b1b3 +

1

12
b4

+
1

4
a2

2 +
1

2
a1a3 +

1

6
b4 − 1

2
a4 (2)

PCI-CF(C2, $d) =
1

4
b2
2 −

1

4
c4 − 1

4
b4 − 1

4
a2

2 +
1

2
a4 (3)

PCI-CF(Cs, $d) =
1

2
a2

1c2 − 1

2
a2

2 − a1a3 + a4 (4)

PCI-CF(C3, $d) =
1

2
b1b3 − 1

2
a1a3 − 1

2
b4 +

1

2
a4 (5)

PCI-CF(S4, $d) =
1

2
c4 − 1

2
a4 (6)

PCI-CF(D2, $d) = 0 (7)

PCI-CF(C2v, $d) =
1

2
a2

2 −
1

2
a4 (8)

PCI-CF(C3v, $d) = a1a3 − a4 (9)

PCI-CF(D2d, $d) = 0 (10)

PCI-CF(T, $d) =
1

2
b4 − 1

2
a4 (11)

PCI-CF(Td, $d) = a4, (12)

where the symbol $ represents a, b, or c. These equations count each achiral promolecule
just once and each enantiomeric pair of chiral promolecules just once. By summing up
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eqs. 2–12, we obtain the following cycle index with chirality fittingness (CI-CF):

CI-CF(Td, $d) =
1

24
b4
1 +

1

8
b2
2 +

1

3
b1b3 +

1

4
a2

1c2 +
1

4
c4. (13)

which is identical with the CI-CF derived by Fujita’s proligand method.26–28

Let us consider achiral proligands X, Y, Z, and H as well as chiral proligands p/p,
q/q, and r/r (enantiomeric pairs of chiral proligands), which are used as substituents for
the Td-skeleton (1), i.e.,

X = {X, Y, Z, H; p, p; q, q; r, r; s, s}. (14)

Suppose that a set of proligands is selected from the proligand warehouse X (eq. 14) to
give a tetrahedral derivative, Then, the following ligand inventories are calculated:

ad = Xd + Yd + Zd + Hd (15)

cd = Xd + Yd + Zd + Hd

+ 2pd/2pd/2 + 2qd/2qd/2 + 2rd/2rd/2 + 2sd/2sd/2 (16)

bd = Xd + Yd + Zd + Hd

+ pd + pd + qd + qd + rd + rd + sd + sd. (17)

These ligand inventories are introduced to the PCI-CFs (eqs. 2–12) to give generating
functions for counting the respective numbers of promolecules.32 Some of the generating
functions are shown as follows:

fC2 = [
1

2
(X2p2 + X2p2) +

1

2
(X2q2 + X2q2) + · · ·] +

+ [
1

2
(p2q2 + p2q2) +

1

2
(p2r2 + p2r2) + · · ·] (18)

fCs = (X2YZ + X2ZH + · · ·) + (X2pp + X2qq + · · ·)
+ (2XYpp + 2XYqq + · · ·). (19)

Such a term as (1/2)(X2p2 + X2p2) represents a pair of enantiomers, which is counted
just once. Such a term as X2pp represents a so-called meso-like compound, which is
counted just once as an achiral stereoisomer. Note that the term XYZH is used in place
of (1/2)[XYZH(right) + XYZH(left)] on the basis of the model adopted in the present
enumeration. The results due to the PCI method (e.g., eqs. 18 and 19) are identical
with those based on the subduced-cycle-index (SCI) method reported previously.29 For
the sake of convenience for further discussions, the structures of promolecules are cited
from Chapter 21 of Fujita’s book,20 as shown in Fig. 2. Note that each promolecule in
Fig. 2 is selected as a representative of promolecules of the same type. For examples, the
promolecule 2 having X4 is a representative of promolecules having X4, Y4, Z4, H4, and
so on.

2.2 Two-Nodal Promolecules

To treat meso-compounds properly, we shall regard them as derivatives of a two-nodal
skeleton (39) with two substituents. The two-nodal skeleton (39) belongs to a point
group of infinite order, i.e., D∞h.
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Figure 2: Promolecules for centroidal 3D-trees, which are derived from a tetrahedral
skeleton of Td-symmetry.29, 20 The symbols X, Y, Z, and H represent achiral proligands,
while the symbols p/p, q/q, r/q, and s/s represent enantiomeric pairs of chiral proli-
gands. Either one selected from an enantiomeric pair of promolecules is depicted as a
representative.
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Figure 3: D∞h-skeleton or D∞h/C∞-skeleton (39) with two substitution positions.

Because the D∞h is not easy to treat because of its infinite nature, we adopt the corre-
sponding factor group D∞h/C∞ (= K). According to the treatment reported previously,33

the factor group K represented by a set of cosets:

K = D∞h/C∞ = {C∞I,C∞C2,C∞σv,C∞σh}, (20)

which has five subgroups as follows:

K1 = C∞/C∞ = {C∞I} (21)

K2 = D∞/C∞ = {C∞I,C∞C2} (22)

K3 = C∞v/C∞ = {C∞I,C∞σv} (23)

K4 = C∞h/C∞ = {C∞I,C∞σh} (24)

K5 = K = D∞h/C∞. (25)

Thereby, the D∞h-skeleton (39) is regarded as a D∞h/C∞-skeleton, where its two po-
sitions belong to an orbit governed by the CR K(/K3). Because the factor group K is
isomorphic to the point group C2v, we can use the correspondence of subgroups:

K1 ∼ C1 = {I} (26)

K2 ∼ C2 = {I, C2} (27)

K3 ∼ Cs = {I, σv(1)} (28)

K4 ∼ C′
s = {I, σv(2)} (29)

K5 ∼ C2v = {I, C2, σv(1), σv(2)}. (30)

This means that where we can use the CR C2v(/Cs) in place of the CR K(/K3), if
necessary. By following the USCI approach 34, 25 the PCI-CFs for the subgroups listed in
eqs. 21–25 are obtained as follows:34

PCI-CF(K1, $d) =
1

4
b2
1 −

1

4
b2 − 1

4
a2

1 −
1

4
c2 +

1

2
a2 (31)

PCI-CF(K2, $d) =
1

2
b2 − 1

2
a2 (32)

PCI-CF(K3, $d) =
1

2
a2

1 −
1

2
a2 (33)

PCI-CF(K4, $d) =
1

2
c2 − 1

2
a2 (34)

PCI-CF(K, $d) = a2, (35)
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where we use the USCI-CF table and the inverse table of marks for the isomorphic group
C2v (Appendices E.5 and B.5 of Fujita’s book20).

By summing up the PCI-CF shown in eqs. 31–35, we obtain the following CI-CF:

CI-CF(K; $d) =
1

4

(
b2
1 + b2 + a2

1 + c2

)
. (36)

This CI-CF is identical with the one derived by means of Fujita’s proligand method,26–28

although the SIs in eq. 36 are concerned with the sphericities of orbits of cycle subgroups,
while the SIs in the CI-CF of Fujita’s proligand method are concerned with the sphericities
of cycles.

Suppose that we select two proligands from achiral proligands (X and Y) and chiral
proligands (p, p, q, and q), where p and p (or q and q) represent a pair of enantiomeric
proligands in isolation. By following Theorem 1 of the previous paper,26 we use the
following inventories:

ad = Xd + Yd (37)

cd = Xd + Yd + 2pd/2pd/2 + 2qd/2qd/2 (38)

bd = Xd + Yd + pd + pd + qd + qd. (39)

In the present case, promolecules to be examined are not so complicated that the item-
ization based on eqs. 31–35 is overprescribed to discuss symmetrical features of two-nodal
promolecules. Hence we use eq. 36 for obtaining the total number. The inventories (eqs.
37–39) are introduced into eq. 36 and the resulting equation is expanded to give the
following generating function:

F = [X2 + Y2] + [XY] + [pp + qq]

+
1

2
[(p2 + p2) + (q2 + q2)]

+
1

2
[(Xp + Xp) + (Xq + Xq) + (Yp + Yp) + (Yq + Yq)]

+
1

2
[(pq + pq) + (pq + pq], (40)

where the coefficient of each term represents the number of promolecules based on the
K-skeleton (39). The promolecules are depicted in Fig. 4, where a representative of each
type of promolecules is depicted with its symmetry specification. Note that each of the
representatives corresponds to a set of terms in each pair of brackets in the right-hand
side of eq. 40.

3 Alkyl Ligands as Proligands

In the next step, we shall convert the tetrahedral promolecules (Subsection 2.1) and the
two-nodal promolecules (Subsection 2.2) into alkanes, where the proligands listed in the
proligand warehouse X (eq. 14) are replaced by adequate alkyl ligands.

To accomplish this conversion, suppose that an alkyl ligand is characterized by its
carbon content k and that the number of such alkyl ligands as having carbon content k is
represented as the coefficient of the term xk. Thereby, the set of PCI-CFs for tetrahedral
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Figure 4: Promolecules based on the skeleton 39. The promolecules X—X, X—Y, and
p—p are achiral. The other promolecules X—p, p—p, and p—q are chiral, where an
appropriate enantiomer is depicted for each pair of enantiomers.

derivatives (eqs. 2–12) and the set of PCI-CFs for two-nodal derivatives (eqs. 31–35)
are evaluated by considering that the SIs ad, cd, and bd in the two sets of PCI-CFs are
represented by using respective counting series a(xd), c(xd), and d(xd), where we use the
symbols a(x), c(x), and b(x) to represent generating functions for counting respective
numbers:

a(x) =
∞∑

k=0

αkx
k (41)

c(x2) =
∞∑

k=0

γkx
2k (42)

b(x) =
∞∑

k=0

βkx
k. (43)

In the derivation of these equations, we have taken account of the ligand inventories
shown in eqs. 15–17 and eqs. 37–39. Hence, the coefficient (αk) of the term xk in the
counting series a(x) represents the number of achiral alkyl ligands (or planted 3D-trees)
of carbon content k; that the coefficient (γk) of the term x2k in the counting series c(x2)
represents the number of diploids of carbon content 2k, in which an achiral alkyl ligand
or a pair of enantiomeric alkyl ligands (or planted 3D-trees) is counted once; and finally
that the coefficient (βk) of the term xk in the counting series b(x) represents the number
of achiral and chiral alkyl ligands (or planted 3D-trees) of carbon content k, in which two
enantiomers of each pair are separately counted. We put α0 = 1, γ0 = 1, and β0 = 1 to
treat trivial cases of terminal vertices (or hydrogen atoms).

To evaluate eqs. 41–43, we consider a C3v-skeleton (46) in which the three positions
(1–3) construct an orbit governed by a coset representation (CR) C3v(/Cs). The positions
accommodate a set of proligands, e.g., X, Y, and Z, to give another proligand, which is
regarded as a planted promolecule (47). When we place X = CH3, Y = CH2CH3, and Z =
CH2CH2CH3, we obtain a chiral alkyl ligand (3-methylhex-3-yl ligand). Each of the inner
proligands (X, Y, and Z) is regarded as a planted promolecule in a nested fashion. For
example, the proligand Z = CH2CH2CH3 is in turn regarded as being derived from the
C3v-skeleton (46) by the substitution of two hydrogens and a proligand Y (= CH2CH3);
and then the proligand Y = CH2CH3 is in turn regarded as being derived from the C3v-
skeleton (46) by the substitution of two hydrogens and a proligand X (= CH3). In general,
this recursive process can be applied to any proligands, which can be finally reduced into
a methyl ligand. It should be emphasized that each of the intermediate proligands (as
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�

CH3

CH2CH3
CH2CH2CH3

46 47 48
C3v-skeleton proligand alkyl ligand

(C3v(/Cs)) planted promolecule planted 3D-tree

Figure 5: C3v-skeleton (46) with three substitution positions, a proligand as a planted
promolecule (47), and an alkyl ligand (3-methylhex-3-yl ligand) as a planted 3D-tree (48).
A solid circle (•) represents a root, while an open circle (◦) represents a principal node,
which is a carbon atom carrying three substitution positions.

planted promolecule) is represented by the C3v-skeleton (46) with a set of three alkyl
ligands as proligands.

The three positions (1 to 3) of C3v-skeleton (46) construct an orbit governed by a CR
C3v(/Cs). According to Theorem 19.7 of Fujita’s book,20 we obtain the corresponding
PCI-CFs as follows:

PCI-CF(C1, $d) =
1

6
b3
1 −

1

2
a2

1c2 − 1

6
b3 +

1

2
a3, (44)

PCI-CF(Cs, $d) = a1c2 − a3 (45)

PCI-CF(C3, $d) =
1

2
b3 − 1

2
a3, (46)

PCI-CF(C3v, $d) = a3, (47)

where we use the USCI-CF table and the inverse table of marks for the isomorphic group
C3v (Appendices E.7 and B.7 of Fujita’s book20).

By summing up the PCI-CFs shown in eqs. 44–47, we obtain the following CI-CF:

CI-CF(C3v; $d) =
1

6
b3
1 +

1

2
a1c2 +

1

3
b3 (48)

By summing up eq. 45 and eq. 47, we obtain the following CI-CFA for counting achiral
planted promolecules:

CI-CFA(C3v; $d) = PCI-CF(Cs; $d) + PCI-CF(C3v; $d)

= a1c2 (49)

The CI-CFs (eqs. 48 and 49) are identical with the ones derived by means of Fujita’s
proligand method,26–28 although the SIs in eq. 36 are concerned with the sphericities of
orbits of cycle subgroups, while the SIs in the CI-CF of Fujita’s proligand method are
concerned with the sphericities of cycles.

By the inspection of the ligand inventories shown in eqs. 17 and 39, the bd is evaluated
by using the following CI-CF:

CI-CF(C3; bd) = PCI-CF(Cs; $d) + PCI-CF(C3v; $d)

+ 2PCI-CF(C1; $d) + 2PCI-CF(C3; $d)

=
1

3
b3
1 +

2

3
b3, (50)
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which is identical with the CI-CF derived by means of Fujita’s proligand method26–28 for
the C3-point group.

By the inspection of the ligand inventories shown in eqs. 16 and 38, the cd is evaluated
by counting diploids, although the detailed derivation is not described in this paper. We
use the following CI-CF:

CI-CFD(C3, c2d) =
1

3
(c3

2 + 2c6). (51)

The CI-CFs for the C3v-skeleton (eqs. 49–51) can be applied to recursive calculations
of ligands of carbon content k. According to Fujita’s proligand method,26–28 they are
transformed into the following functional equations:

a(x) = 1 + xa(x)c(x2) (52)

c(x2) = 1 +
x2

3

(
c(x2)3 + 2c(x6)

)
(53)

b(x) = 1 +
x

3

(
b(x)3 + 2b(x3)

)
, (54)

where the sphericity indices (ad, cd, and bd) of the CI-CFs are replaced by a(xd), c(xd),
and b(xd). For example, eq. 52 is obtained from eq. 49, where the term x is multiplied
to take account of a principal node and the first constant term 1 is added to treat a null
vertex (hydrogen atom). The functional equations (eqs. 52–54) have recursive nature so
as to support the procedure described in Fig. 5.

4 Centroidal and Bicentroidal 3D-Trees

When alkanes are enumerated as 3D-trees, they are categorized into either centroidal 3D-
trees or bicentroidal ones according to Jordan.35 The centroidal 3D-trees are enumerated
on the basis of the Td-skeleton (1), while the bicentroidal 3D-trees are enumerated on the
basis of the K-skeleton (39).

Let us define a tree (or a 3D-tree) as a graph (or a 3D-object) which has v vertices
and e edges satisfying the relation v = e + 1. Let m be the number of vertices contained
in the largest branch among the branches attaching to the vertex. Trees (or 3D-trees) are
classified into two categories, i.e., centroidal trees (or 3D-trees) and bicentroidal trees (or
3D-trees).35

1. A given tree (or 3D-tree) has an exceptional vertex (M) called a centroid if it sat-
isfies the relationship m < 1

2
v. The tree (or 3D-tree) is called a centroidal tree (or

centroidal 3D-tree).

2. A given tree (or 3D-tree) has two adjacent vertices (M1 and M2), each of which
satisfies the relationship m = 1

2
v. The exceptional graph (M1—M2) composed of

the two adjacent vertices and the relevant edge is called a bicentroid. The tree (or
3D-tree) is called a bicentroidal tree (or bicentroidal 3D-tree).

All of the vertices of the tree (or 3D-tree) other than the centroid or the bicentroid satisfy
the relationship m > 1

2
v. There are no cases in which a given tree (or 3D-tree) has both

a centroid and a bicentroid so that a kind of dichotomy takes place.
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5 Alkanes as Centroidal 3D-Trees

5.1 Tetrahedral Promolecules into Centroidal Alkanes

Tetrahedral promolecules described in Subsection 2.1 are converted into centroidal alkanes,
where the four proligands of each tetrahedral promolecule are replaced by alkyl ligands
described in Section 3. For example, a promolecule 5 derived from the Td-skeleton 1 is
in turn converted into 3,3-dimethylpentane (49) as a centroidal alkane of carbon content
7, where the proligands X and Y are replaced by a methyl (CH3) and an ethyl ligand
(CH2CH3) respectively, as shown in Fig. 6.

Because the promolecule 5 belongs to the C2v-point group (cf. Fig. 2), the 3,3-
dimethylpentane is regarded as belonging to the C2v-point group as an average conforma-
tion. Strictly speaking, such assignment to point groups requires the concept of matching
or mismatching for the relationships between promolecules and molecules.29 For the sake
of convenience and simplicity, however, we presume here that an alkane is characterized
by the point group of the corresponding promolecule.

1

24
3

X

XY
Y

CH3

CH3CH3CH2
CH3CH2

1 5 49
Td-skeleton promolecule centroidal alkane

(Td(/C3v)) (tetrahedral) centroidal 3D-tree

Figure 6: Td-skeleton (1) with four substitution positions, a tetrahedral promolecule (5),
and a centroidal alkane (49).

Alkyl ligands, which are enumerated by the generating functions regarded as ligand
inventories (eqs. 41–43), are introduced into the promolecule (5) under the criterion of
centroidal 3D-trees (Section 4). When such alkyl ligands have been counted up to carbon
content m = 3, for example, the numbers of alkanes of carbon content 7 or 8 (2m + 1 = 7
and 2m + 2 = 8) can be evaluated. As for the term x7 of the carbon content 7, the
following modes of factorization take place: x3 ·x3 ·x0 ·x0 ×x for heptane (two hydrogens
and two n-propyl ligands, 5, C2v), 2-methylhexane (two hydrogens and a n-propyl and an
isopropyl, 11, Cs), and 2,4-dimethylpentane (two hydrogens and two isopropyl ligands, 5,
C2v); x3 ·x2 ·x1 ·x0×x for 3-methylhexane (a hydrogen, a methyl, an ethyl, and a n-propyl,
19, C1) and for 2,3-methylpentane (a hydrogen, a methyl, an ethyl, and an isopropyl, 19,
C1); x3 · x1 · x1 · x1 × x for 2,2-dimethylpentane (three methyls and a n-propyl, 4, C3v)
and 2,2,3-trimethylbutane (three methyls and an isopropyl, 4, C3v); x2 · x2 · x2 · x0 × x
for 3-ethylpentane (three ethyl ligands, 4, C3v); as well as x2 · x2 · x1 · x1 × x for 3,3-
dimethylpentane (49, C2v). Note that the power of each factorized term should be equal
to or less than m = 3. Hence, all of the possible modes of factorization for v = 7 appear
in this enumeration under the criterion of centroidal 3D-trees (m < (1/2)v = 7/2). Other
modes of factorization, e.g., x4 · x2 · x0 · x0 × x for heptane, do not appear.

The procedure described in the preceding paragraph is extended to cover general cases,
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as described in the following subsections.

5.2 Functional Equations for Counting Centroidal 3D-Trees

Let H be a subgroup of the Td-point group. Let N
(H)
k be the number of centroidal

alkanes (or 3D-trees) which belong to H and have carbon content k. Throughout the
enumerations described in this paper, each pair of enantiomeric 3D-trees is counted just
once. In agreement with the definition of centroidal 3D-trees, the terms up to xv are
collected to give the following generating functions:

N(x)(H) =
v∑

k=0

N
(H)
k xk (55)

where v runs stepwise from 0 to infinite. Because each of eqs. 2–12 corresponds to eq.
55, the SIs ad, cd, and bd are replaced by the terms a(xd), c(xd), and b(xd) respectively.
Thereby we obtain the following functional equations:

N(x)(C1) =
1

24
b(x)4 − 1

8
b(x2)2 − 1

4
a(x)2c(x2) − 1

6
b(x)b(x3)

+
1

12
b(x4) +

1

4
a(x2)2 +

1

2
a(x)a(x3) +

1

6
b(x4) − 1

2
a(x4) (56)

N(x)(C2) =
1

4
b(x2)2 − 1

4
c(x4) − 1

4
b(x4) − 1

4
a(x2)2 +

1

2
a(x4) (57)

N(x)(Cs) =
1

2
a(x)2c(x2) − 1

2
a(x2)2 − a(x)a(x3) + a(x4) (58)

N(x)(C3) =
1

2
b(x)b(x3) − 1

2
a(x)a(x3) − 1

2
b(x4) +

1

2
a(x4) (59)

N(x)(S4) =
1

2
c(x4) − 1

2
a(x4) (60)

N(x)(D2) = 0 (61)

N(x)(C2v) =
1

2
a(x2)2 − 1

2
a(x4) (62)

N(x)(C3v) = a(x)a(x3) − a(x4) (63)

N(x)(D2d) = 0 (64)

N(x)(T) =
1

2
b(x4) − 1

2
a(x4) (65)

N(x)(Td) = a(x4), (66)

Our target is to evaluate N(x)(H) (eqs. 56–66) by using eqs. 52–54 under the criterion
for centroidal 3D-trees. The criterion for centroidal 3D-trees means that the maximum
number (m), which is the number of non-terminal vertices in the largest proligand, is
restricted to satisfy the following condition:

1

2
v − 1 ≤ m <

1

2
v (67)

or equivalently
2m < v ≤ 2m + 2, (68)

because the number m moves stepwise during the recursive calculation.
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Suppose that eqs. 52–54 have been evaluated up to the term xm. That is to say, we
have obtained the generating functions, i.e., a(x) =

∑m
k=0 αkx

k, c(x2) =
∑m

k=0 γkx
2k, and

b(x) =
∑m

k=0 βkx
k, where m is tentatively fixed. They are introduced into the right-hand

sides of eqs. 56–66 and the resulting equations are expanded to give respective series
N(x)(H,m), each of which is used to give the coefficients of eq. 55. Because of eq. 68, the

coefficients of the terms x2m+1 and x2m+2 in the series are effective to determine N
(H)
2m+1

and N
(H)
2m+2. Let the symbol coeff(N(x)(H,m), x2m+1) etc. represent the coefficient of the

term x2m+1 appearing in the equation N(x)(H,m) etc. after expansion. Then, we obtain
the following coefficients:

N
(H)
2m+1 = coeff(N(x)(H,m), x2m+1) (69)

for odd carbon contents as well as the following coefficients:

N
(H)
2m+2 = coeff(N(x)(H,m), x2m+2) (70)

for even carbon contents. These requirements should be considered in the following pro-
gramming.

5.3 Achiral Centroidal Alkanes

By using the Maple programming language,36 we wrote a program for evaluating a(x),

c(x2), and b(x) (eqs. 52–54) and for obtaining the coefficients N
(H)
k (eq. 55), where the

functional equations for achiral subgroups, i.e., Cs (eq. 58), S4 (eq. 60), C2v (eq. 62), C3v

(eq. 63), D2d (eq. 64), and Td (eq. 66), are selected. The program was stored in a file
named “CentrSIA1-100.mpl”, which was executed by inputting as follows:

read "CentrSIA1-100.mpl";

on a display window of the Maple system. The results are shown in Table 1, where the
values of N

(H)
k for achiral centroidal 3D-trees, are collected up to carbon content k = 100.

Maple program for counting achiral centroidal 3D-trees, “CentrSIA1-100.mpl”:

"Functional Equations for Alkyl Ligands";
ax := 1 + x*a1*c2;
cx := 1+ (1/3)*x^2*c2^3 + (2/3)*x^2*c6;
bx := 1 + (1/3)*x*b1^3 + (2/3)*x*b3;

"Achiral Alkanes as Centroidal 3D-Trees";
NxCs := (x/2)*a1^2*c2 - (x/2)*a2^2 - x*a1*a3 + x*a4:
NxS4 := (x/2)*c4 - (x/2)*a4:
NxC2v := (x/2)*a2^2 - (x/2)*a4:
NxC3v := x*a1*a3 - x*a4:
NxD2d := 0:
NxTd := x*a4:

"Initial Values";
a1 := 1; a2 := 1; a3 := 1; a4 := 1;
b1 := 1; b2 := 1; b3 := 1; b4 := 1;
c2 := 1; c4 := 1; c6 := 1;
NCs := 0; NS4 := 0; NC2v := 0; NC3v := 0;
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ND2d := 0; NTd := x;

"Recursive Calculation";
for m from 1 to 50 by 1 do
m:
Cbx:= coeff(bx,x^m):
Cax:= coeff(ax,x^m):
Ccx:= coeff(cx,x^(m*2)):
a1 := a1 + Cax*x^m:
a2 := a2 + Cax*x^(m*2):
a3 := a3 + Cax*x^(m*3):
a4 := a4 + Cax*x^(m*4):
b1 := b1 + Cbx*x^m:
b2 := b2 + Cbx*x^(m*2):
b3 := b3 +Cbx*x^(m*3):
b4 := b4 +Cbx*x^(m*4):
c2 := c2 + Ccx*x^(m*2):
c4 := c4 + Ccx*x^(m*4):
c6 := c6 + Ccx*x^(m*6):
n := 2*m +1:
NCs := NCs + coeff(NxCs,x^n)*x^n + coeff(NxCs,x^(n+1))*x^(n+1):
NS4 := NS4 + coeff(NxS4,x^n)*x^n + coeff(NxS4,x^(n+1))*x^(n+1):
NC2v := NC2v + coeff(NxC2v,x^n)*x^n + coeff(NxC2v,x^(n+1))*x^(n+1):
NC3v := NC3v + coeff(NxC3v,x^n)*x^n + coeff(NxC3v,x^(n+1))*x^(n+1):
# ND2d := 0:
NTd := NTd + coeff(NxTd,x^n)*x^n + coeff(NTd,x^(n+1))*x^(n+1):
end do:

"Print-Out";
for m from 1 to 100 by 1 do
printf("%d & %d & %d & %d & %d & %d & %d \\\\ \n",
m, coeff(NCs,x^m), coeff(NS4,x^m), coeff(NC2v,x^m),
coeff(NC3v,x^m), coeff(ND2d,x^m), coeff(NTd,x^m));
end do;

In this program, the first paragraph “Functional Equations for Alkyl Ligands” declares
the functional equations for calculating a(x) (ax), c(x2) (cx), and b(x) (bx). The second
paragraph “Achiral Alkanes as Centroidal 3D-Trees” describes the functional equations
for calculating N(x)(Cs) (NxCs), N(x)(S4) (NxS4), N(x)(C2v) (NxC2v), N(x)(C3v) (NxC3v),
N(x)(D2d) (NxD2d), and N(x)(Td) (NxTd). The third paragraph “Initial Values” gives the
initial values for every functional equations. Note that the initial value for N(x)(Td) is
equal to x because methane (CH4) belongs to the Td-point group. The initial values for
the other subsymmetries are equal to 0. The fourth paragraph “Recursive Calculation”
is composed of a do loop for recursive calculations, which are referred to by the symbol
N(x)(H,m) in the text (cf. eqs. 69 and 70). The resulting values at each step of m are
stored as the series denoted by the symbols NCs, NS4, and so on. Because the value for
ND2d is always equal to zero, its calculation is comment out by the top symbol #. Note
that m moves from 1 to 50 to calculate the values NCs, NS4, etc. up to carbon content
100. The last paragraph “Print-Out” declares a do loop for printing out the values in a
tabular form up to carbon content 100.
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Table 1: Numbers of Achiral Centroidal Alkanes as Stereoisomers

k N(Cs)
k N(S4)

k N(C2v)
k N(C3v)

k N(D2d)
k N(Td)

k

1 0 0 0 0 0 1
2 0 0 0 0 0 0
3 0 0 1 0 0 0
4 0 0 0 1 0 0
5 1 0 1 0 0 1
6 1 0 0 1 0 0
7 1 0 3 3 0 0
8 6 0 0 1 0 0
9 15 0 5 0 0 1

10 18 0 0 4 0 0
11 46 0 10 5 0 0
12 65 0 0 7 0 0
13 154 0 17 13 0 2
14 211 0 0 9 0 0
15 521 0 33 13 0 0
16 690 0 0 27 0 0
17 1654 1 58 39 0 3
18 2143 0 0 66 0 0
19 5221 0 109 124 0 0
20 7084 0 0 65 0 0
21 16770 3 195 97 0 5
22 22283 0 0 193 0 0
23 52953 0 360 315 0 0
24 72121 0 0 535 0 0
25 167573 10 648 936 0 8
26 229154 0 0 522 0 0
27 533192 0 1188 887 0 0
28 741459 0 0 1567 0 0
29 1693439 30 2145 2694 0 14
30 2356842 0 0 4634 0 0
31 5388748 0 3917 8243 0 0
32 7638453 0 0 4440 0 0
33 17196595 88 7086 7576 0 23
34 24381264 0 0 13515 0 0
35 54910864 0 12909 23374 0 0
36 78968566 0 0 41160 0 0
37 175606614 255 23372 72096 0 41
38 252924049 0 0 40361 0 0
39 562532305 0 42527 71105 0 0
40 819797708 0 0 124587 0 0
41 1803790125 742 77035 220425 0 69
42 2631434593 0 0 386151 0 0
43 5790670695 0 140056 686971 0 0
44 8536007187 0 0 369973 0 0
45 18610917131 2157 253773 647978 0 122
46 27457004166 0 0 1152542 0 0
47 59867785527 0 461144 2026617 0 0
48 89117135300 0 0 3605944 0 0
49 192755488759 6312 835700 6363261 0 208
50 287163973973 0 0 3562173 0 0
51 621137200090 0 1518054 6339866 0 0
52 932625463618 0 0 11186006 0 0
53 2003037478871 18563 2751329 19944650 0 370
54 3009609158892 0 0 35253548 0 0
55 6463933786931 0 4996532 62963143 0 0
56 9780002561496 0 0 33997046 0 0
57 20873352533838 54932 9056320 60098723 0 636
58 31600801024417 0 0 107317305 0 0
59 67444985008482 0 16443444 190086714 0 0
60 102742981680520 0 0 339779060 0 0
61 218049270634929 163479 29805337 602876800 0 1134
62 332349944192206 0 0 333426006 0 0
63 705329515771177 0 54108871 596072824 0 0
64 1081085992129251 0 0 1057517930 0 0
65 2282684405651049 489264 98080592 1892473149 0 1963
66 3500475452272016 0 0 3362138313 0 0
67 7391010089853174 0 178033983 6022079973 0 0
68 11391630773729656 0 0 3261038354 0 0
69 23941651849519155 1471692 322721226 5794092631 0 3505
70 36917151200853395 0 0 10376727195 0 0
71 77586362420289576 0 585735965 18460009406 0 0
72 120189276606249019 0 0 33085045197 0 0
73 251528875360291015 4447896 1061779881 58922781902 0 6099
74 389800749815698542 0 0 32583978459 0 0
75 815741080006783242 0 1926948562 58404336423 0 0
76 1269537821984296021 0 0 104007055135 0 0
77 2646489706243291717 13500689 3493085670 186549702501 0 10908
78 4120240650615704467 0 0 332533423841 0 0
79 8588823952551671478 0 6338864653 596796003491 0 0
80 13423903249778712026 0 0 323606786081 0 0
81 27882747868810955737 41140608 11490954322 576887221136 0 19059
82 43593967477275496712 0 0 1035242315195 0 0
83 90545954304171412196 0 20851110653 1847118737549 0 0
84 142077347785803068205 0 0 3316483386886 0 0
85 294122269463933345989 125818217 37798845063 5922058010954 0 34129
86 461655250191909536942 0 0 3271339405186 0 0
87 955666443324898385416 0 68584499782 5874057510023 0 0
88 1505041724743622281946 0 0 10488372327768 0 0
89 3105981780141689407555 386050543 124331000890 18842063804323 0 59836
90 4892884009202894931687 0 0 33667334055633 0 0
91 10097190645589970892216 0 225581833688 60508606610896 0 0
92 15955816346995486825756 0 0 32867780741600 0 0
93 32832697521558748114222 1188093392 408941516928 58731996931774 0 107256
94 51896703487573652186666 0 0 105549178902990 0 0
95 106785552550444794979279 0 741934546674 188729975285886 0 0
96 169281344122751160088724 0 0 339307286236334 0 0
97 347387514775525048819112 3666547089 1345011197752 607067023745664 0 188576
98 550829850998112137146017 0 0 335021722274077 0 0
99 1130336589786928318017011 0 2440124982590 602347843395767 0 0

100 1797192676445358205539276 0 0 1077635177952774 0 0
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5.4 Chiral Centroidal Alkanes

On a similar line, we wrote a program for evaluating the coefficients N
(H)
k (eq. 55), where

H covers chiral subgroups, i.e., C1 (eq. 56), C2 (eq. 57), C3 (eq. 59), D2 (eq. 61), and
T (eq. 65). The program was stored in a file named “CentrSIC1-100.mpl”, which was
executed on a display window of the Maple system. The results are shown in Table 2,
where the values of N

(H)
k for chiral centroidal alkanes as 3D-trees are collected up to

carbon content k = 100.

Maple program for counting achiral centroidal 3D-trees, “CentrSIC1-100.mpl”:

"Functional Equaitons for Alkyl Ligands";
ax := 1 + x*a1*c2;
cx := 1+ (1/3)*x^2*c2^3 + (2/3)*x^2*c6;
bx := 1 + (1/3)*x*b1^3 + (2/3)*x*b3;

"Chiral Alkanes as Centroidal 3D-Trees";
NxC1 := (x/24)*b1^4 - (x/8)*b2^2 - (x/4)*a1^2*c2 - (x/6)*b1*b3
+ (x/12)*b4 + (x/4)*a2^2 + (x/2)*a1*a3 + (x/6)*b4 - (x/2)*a4:
NxC2 := (x/4)*b2^2 - (x/4)*c4 -(x/4)*b4 - (x/4)*a2^2 + (x/2)*a4:
NxC3 := (x/2)*b1*b3 - (x/2)*a1*a3 - (x/2)*b4 + (x/2)*a4:
NxD2 := 0:
NxT := (x/2)*b4 - (x/2)*a4:

"Initial Values";
a1 := 1; a2 := 1; a3 := 1; a4 := 1;
b1 := 1; b2 := 1; b3 := 1; b4 := 1;
c2 := 1; c4 := 1; c6 := 1;

NC1 := 0; NC2 := 0; NC3 := 0;
ND2 := 0; NT := 0;

"Recursive Calculation";
for m from 1 to 50 by 1 do
m:
Cbx:= coeff(bx,x^m):
Cax:= coeff(ax,x^m):
Ccx:= coeff(cx,x^(m*2)):
a1 := a1 + Cax*x^m:
a2 := a2 + Cax*x^(m*2):
a3 := a3 + Cax*x^(m*3):
a4 := a4 + Cax*x^(m*4):
b1 := b1 + Cbx*x^m:
b2 := b2 + Cbx*x^(m*2):
b3 := b3 +Cbx*x^(m*3):
b4 := b4 +Cbx*x^(m*4):
c2 := c2 + Ccx*x^(m*2):
c4 := c4 + Ccx*x^(m*4):
c6 := c6 + Ccx*x^(m*6):
n := 2*m +1:
NC1 := NC1 + coeff(NxC1,x^n)*x^n + coeff(NxC1,x^(n+1))*x^(n+1):
NC2 := NC2 + coeff(NxC2,x^n)*x^n + coeff(NxC2,x^(n+1))*x^(n+1):
NC3 := NC3 + coeff(NxC3,x^n)*x^n + coeff(NxC3,x^(n+1))*x^(n+1):
#ND2 := 0
NT := NT + coeff(NxT,x^n)*x^n + coeff(NT,x^(n+1))*x^(n+1):
end do:
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Table 2: Numbers of Chiral Centroidal Alkanes as Stereoisomers

k N(C1)
k N(C2)

k N(C3)
k N(D2)

k N(T)
k

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 2 0 0 0 0
8 1 0 0 0 0
9 16 1 0 0 0

10 24 0 0 0 0
11 137 4 1 0 0
12 208 0 3 0 0
13 1088 14 11 0 0
14 1781 0 3 0 0
15 8728 45 7 0 0
16 15016 0 25 0 0
17 70542 137 70 0 1
18 126873 0 199 0 0
19 583161 413 584 0 0
20 1091313 0 194 0 0
21 4935871 1224 518 0 3
22 9552669 0 1500 0 0
23 42610014 3628 4239 0 0
24 84913438 0 12108 0 0
25 374534342 10726 35194 0 10
26 765726198 0 9601 0 0
27 3344120073 31849 27247 0 0
28 6991607622 0 79017 0 0
29 30262097640 94812 230097 0 30
30 64535064481 0 676270 0 0
31 277089116563 283626 2004533 0 0
32 601433497064 0 589702 0 0
33 2563398497146 851908 1730852 0 88
34 5652870902224 0 5127624 0 0
35 23930979266113 2570487 15283550 0 0
36 53534778745686 0 45831332 0 0
37 225225704062298 7787458 138190733 0 255
38 510446235179592 0 40491657 0 0
39 2135108531527988 23686702 121401546 0 0
40 4896888481848366 0 366009579 0 0
41 20372873595205767 72306778 1108653460 0 742
42 47238608059106749 0 3372550565 0 0
43 195544777082357941 221475758 10299053406 0 0
44 457999548956981900 0 2990846713 0 0
45 1886989250713218801 680486457 9097599635 0 2157
46 4461040341712135844 0 27780675238 0 0
47 18298681595332091514 2096823118 85127192309 0 0
48 43636081193349667700 0 261679492103 0 0
49 178246301608070153586 6478177469 806728738098 0 6312
50 428497964650142021424 0 236153410997 0 0
51 1743475976503183715969 20063555673 725913625056 0 0
52 4222957576043374182661 0 2237863494713 0 0
53 17118606491555519010253 62279760278 6917251510288 0 18563
54 41757572996188827520560 0 21433502624921 0 0
55 168676827104237821826538 193731258600 66562691413856 0 0
56 414192406671150318072106 0 19524289580960 0 0
57 1667507044024423133622455 603812096114 60496333096712 0 54932
58 4120269448840606530096592 0 187871793480876 0 0
59 16535111534667814115851179 1885366277126 584655745189860 0 0
60 41098222464201188479721461 0 1822973727951104 0 0
61 164431690998772629953765002 5896973066736 5694351363421114 0 163479
62 410979018220114666421210927 0 1672219254165487 0 0
63 1639544206282824773990638754 18473739020239 5213980357641853 0 0
64 4119529788239166095158905426 0 16286567011875508 0 0
65 16388819934840328046163962344 57960178877629 50959078719141813 0 489264
66 41385225782086638716982598146 0 159697603469199852 0 0
67 164207682036340696679355917760 182102032083179 501207333060096255 0 0
68 416635607643425685493790619639 0 147564316141568856 0 0
69 1648923729893500748643868730611 572894057771620 462440219463967987 0 1471692
70 4202708638019194596613346990021 0 1451350204852807945 0 0
71 16592589875608595359992019209976 1804577898019896 4561339961810127869 0 0
72 42473372537677850472777542629383 0 14354263936717538576 0 0
73 167295424464158756775720063838179 5691002482822708 45227789621187113168 0 4447896
74 430006772381297681343212302777548 0 13340319433398214532 0 0
75 1689911835064521935507132475924052 17967439710311488 41981014458194046088 0 0
76 4360786726830706504336113212213232 0 132274367651117787152 0 0
77 17100609751073724255686898881677495 56786161588395299 417258211604024603398 0 13500689
78 44294354185220865010398773718204079 0 1317690129367286189362 0 0
79 173335468778159593163913331435064754 179652924061845438 4165583177663598506736 0 0
80 450600427378155601531524267538618101 0 1230604554959778468323 0 0
81 1759767313496474041294340569031428476 568905113680499543 3886204142045452877624 0 41140608
82 4590528948690459275690584150945517385 0 12285331976808314853923 0 0
83 17892924987803287856662098419745700484 1803179865827956647 38875788611736411229781 0 0
84 46830869858741035982999884879739090944 0 123134889567482431417299 0 0
85 182194157793655314127689578349954352057 5720226829686477505 390366705393287456688781 0 125818217
86 478379522345454563342723736582044188225 0 115505492526757165241910 0 0
87 1857742280338673100733168084362718159515 18161221880947045354 365850446898209994701499 0 0
88 4892807796459915367926695352825895331513 0 1159829967559571185462075 0 0
89 18967377099179000185734335092653847026113 57705644326488454668 3680072615060589057215203 0 386050543
90 50103146420285102048745073165752201512985 0 11686180909071862117268062 0 0
91 193898555422930409852147554822891928264315 183492290401870276634 37138723437443860483678486 0 0
92 513654043751710283713518927751179291782910 0 11004204547923141886912994 0 0
93 1984557489015003195976562360507756970203368 583887944881163008868 34944123148744982244286724 0 1188093392
94 5271743914770706146908560703076785683941544 0 111052368499755401970352795 0 0
95 20335387509472989845379192184310377893539742 1859259968236169909768 353187028940557839273753415 0 0
96 54162175051500718278191209798478444849365395 0 1124063728478422617779311600 0 0
97 208602785663318652002726980250253244278651001 5924302673970710021581 3579919884736380393562521144 0 3666547089
98 557028727906484284276879203374610568962096776 0 1062063691969548850469476432 0 0
99 2142136450298921144580392613201845315725938448 18889010758760410834979 3380151703727978578140353524 0 0

100 5734313151200075256443744285442491428332933296 0 10765099115434986558331481893 0 0
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"Print-Out";
for m from 1 to 100 by 1 do
printf("%d & %d & %d & %d & %d & %d \\\\ \n",
m, coeff(NC1,x^m), coeff(NC2,x^m), coeff(NC3,x^m),
coeff(ND2,x^m), coeff(NT,x^m));
end do;

The program “CentrSIC1-100.mpl” essentially has the same constitution as the pro-
gram named “CentrSIA1-100.mpl” except that it is concerned with the functional equa-
tions for chiral centroidal 3D-trees: C1 (eq. 56), C2 (eq. 57), C3 (eq. 59), D2 (eq. 61),
and T (eq. 65). The resulting values at each step of m, which is referred to by the symbol
N(x)(H,m) in the text (cf. eqs. 69 and 70), are stored as the series denoted by the symbols
NC1, NC2, and so on. Because the value for ND2 is always equal to zero, its calculation is
comment out by the top symbol #. Note again that m moves from 1 to 50 to calculate the
values NC1, NC2, etc. up to carbon content 100. The last paragraph “Print-Out” declares
a do loop for printing out the values in a tabular form up to carbon content 100.

5.5 Total Numbers of Achiral and Chiral Centroidal Alkanes

Table 1 and 2 give the symmetry-itemized numbers of centroidal alkanes. Total numbers
without such symmetry-itemization are sometimes convenient to grasp total features of
alkanes. Let B̂k, Âk, and Ĉk be the number of achiral and chiral centroidal alkanes,
the number of achiral centroidal alkanes, and the number of chiral centroidal alkanes,
respectively, where the subscript k represents a carbon content and a pair of enantiomeric
alkanes is counted just once. In agreement with the definition of centroidal 3D-trees, the
terms up to xv are collected to give the following generating functions:

B̂(x) =
v∑

k=0

B̂kx
k (71)

Â(x) =
v∑

k=0

Âkx
k (72)

Ĉ(x) =
v∑

k=0

Ĉkx
k, (73)

where v runs stepwise from 0 to infinite. These equations are compared with eq. 55 to
give the following relationships:

B̂k =
∑

all H

N
(H)
k (74)

Âk =
∑

achiral H
N

(H)
k (75)

Ĉk =
∑

chiral H
N

(H)
k . (76)

Because each N
(H)
k in the right-hand sides of eqs. 74–76 have been calculated in the

preceding subsections, eqs. 74–76 can be evaluated easily by the summation of relevant
values. For example, eq. 75 is evaluated by summing up of each row of Table 1 and eq.
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76 is evaluated by summing up of each row of Table 2. These summation procedures can
be conducted by merging the programs “CentrSIA1-100.mpl” and “CentrSIC1-100.mpl”
and adding such lines as follows:

TotalB := NC1 + NC2 + NCs + NC3 + NS4 + NC2v + NC3v + NT + NTd:
TotalA := NCs + NS4 + NC2v + NC3v + NTd:
TotalC := NC1 + NC2 + NC3 + NT:

"Print-Out";
for m from 1 to 100 by 1 do
printf("%d & %d & %d & %d \\\\ \n",
m, coeff(TotalA,x^m), coeff(TotalC,x^m), coeff(TotalB,x^m));
end do;

The symbols TotalB, TotalA, and TotalC represent eqs. 74–76. The resulting program
was executed to give Table 3.

To evaluate eqs. 74–76 directly, respective CI-CFs are obtained by starting from the
PCI-CFs listed in eqs. 2–12. First, the PCI-CFs for achiral proligands are selected from
eqs. 2–12 and they are summed up to give following CI-CFA for counting achiral tetrahe-
dral promolecules:

CI-CFA(Td, $d) = PCI-CF(Cs, $d) + PCI-CF(S4, $d) + PCI-CF(C2v, $d)

+ PCI-CF(C3v, $d) + PCI-CF(D2d, $d) + PCI-CF(Td, $d)

=
1

2
a2

1c2 +
1

2
c4. (77)

On a similar line, the PCI-CFs for chiral proligands are selected from eqs. 2–12 and they
are summed up to give following CI-CFC for counting achiral tetrahedral promolecules:

CI-CFC(Td, $d) = PCI-CF(C1, $d) + PCI-CF(C2, $d) + PCI-CF(C3, $d)

+ PCI-CF(D2, $d) + PCI-CF(T, $d)

=
1

24
b4
1 +

1

8
b2
2 +

1

3
b1b3 − 1

4
a2

1c2 − 1

4
c4. (78)

By the summation of CI-CFA(Td, $d) (eq. 77) and CI-CFC(Td, $d) (eq. 78), we are able
to obtain CI-CF(Td, $d) (eq. 13) for counting achiral and chiral promolecules.

Because the generating functions shown in eq. 71, 72, and 73 correspond to CI-CFs
shown in eqs. 13, 77, and 78, the SIs ad, cd, and bd involved in the CI-CFs are replaced by
the terms a(xd), c(xd), and b(xd) respectively. Thereby we obtain the following functional
equations:

B̂(x) =
x

24
{b(x)4 + 3b(x2)2 + 8b(x)b(x3) + 6a(x)2c(x2) + 6c(x4)} (79)

Â(x) =
x

2
{a(x)2c(x2) + c(x4)} (80)

Ĉ(x) =
x

24
{b(x)4 + 3b(x2)2 + 8b(x)b(x3) − 6a(x)2c(x2) − 6c(x4)}, (81)

where the multiplying by x is necessary because of considering the centroid of the Td

skeleton. These equations are alternatively obtained by following Fujita’s proligand
method.26–28
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Table 3: Numbers of Centroidal Alkanes as Stereoisomers

k Âk (Achiral) Ĉk (Chiral) B̂k (Total)
1 1 0 1
2 0 0 0
3 1 0 1
4 1 0 1
5 3 0 3
6 2 0 2
7 7 2 9
8 7 1 8
9 21 17 38

10 22 24 46
11 61 142 203
12 72 211 283
13 186 1113 1299
14 220 1784 2004
15 567 8780 9347
16 717 15041 15758
17 1755 70750 72505
18 2209 127072 129281
19 5454 584158 589612
20 7149 1091507 1098656
21 17070 4937616 4954686
22 22476 9554169 9576645
23 53628 42617881 42671509
24 72656 84925546 84998202
25 169175 374580272 374749447
26 229676 765735799 765965475
27 535267 3344179169 3344714436
28 743026 6991686639 6992429665
29 1698322 30262422579 30264120901
30 2361476 64535740751 64538102227
31 5400908 277091404722 277096805630
32 7642893 601434086766 601441729659
33 17211368 2563401079994 2563418291362
34 24394779 5652876029848 5652900424627
35 54947147 23930997120150 23931052067297
36 79009726 53534824577018 53534903586744
37 175702378 225225850040744 225226025743122
38 252964410 510446275671249 510446528635659
39 562645937 2135108676616236 2135109239262173
40 819922295 4896888847857945 4896889667780240
41 1804088396 20372874776166747 20372876580255143
42 2631820744 47238611431657314 47238614063478058
43 5791497722 195544787602887105 195544793394384827
44 8536377160 457999551947828613 457999560484205773
45 18611821161 1886989260491307050 1886989279103128211
46 27458156708 4461040369492811082 4461040396950967790
47 59870273288 18298681682556106941 18298681742426380229
48 89120741244 43636081455029159803 43636081544149901047
49 192762694240 178246302421277075465 178246302614039769705
50 287167536146 428497964886295432421 428497965173462968567
51 621145058010 1743475977249160896698 1743475977870305954708
52 932636649624 4222957578281237677374 4222957579213874326998
53 2003060193783 17118606498535050299382 17118606500538110493165
54 3009644412440 41757573017622330145481 41757573020631974557921
55 6464001746606 168676827170994244498994 168676827177458246245600
56 9780036558542 414192406690674607653066 414192406700454644211608
57 20873421744449 1667507044085523278870213 1667507044106396700614662
58 31600908341722 4120269449028478323577468 4120269449060079231919190
59 67445191538640 16535111535254355227318165 16535111535321800418856805
60 102743321459580 41098222466024162207672565 41098222466126905529132145
61 218049903481679 164431691004472878290416331 164431691004690928193898010
62 332350277618212 410979018221786885675376414 410979018222119235952994626
63 705330165952872 1639544206288057228087300846 1639544206288762558253253718
64 1081087049647181 4119529788255452662170780934 4119529788256533749220428115
65 2282686396696017 16388819934891345085062471050 16388819934893627771459167067
66 3500478814410329 41385225782246336320451797998 41385225782249836799266208327
67 7391016289967130 164207682036842086114448097194 164207682036849477130738064324
68 11391634034768010 416635607643573249809932188495 416635607643584641443966956505
69 23941657967808209 1648923729893963761757391941910 1648923729893987703415359750119
70 36917161577580590 4202708638020645946818199797966 4202708638020682863979777378556
71 77586381466034947 16592589875613158504531727357741 16592589875613236090913193392688
72 120189309691294216 42473372537692204736714260167959 42473372537692324926023951462175
73 251528935349306793 167295424464203990256343738221951 167295424464204241785279087528744
74 389800782399677001 430006772381311021662645700992080 430006772381311411463428100669081
75 815741140338068227 1689911835064563934489030380281628 1689911835064564750230170718349855
76 1269537925991351156 4360786726830838778703764330000384 4360786726830840048241690321351540
77 2646489896299591485 17100609751074141570684664508176881 17100609751074144217174560807768366
78 4120240983149128308 44294354185222182700528141004393441 44294354185222186820769124153521749
79 8588824555686539622 173335468778163758926743919095416928 173335468778163767515568474781956550
80 13423903573385498107 450600427378156832136079227317086424 450600427378156845559982800702584531
81 27882748457230290862 1759767313496477928067387728205946251 1759767313496477955950136185436237113
82 43593968512517811907 4590528948690471561022560959260371308 4590528948690471604616529471778183215
83 90545956172141260398 17892924987803326734253890021984886912 17892924987803326824799846194126147310
84 142077351102286455091 46830869858741159117889452362170508243 46830869858741159259966803464456963334
85 294122275423916054352 182194157793655704500115198467223336560 182194157793655704794237473891139390912
86 461655253463248942128 478379522345454678848216263339209430135 478379522345454679309871516802458372263
87 955666449267540395221 1857742280338673466601776204453659906368 1857742280338673467557442653721200301589
88 1505041735231994609714 4892807796459916527756662912397080793588 4892807796459916529261704647629075403302
89 3105981799108470323147 18967377099179003865864655797569778746527 18967377099179003868970637596678249069674
90 4892884042870228987320 50103146420285113734925982237614318781047 50103146420285113739818866280484547768367
91 10097190706324159336800 193898555422930446991054484557154282219435 193898555422930447001151675263478441556235
92 15955816379863267567356 513654043751710294717723475674321178695904 513654043751710294733679292054184446263260
93 32832697580700874763572 1984557489015003230921269397197621565592352 1984557489015003230954102094778322440355924
94 51896703593122831089656 5271743914770706257960929202832187654294339 5271743914770706258012825906425310485383995
95 106785552739916704811839 20335387509472990198568080384836453337202925 20335387509472990198674865937576370042014764
96 169281344462058446325058 54162175051500719402254938276901062628676995 54162175051500719402424219621363121075002053
97 347387515383940750498193 208602785663318655582652789289307612217740815 208602785663318655583000176804691552968239008
98 550829851333133859420094 557028727906484285338942895344159419431573208 557028727906484285339493725195492553290993302
99 1130336590391716286395368 2142136450298921147960563205940582654277126951 2142136450298921147961693542530974370563522319

100 1797192677522993383492050 5734313151200075267208843400877477986664415189 5734313151200075267210640593555000980047907239
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Equations 79–81 can be evaluated under the criterion for centroidal 3D-trees (eq. 68).
Suppose that we have obtained the generating functions, i.e., a(x) =

∑m
k=0 αkx

k, c(x2) =∑m
k=0 γkx

2k, and b(x) =
∑m

k=0 βkx
k, where m is tentatively fixed. After the introduction

of these generating functions into eqs. 79–81, we obtain B̂(x)(m), Â(x)(m), and Ĉ(x)(m),
respectively. We expand the equation B̂(x)(m) etc. and adopt the coefficients of x2m+1 and
x2m+2 appearing in each of the expanded equations. Let the symbol coeff(B̂(x)(m), x2m+1)
etc. represent the coefficient of the term x2m+1. Then, we obtain the following coefficients:

B̂2m+1 = coeff(B̂(x)(m), x2m+1) (82)

Â2m+1 = coeff(Â(x)(m), x2m+1) (83)

Ĉ2m+1 = coeff(Ĉ(x)(m), x2m+1) (84)

for odd carbon contents as well as the following coefficients:

B̂2m+2 = coeff(B̂(x)(m), x2m+2) (85)

Â2m+2 = coeff(Â(x)(m), x2m+2) (86)

Ĉ2m+2 = coeff(Ĉ(x)(m), x2m+2) (87)

for even carbon contents. The program for evaluating these coefficients was written on
the same line as the programs “CentrSIA1-100.mpl” and “CentrSIC1-100.mpl”. The
execution results were identical with the data listed in Table 3.

6 Alkanes as Bicentroidal 3D-Trees

6.1 Two-Nodal Promolecules into Bicentroidal Alkanes

Two-nodal promolecules described in Subsection 2.2 are converted into bicentroidal alka-
nes, where the two proligands of each two-nodal promolecule are replaced by alkyl ligands
described in Section 3.

In a two-nodal promolecule 41 derived from the K-skeleton 39, for example, the
proligands X and Y are replaced by a n-propyl (CH2CH2CH3) and an isopropyl ligand
(CH(CH3)2) respectively, as shown in Fig. 7. Thereby, the promolecule is converted into
2-methylpentane (50) as a bicentroidal alkane of carbon content 6.

Because the promolecule 41 belongs to the K3-factor group (cf. Fig. 4), the 2-methylpentane
is regarded as belonging to the K-factor group as an average conformation.

Alkyl ligands, which are enumerated by the generating functions regarded as ligand
inventories (eqs. 41–43), are introduced into the promolecule (41) under the criterion
of bicentroidal 3D-trees (Section 4). When such alkyl ligands have been counted up to
carbon content m = 3, alkanes of carbon content 6 (v = 2m = 6) can be counted. Hence,
only one mode of factorization take place: x3 · x3 for hexane (two n-propyl ligands, 40;
K), 2,2-dimethylbutane (two isopropyl ligands, 40, K), and the 2-methylpentane (50,
K3).

The procedure described in the preceding paragraph is extended to cover general cases,
as described in the following subsections.
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Figure 7: K- or D∞h/C∞-skeleton (39) with two substitution positions, a two-nodal
promolecule (41), and a bicentroidal alkane (50).

6.2 Functional Equations for Counting Bicentroidal 3D-Trees

Let G be a subgroup of the the factor group K (= D∞h/C∞). Let N
(G)
k be the number of

bicentroidal alkanes (or 3D-trees) which belong to G and have carbon content k. On the
same line as centroidal 3D-trees, each pair of enantiomeric 3D-trees is counted just once
throughout the enumerations described in this paper. In agreement with the definition
of bicentroidal 3D-trees, the terms up to xv are collected to give the following generating
functions:

N(x)(G) =
v∑

k=0

N
(G)
k xk, (88)

where v runs stepwise from 0 to infinite. The value of N
(G)
k is equal to zero when k is

odd.
Because each of eqs. 31–35 for two-nodal promolecules corresponds to eq. 88 for bi-

centroidal 3D-trees, the SIs ad, cd, and bd are replaced by the terms a(xd) − 1, c(xd) − 1,
and b(xd) − 1 respectively. Thereby we obtain the following functional equations:

N(x)(K1) =
1

4
(b(x) − 1)2 − 1

4
(b(x2) − 1)

− 1

4
(a(x) − 1)2 − 1

4
(c(x2) − 1) +

1

2
(a(x2) − 1) (89)

N(x)(K2) =
1

2
(b(x2) − 1) − 1

2
(a(x2) − 1) (90)

N(x)(K3) =
1

2
(a(x) − 1)2 − 1

2
(a(x2) − 1) (91)

N(x)(K4) =
1

2
(c(x2) − 1) − 1

2
(a(x2) − 1) (92)

N(x)(K) = a(x2) − 1. (93)

The target of this section is to evaluate N(x)(G) (eqs. 89–93) by using eqs. 52–54 under
the criterion for bicentroidal 3D-trees. The criterion for bicentroidal 3D-trees requires the
relationship:

m =
1

2
v (94)

or
2m = v. (95)
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If the value k is tentatively fixed during recursive calculations, eqs. 52–54 are regarded
as finite series which have terms up to xm. They are introduced into the right-hand sides
of eqs. 89–93 and the resulting equations are expanded to give respective series N(x)(G,m),
each of which is used to give the coefficients of eq. 88. Because of eq. 95, the coefficient
of the term x2m in each of the series is effective to determine N

(G)
2m . Let the symbol

coeff(N(x)(G,m), x2m) represent the coefficient of the term x2m appearing in the equation
N(x)(G,m) after expansion. Then, we obtain the following coefficients:

N
(G)
2m = coeff(N(x)(G,m), x2m). (96)

Because we take account of the coefficient N
(G)
2m (eq. 96) only, we can use following

functional equations:

N(x)(K1)′ =
1

4
b(x)2 − 1

4
b(x2) − 1

4
a(x)2 − 1

4
c(x2) +

1

2
a(x2) (97)

N(x)(K2)′ =
1

2
b(x2) − 1

2
a(x2), (98)

N(x)(K3)′ =
1

2
a(x)2 − 1

2
a(x2) (99)

N(x)(K4)′ =
1

2
c(x2) − 1

2
a(x2) (100)

N(x)(K)′ = a(x2) (101)

in place of eqs. 89–93. Note that eqs. 97–101 are derived from eqs. 31–35 by substituting
a(xd), c(xd), and b(xd) for the SIs ad, cd, and bd.

6.3 Recursive Calculation for Counting Bicentroidal 3D-Trees

The program describe in “CentrSIA1-100.mpl” and “CentrSIC1-100.mpl” for evaluating
a(x), c(x2), and b(x) (eqs. 52–54) was also used to evaluate the coefficients N

(G)
k (eq. 88).

The code for the functional equations shown in eqs. 89–93 was written in a similar way
described above. The total program was stored in a file named “BicentrSI1-100B.mpl”,
which was executed on a display window of the Maple system. The results are shown in
Table 4, where the values of N

(G)
k for bicentroidal alkanes as 3D-trees are collected up to

carbon content k = 100.

Maple program for counting bicentroidal 3D-trees, “BicentrSI1-100B.mpl”:

"Functional Equations for Alkyl Ligands";
ax := 1 + x*a1*c2;
cx := 1+ (1/3)*x^2*c2^3 + (2/3)*x^2*c6;
bx := 1 + (1/3)*x*b1^3 + (2/3)*x*b3;

"Alkanes as Bicentroidal 3D-Trees";
NxK1 := (1/4)*(b1-1)^2 - (1/4)*(b2-1) - (1/4)*(a1-1)^2
- (1/4)*(c2-1) + (1/2)*(a2-1):
NxK2 := (1/2)*(b2-1) - (1/2)*(a2-1):
NxK3 := (1/2)*(a1-1)^2 - (1/2)*(a2-1):
NxK4 := (1/2)*(c2-1) - (1/2)*(a2-1):
NxK := a2-1:
Bxt := (1/4)*((b1-1)^2 + (b2-1) + (a1-1)^2 + (c2-1)):
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"Initial Values";
a1 := 1; a2 := 1;
b1 := 1; b2 := 1; b3 := 1;
c2 := 1; c4 := 1; c6 := 1;
NK1 := 0; NK2 := 0; NK3 := 0;
NK4 := 0; NK := 0;
Bt := 0;

"Recursive Calculation";
for m from 1 to 50 by 1 do
m:
Cbx:= coeff(bx,x^m):
Cax:= coeff(ax,x^m):
Ccx:= coeff(cx,x^(m*2)):
a1 := a1 + Cax*x^m:
a2 := a2 + Cax*x^(m*2):
b1 := b1 + Cbx*x^m:
b2 := b2 + Cbx*x^(m*2):
b3 := b3 +Cbx*x^(m*3):
c2 := c2 + Ccx*x^(m*2):
c4 := c4 + Ccx*x^(m*4):
c6 := c6 + Ccx*x^(m*6):
n := 2*m:
NK1 := NK1 + coeff(NxK1,x^n)*x^n:
NK2 := NK2 + coeff(NxK2,x^n)*x^n:
NK3 := NK3 + coeff(NxK3,x^n)*x^n:
NK4 := NK4 + coeff(NxK4,x^n)*x^n:
NK := NK + coeff(NxK,x^n)*x^n:
Bt := Bt + coeff(Bxt,x^n)*x^n:
end do:

"Test Digit";
Bt;
Test := NK1 + NK2 + NK3 + NK4 + NK - Bt;

"Print-Out";
for m from 2 to 100 by 2 do
printf("%d & %d & %d & %d & %d & %d \\\\ \n",
m, coeff(NK1,x^m), coeff(NK2,x^m), coeff(NK3,x^m),
coeff(NK4,x^m), coeff(NK,x^m));
end do;

In this program, the first paragraph “Functional Equations for Alkyl Ligands” is con-
cerned with planted 3D-trees. The second paragraph “Alkanes as Bicentroidal 3D-Trees”
declares the functional equations N(x)(K1) (NxK1), N(x)(K2) (NxK2), N(x)(K3) (NxK3),
N(x)(K4) (NxK4), and N(x)(K) (NxK). The symbol Bxt is to calculate the total number
of bicentroidal 3D-trees. The third paragraph “Initial Values” gives the initial values for
every functional equations. The fourth paragraph “Recursive Calculation” is composed
of a do loop for recursive calculations. The resulting values at each step of m, which
is referred to by the symbol N(x)(G,m) in the text (cf. eqs. 96), are stored as the series
denoted by the symbols NK1, NK2, and so on. Note that Bt is a series for storing the
results due to the functional equation shown by Bxt. Note that m moves from 1 to 50 to
calculate the values NCs, NS4, etc. up to carbon content 100. The fifth paragraph ”Test
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Table 4: Numbers of Chiral and Achiral Bicentroidal Alkanes as Stereoisomers

k N(K1)
k N(K2)

k N(K3)
k N(K4)

k N(K)
k

2 0 0 0 0 1
4 0 0 0 0 1
6 0 0 1 0 2
8 3 1 3 1 3

10 21 3 10 3 5
12 170 10 28 10 8
14 1290 30 91 30 14
16 9680 88 253 88 23
18 75225 255 820 255 41
20 601020 742 2346 742 69
22 4913646 2157 7381 2157 122
24 41147928 6312 21528 6312 208
26 351434716 18563 68265 18563 370
28 3052406444 54932 201930 54932 636
30 26910605148 163479 642411 163479 1134
32 240339197664 489264 1925703 489264 1963
34 2171034151632 1471692 6140760 1471692 3505
36 19810902096624 4447896 18595851 4447896 6099
38 182415855489644 13500689 59486778 13500689 10908
40 1693333684316928 41140608 181613211 41140608 19059
42 15834517653168865 125818217 582377256 125818217 34129
44 149058121084835254 386050543 1790143530 386050543 59836
46 1411693337070824624 1188093392 5751871140 1188093392 107256
48 13444258974971682096 3666547089 17780359600 3666547089 188576
50 128691508649139937350 11344058829 57230718681 11344058829 338322
52 1237676126328475582232 35180323336 177757925626 35180323336 596252
54 11955155209909770194588 109339097119 573020987311 109339097119 1070534
56 115946610491159850069600 340508394528 1787084924878 340508394528 1890548
58 1128738527373066688688910 1062419370490 5768342184165 1062419370490 3396570
60 11026844701941179705888430 3320666310903 18053484671778 3320666310903 6008908
62 108076850325850215726768250 10395996250010 58339609048020 10395996250010 10801816
64 1062546355974610837369643571 32596713516873 183153617487435 32596713516873 19139155
66 10476479815330994238046121940 102354659356690 592455509546916 102354659356690 34422537
68 103576425125384231421407990955 321832884381903 1865052313774653 321832884381903 61074583
70 1026636422872852928460099161844 1013230630964436 6038377871932071 1013230630964436 109894294
72 10200477451834273436225561185100 3193818534035050 19054887836824378 3193818534035050 195217253
74 101581672299213391682175606717120 10078773177202180 61742457470138910 10078773177202180 351404205
76 1013791682525675969638186107104384 31840095204449021 195258305947375686 31840095204449021 624913284
78 10138463629083017138288148518383330 100689937510048385 633140900282570001 100689937510048385 1125291874
80 101587632316921571608122788467850571 318728146981844679 2006184915267847485 318728146981844679 2003090071
82 1019796001920058513013718976482968640 1009849492883144730 6509464275862265941 1009849492883144730 3608175239
84 10255363028472401453574706945499831529 3202399570304430261 20662356958503263256 3202399570304430261 6428430129
86 103304260659529997807471434842399592618 10163870352469178059 67082891722070880846 10163870352469178059 11582995444
88 1042273130631919367912051902439879332026 32284255140318002679 213275294908843788720 32284255140318002679 20653101216
90 10531975749055818891019596953813028175600 102625414714074250195 692799608715415455555 102625414714074250195 37223637886
92 106579600371335056372859283221723479326706 326465312628541253282 2205819023251906595676 326465312628541253282 66420162952
94 1080057924052835851968590047147334594849394 1039258352830707100287 7168899247099742388600 1039258352830707100287 119740546576
96 10959815284871517870343941582400840165844014 3310561173602401804486 22855731041192979799716 3310561173602401804486 213802390264
98 111357307668915457889274948263349481888553478 10552597199971538944446 74314907634072993022128 10552597199971538944446 385525375648

100 1132846394716372419231278583317989278246204150 33657783567745352117595 237220548890492029224300 33657783567745352117595 688796847976

Digit” confirms the validity of the results, where the result stored in the series Bt is used
as a standard. Hence Test should be equal to zero if the present calculations are correct.
The last paragraph “Print-Out” declares a do loop for printing out the values in a tabular
form up to carbon content 100 (only for the cases of even carbon contents).

7 Alkanes as Balanced and Unbalanced 3D-Trees

We have recently developed the dichotomy between balanced and unbalanced trees (or
3D-trees) as a new dichotomy which is applicable to the enumeration of trees or 3D-
trees. The new dichotomy provides us a tool for categorizing bicentroidal 3D-trees further
into bicentroidal & balanced 3D-trees (or simply balanced 3D-trees) and bicentroidal &
unbalanced 3D-trees. The present section is devoted to discuss this categorization in
comparison with the present symmetry-itemization.

7.1 Bicentroidal & Balanced 3D-Trees

The new dichotomy is based on the absence or presence of a balance-edge, in which the
two branch incident to the balance-edge are congruent to each other under the action of
the factor group K (= D∞h/C∞). A 3D-tree which has a balance-edge is called a balanced
3D-tree; otherwise a 3D-tree is called an unbalanced 3D-tree.
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Because balanced 3D-trees are always bicentroidal 3D-trees, the inspection of Fig. 4
teaches us that there are three cases, i.e., K2 (= D∞/C∞) for p—p (paired with p—p),
K4 (= C∞h/C∞) for p—p, and K (= D∞h/C∞) for X—X. The summation of eqs. 32,

34, and 35 gives the following CI-CF
(AC)
B :

CI-CF
(AC)
B (K, $d) = PCI-CF(K2, $d) + PCI-CF(K4, $d) + PCI-CF(K, $d)

=
1

2
(b2 + c2). (102)

Among the balanced 3D-trees, achiral ones are K4 (= C∞h/C∞) for p—p and K (=

D∞h/C∞) for X—X. They are summed up to give the following CI-CF
(A)
B ;

CI-CF
(A)
B (K, $d) = PCI-CF(K4, $d) + PCI-CF(K, $d)

=
1

2
(a2 + c2). (103)

Chiral balanced 3D-trees are left behind as follows:

CI-CF
(C)
B (K, $d) = PCI-CF(K2, $d)

=
1

2
(b2 − a2). (104)

Let B(AC)

k be the number of achiral balanced 3D-trees plus enantiomeric pairs of chiral
balanced 3D-trees of carbon content k; let B(A)

k be the number of achiral balanced 3D-trees
of carbon content k; and let B(C)

k be the number of achiral and chiral balanced 3D-trees
of carbon content k, where each pair of enantiomers is counted just once. Then, they
appear as the coefficients of the following series:

B(x)(AC) =
∞∑

k=1

B(AC)

k xk (105)

B(x)(A) =
∞∑

k=1

B(A)

k xk (106)

B(x)(C) =
∞∑

k=1

B(C)

k xk, (107)

where the coefficient of xk is equal to 0 if k is odd.
To evaluate the counting series represented by eqs. 105–107, we derive functional

equations by substituting a(xd) − 1, c(xd) − 1, and b(xd) − 1 for the SIs (ad, cd, and
bd) appearing in the CI-CFs (eqs. 102–104). Thereby, we obtain the following functional
equations:

B(x)(AC) =
1

2
{(b(x2) − 1) + (c(x2) − 1)} (108)

B(x)(A) =
1

2
{(a(x2) − 1) + (c(x2) − 1)} (109)

B(x)(C) =
1

2
{(b(x2) − 1) − (a(x2) − 1)}. (110)

Because we have already obtained the coefficients of every terms of eqs. 41–43, they
are introduced into eqs. 108–110. The resulting equations are expanded to give B(AC)

k ,
B(A)

k , and B(C)

k .
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The code for evaluating a(x), c(x2), and b(x) (eqs. 52–54) was also used to evaluate

the coefficients B
(AC)
k (eq. 105), B

(A)
k (eq. 106), and B

(C)
k (eq. 107). The total program

was stored in a file named “BiBalSI1-100.mpl”, which was executed on a display window
of the Maple system. The results are shown in Table 5, where the values are collected up
to carbon content k = 100.

Maple program for counting bicentroidal & balanced 3D-trees, “BiBalSI1-100.mpl”:

"Functional Equations for Alkyl Ligands";
ax := 1 + x*a1*c2;
cx := 1+ (1/3)*x^2*c2^3 + (2/3)*x^2*c6;
bx := 1 + (1/3)*x*b1^3 + (2/3)*x*b3;

"Alkanes as Bicentroidal and Ballanced 3D-Trees";
BxAC := (1/2)*(b2-1) + (1/2)*(c2-1):
BxA := (1/2)*(a2-1) + (1/2)*(c2-1):
BxC := (1/2)*(b2-1) - (1/2)*(a2-1):

"Initial Values";
a1 := 1; a2 := 1;
b1 := 1; b2 := 1; b3 := 1;
c2 := 1; c4 := 1; c6 := 1;
BAC := O; BA := O; BC := O;

"Recursive Calculation";
for m from 1 to 50 by 1 do
m:
Cbx:= coeff(bx,x^m):
Cax:= coeff(ax,x^m):
Ccx:= coeff(cx,x^(m*2)):
a1 := a1 + Cax*x^m:
a2 := a2 + Cax*x^(m*2):
b1 := b1 + Cbx*x^m:
b2 := b2 + Cbx*x^(m*2):
b3 := b3 +Cbx*x^(m*3):
c2 := c2 + Ccx*x^(m*2):
c4 := c4 + Ccx*x^(m*4):
c6 := c6 + Ccx*x^(m*6):
n := 2*m:
BAC := BAC + coeff(BxAC,x^n)*x^n:
BA := BA + coeff(BxA,x^n)*x^n:
BC := BC + coeff(BxC,x^n)*x^n:
end do:

"Print-Out";
for m from 2 to 100 by 2 do
printf("%d & %d & %d & %d \\\\ \n",
m, coeff(BA,x^m), coeff(BC,x^m), coeff(BAC,x^m));
end do;

In this program, we use the criterion for bicentroidal 3D-trees (i.e., eq. 95) in the
evaluation of eqs. 108–110. However, the same results can be obtained without the use of
the criterion. Thus, the lines concerned with BAC, BA, BC are deleted from the paragraphs
“Initial Values” and “Recursive Calculation” of the above program “BiBalSI1-100.mpl”;
and the paragraph “Print-Out” is rewritten as follows:
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Table 5: Numbers of Bicentroidal & Balanced Alkanes as Stereoisomers

k B(A)
k B(C)

k B(AC)
k

2 1 0 1
4 1 0 1
6 2 0 2
8 4 1 5

10 8 3 11
12 18 10 28
14 44 30 74
16 111 88 199
18 296 255 551
20 811 742 1553
22 2279 2157 4436
24 6520 6312 12832
26 18933 18563 37496
28 55568 54932 110500
30 164613 163479 328092
32 491227 489264 980491
34 1475197 1471692 2946889
36 4453995 4447896 8901891
38 13511597 13500689 27012286
40 41159667 41140608 82300275
42 125852346 125818217 251670563
44 386110379 386050543 772160922
46 1188200648 1188093392 2376294040
48 3666735665 3666547089 7333282754
50 11344397151 11344058829 22688455980
52 35180919588 35180323336 70361242924
54 109340167653 109339097119 218679264772
56 340510285076 340508394528 681018679604
58 1062422767060 1062419370490 2124842137550
60 3320672319811 3320666310903 6641338630714
62 10396007051826 10395996250010 20792003301836
64 32596732656028 32596713516873 65193446172901
66 102354693779227 102354659356690 204709353135917
68 321832945456486 321832884381903 643665829838389
70 1013230740858730 1013230630964436 2026461371823166
72 3193818729252303 3193818534035050 6387637263287353
74 10078773528606385 10078773177202180 20157546705808565
76 31840095829362305 31840095204449021 63680191033811326
78 100689938635340259 100689937510048385 201379876145388644
80 318728148984934750 318728146981844679 637456295966779429
82 1009849496491319969 1009849492883144730 2019698989374464699
84 3202399576732860390 3202399570304430261 6404799147037290651
86 10163870364052173503 10163870352469178059 20327740716521351562
88 32284255160971103895 32284255140318002679 64568510301289106574
90 102625414751297888081 102625414714074250195 205250829465372138276
92 326465312694961416234 326465312628541253282 652930625323502669516
94 1039258352950447646863 1039258352830707100287 2078516705781154747150
96 3310561173816204194750 3310561173602401804486 6621122347418605999236
98 10552597200357064320094 10552597199971538944446 21105194400328603264540

100 33657783568434148965571 33657783567745352117595 67315567136179501083166

"Print-Out";
for m from 2 to 100 by 2 do
printf("%d & %d & %d & %d \\\\ \n",
m, coeff(BxA,x^m), coeff(BxC,x^m), coeff(BxAC,x^m));
end do;

This is because eqs. 108–110 implicitly satisfy the criterion in the form of the functions
a(x2), c(x2), and b(x2) due to the SIs a2, c2, and b2.

7.2 Bicentroidal & Unbalanced 3D-Trees

By the inspection of Fig. 4, we find that bicentroidal & unbalanced 3D-trees belong to
K1 (X—p or p—q) or K3 (X—Y), where the two ligands of each pair X/p, p/q, and X/Y
have the same carbon content. The summation of eq. 31 and eq. 33 gives the following
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CI-CF
(AC)
U :

CI-CF
(AC)
U (K, $d) = PCI-CF(K1, $d) + PCI-CF(K3, $d)

=
1

4
b2
1 −

1

4
b2 +

1

4
a2

1 −
1

4
c2. (111)

Because achiral bicentroidal & unbalanced 3D-trees belong to K3 (X—Y), eq. 33 gives

the following CI-CF
(A)
U :

CI-CF
(A)
U (K, $d) = PCI-CF(K3, $d)

=
1

2
a2

1 −
1

2
a2, (112)

Because chiral bicentroidal & unbalanced 3D-trees belong to K1 (X—p or p—q), eq. 31

gives the following CI-CF
(C)
U :

CI-CF
(C)
U (K, $d) = PCI-CF(K1, $d)

=
1

4
b2
1 −

1

4
b2 − 1

4
a2

1 −
1

4
c2 +

1

2
a2. (113)

Let Ũ (AC)

k , Ũ (A)

k , and Ũ (C)

k be the number of achiral and chiral bicentroidal & unbalanced
3D-trees the number of achiral bicentroidal & unbalanced 3D-trees, the number of chiral
bicentroidal & unbalanced 3D-trees, where each number is concerned with carbon content
k and a pair of enantiomers is counted just once. Then, they appear as the coefficients of
the following series:

Ũ (AC)

k =
∞∑

k=1

Ũ (AC)

k xk (114)

Ũ (A)

k =
∞∑

k=1

Ũ (A)

k xk (115)

Ũ (C)

k =
∞∑

k=1

Ũ (C)

k xk (116)

where the coefficient of xk is equal to 0 if k is odd.
To evaluate the counting series represented by eqs. 114–116, we derive functional

equations by substituting a(xd) − 1, c(xd) − 1, and b(xd) − 1 for the SIs (ad, cd, and
bd) appearing in the CI-CFs (eqs. 111–113). Thereby, we obtain the following functional
equations:

Ũ(x)(AC) =
1

4
(b(x) − 1)2 − 1

4
(b(x2) − 1) +

1

4
(a(x) − 1)2 − 1

4
(c(x2) − 1) (117)

Ũ(x)(A) =
1

2
(a(x) − 1)2 − 1

2
(a(x2) − 1), (118)

Ũ(x)(C) =
1

4
(b(x) − 1)2 − 1

4
(b(x2) − 1)

− 1

4
(a(x) − 1)2 − 1

4
(c(x2) − 1) +

1

2
(a(x2) − 1), (119)

After eqs. 52–54 are introduced into Ũ(x)(AC) (eq. 117), Ũ(x)(A) (eq. 118), and Ũ(x)(C)

(eq. 119), they are evaluated under the criterion for bicentroidal 3D-trees (i.e., eq. 95). If

- 33 -



Table 6: Numbers of Bicentroidal & Unbalanced Alkanes as Stereoisomers

k Ũ (A)
k Ũ (C)

k Ũ (AC)
k

2 0 0 0
4 0 0 0
6 1 0 1
8 3 3 6

10 10 21 31
12 28 170 198
14 91 1290 1381
16 253 9680 9933
18 820 75225 76045
20 2346 601020 603366
22 7381 4913646 4921027
24 21528 41147928 41169456
26 68265 351434716 351502981
28 201930 3052406444 3052608374
30 642411 26910605148 26911247559
32 1925703 240339197664 240341123367
34 6140760 2171034151632 2171040292392
36 18595851 19810902096624 19810920692475
38 59486778 182415855489644 182415914976422
40 181613211 1693333684316928 1693333865930139
42 582377256 15834517653168865 15834518235546121
44 1790143530 149058121084835254 149058122874978784
46 5751871140 1411693337070824624 1411693342822695764
48 17780359600 13444258974971682096 13444258992752041696
50 57230718681 128691508649139937350 128691508706370656031
52 177757925626 1237676126328475582232 1237676126506233507858
54 573020987311 11955155209909770194588 11955155210482791181899
56 1787084924878 115946610491159850069600 115946610492946934994478
58 5768342184165 1128738527373066688688910 1128738527378835030873075
60 18053484671778 11026844701941179705888430 11026844701959233190560208
62 58339609048020 108076850325850215726768250 108076850325908555335816270
64 183153617487435 1062546355974610837369643571 1062546355974793990987131006
66 592455509546916 10476479815330994238046121940 10476479815331586693555668856
68 1865052313774653 103576425125384231421407990955 103576425125386096473721765608
70 6038377871932071 1026636422872852928460099161844 1026636422872858966837971093915
72 19054887836824378 10200477451834273436225561185100 10200477451834292491113398009478
74 61742457470138910 101581672299213391682175606717120 101581672299213453424633076856030
76 195258305947375686 1013791682525675969638186107104384 1013791682525676164896492054480070
78 633140900282570001 10138463629083017138288148518383330 10138463629083017771429048800953331
80 2006184915267847485 101587632316921571608122788467850571 101587632316921573614307703735698056
82 6509464275862265941 1019796001920058513013718976482968640 1019796001920058519523183252345234581
84 20662356958503263256 10255363028472401453574706945499831529 10255363028472401474237063904003094785
86 67082891722070880846 103304260659529997807471434842399592618 103304260659529997874554326564470473464
88 213275294908843788720 1042273130631919367912051902439879332026 1042273130631919368125327197348723120746
90 692799608715415455555 10531975749055818891019596953813028175600 10531975749055818891712396562528443631155
92 2205819023251906595676 106579600371335056372859283221723479326706 106579600371335056375065102244975385922382
94 7168899247099742388600 1080057924052835851968590047147334594849394 1080057924052835851975758946394434337237994
96 22855731041192979799716 10959815284871517870343941582400840165844014 10959815284871517870366797313442033145643730
98 74314907634072993022128 111357307668915457889274948263349481888553478 111357307668915457889349263170983554881575606

100 237220548890492029224300 1132846394716372419231278583317989278246204150 1132846394716372419231515803866879770275428450

the maximum value of k is tentatively fixed to be m during recursive calculations, eqs.
52–54 are regarded as finite series which have terms up to xm. They are introduced into
the right-hand sides of eqs. 117–119 and the resulting equations are expanded to give
respective series Ũ(x)(AC, m), etc., each of which is used to give the coefficients of eq. 114,
etc. Because of eq. 95, the coefficient of the term x2m in each of the series is effective
to determine Ũ (AC)

2m , etc. Let the symbol coeff(Ũ(x)(AC, m), x2m) represent the coefficient of
the term x2m appearing in the equation Ũ(x)(AC, m) after expansion. Then, we obtain the
following coefficients:

Ũ (AC)

2m = coeff(Ũ(x)(AC, m), x2m) (120)

Ũ (A)

2m = coeff(Ũ(x)(A, m), x2m) (121)

Ũ (C)

2m = coeff(Ũ(x)(C, m), x2m) (122)

The code for evaluating a(x), c(x2), and b(x) (eqs. 52–54) was the same as used
previously. The program for the functional equations shown in eqs. 117–119 was written in
a similar way described above. The total program was stored in a file named “BiUnBSI1-
100.mpl”, which was executed on a display window of the Maple system. The results are
shown in Table 6, where the values are collected up to carbon content k = 100.

Maple program for counting bicentroidal & unbalanced 3D-trees, “BiUnBSI1-100.mpl”:
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"Functional Equations for Alkyl Ligands";
ax := 1 + x*a1*c2;
cx := 1+ (1/3)*x^2*c2^3 + (2/3)*x^2*c6;
bx := 1 + (1/3)*x*b1^3 + (2/3)*x*b3;

"Alkanes as Bicentroidal Unbalanced 3D-Trees";
BUxAC := (1/4)*(b1-1)^2 - (1/4)*(b2-1) + (1/4)*(a1-1)^2 - (1/4)*(c2-1):
BUxA := (1/2)*(a1-1)^2 - (1/2)*(a2-1):
BUxC := (1/4)*(b1-1)^2 - (1/4)*(b2-1) - (1/4)*(a1-1)^2
- (1/4)*(c2-1) + (1/2)*(a2-1):

"Initial Values";
a1 := 1; a2 := 1;
b1 := 1; b2 := 1; b3 := 1;
c2 := 1; c4 := 1; c6 := 1;
BUAC := O; BUA := O; BUC := O;

"Recursive Calculation";
for m from 1 to 50 by 1 do
m:
Cbx:= coeff(bx,x^m):
Cax:= coeff(ax,x^m):
Ccx:= coeff(cx,x^(m*2)):
a1 := a1 + Cax*x^m:
a2 := a2 + Cax*x^(m*2):
b1 := b1 + Cbx*x^m:
b2 := b2 + Cbx*x^(m*2):
b3 := b3 +Cbx*x^(m*3):
c2 := c2 + Ccx*x^(m*2):
c4 := c4 + Ccx*x^(m*4):
c6 := c6 + Ccx*x^(m*6):
n := 2*m:
BUAC := BUAC + coeff(BUxAC,x^n)*x^n:
BUA := BUA + coeff(BUxA,x^n)*x^n:
BUC := BUC + coeff(BUxC,x^n)*x^n:
end do:

"Print-Out";
for m from 2 to 100 by 2 do
printf("%d & %d & %d & %d \\\\ \n",
m, coeff(BUA,x^m), coeff(BUC,x^m), coeff(BUAC,x^m));
end do;

8 Discussion

8.1 Examination of Alkanes of Carbon Content 8

To confirm the validity of the present enumeration, let us examine centroidal alkanes
of carbon content 8. The (k = 8)-row of Table 3 shows that there exist seven achiral

centroidal alkanes (Â8 = 7), which are categorized into six Cs-stereoisomers (N
(Cs)
8 = 6)

and one C3v-stereoisomers (N
(C3v)
8 = 1), as shown in the (k = 8)-row of Table 1. The (k =

8)-row of Table 3 shows there exists one chiral centroidal alkane (Ĉ8 = 1), which belongs

to C1-symmetry (N
(C1)
8 = 1), as shown in the (k = 8)-row of Table 2. These centroidal
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alkanes are depicted at the upper part of Fig. 8. Note that an arbitrary enantiomer is
depicted for a representative of each enantiomeric pair of chiral alkanes throughout the
present discussion.

The centroidal alkanes depicted in Fig 8 can be correlated to the promolecules depicted
in Fig. 2. The six Cs-stereoisomers (51–56) are assigned to the Cs-promolecule (11).
There appear no Cs-stereoisomers of carbon content 8 which correspond to the other
Cs-promolecules (12–14). The criterion for centroidal 3D-trees (eq. 68) means that the
carbon content k = v = 8 is generated from m = 3 (i.e., 2m + 2 = 8) so that all of the
alkyl ligands incident to each centroid (marked with an asterisk) have carbon contents
equal to or less than 3. They are selected from hydrogen, methyl, ethyl, n-propyl and
isopropyl, which are all achiral. Hence, the other Cs-promolecules (12–14) do not appear
in Fig. 8, because they should contain an enantiomeric pair of chiral proligands. The C3v-
stereoisomer of carbon content 8 (57) corresponds to the C3v-promolecule (4), where we
place X = CH2CH3 (ethyl) and Y = H (hydrogen). The C1-stereoisomer of carbon content
8 (58) corresponds to the C1-promolecule (19), where we place X = CH3 (methyl), Y =
CH(CH3)2 (isopropyl), X = CH2CH2CH3 (n-propyl), and H = H (hydrogen). The other
C1-promolecules listed in Fig. 2 do not appear in Fig 8, because they involve at least one
chiral proligand, which does not appear under the criterion m = 3 (< 1

2
v = 4).

The bicentroidal alkanes are categorized into bicentroidal & balanced alkanes (Table
5) and bicentroidal & unbalanced alkanes (Table 6). The (k = 8)-row of Table 5 shows
there exist four achiral bicentroidal & balanced alkanes (B(A)

8 = 4), which are categorized

into one K4-isomer (N
(K4)
8 = 1) and three K-isomers (N

(K)
8 = 3), where the itemized data

are found in Table 4. The datum Ũ (A)

8 = 3 for achiral bicentroidal & unbalanced alkanes

shown in Table 6 correspond to the datum N
(K3)
8 = 3 shown in Table 4. The (k = 8)-row

of Table 5 shows there exists one chiral bicentroidal & balanced alkane (BC
8 = 1), which

belongs to K2-symmetry (N
(K2)
8 = 1), as shown in the (k = 8)-row of Table 4. The datum

Ũ (C)

8 = 3 for chiral bicentroidal & unbalanced alkanes shown in Table 6 correspond to the

datum N
(K1)
8 = 3 shown in Table 4. These bicentroidal alkanes are depicted at the lower

part of Fig. 8 (below the horizontal double line).
Each of the bicentroidal alkanes depicted in Fig. 8 can be divided into two halves at

the edge of the bicentroid (marked with a couple of asterisks). The bicentroidal alkanes
of K3-symmetry (59–61) correspond to the K3-promolecule (41), where we replace the
proligands X and Y by achiral alkyl ligands of carbon content 4 (i.e., n-butyl, isobutyl,
and t-butyl). The bicentroidal alkane of K4-symmetry (62) is a meso-compound, which
corresponds to the K4-promolecule (41). Note that two halves are sec-butyl ligands of an
enantiomeric pair. The bicentroidal alkanes of K-symmetry (63–65) correspond to the K-
promolecule (40), where we replace the two proligands X by achiral alkyl ligands of carbon
content 4 (i.e., n-butyl, isobutyl, and t-butyl). The bicentroidal alkanes of K1-symmetry
(66–68) correspond to the K1-promolecule (44), where we replace the proligand X by an
achiral alkyl ligand of carbon content 4 (i.e., n-butyl, isobutyl, or t-butyl) as well as the
proligand p by a chiral alkyl ligand of carbon content 4 (i.e., sec-butyl). The bicentroidal
alkane of K2-symmetry (69) correspond to the K2-promolecule (43), where we replace
the proligand p by a chiral alkyl ligand of carbon content 4 (i.e., sec-butyl).

It should be noted that the K4-alkane (62) of meso-type corresponds to the K2-
alkane (69) of chiral type in one-to-one fashion. This type of correspondence holds true
in general, as found easily by comparing the corresponding promolecules (i.e., 42 vs. 43).
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Figure 8: Symmetry-itemized numbers of alkanes of carbon content 8. A wedged edge
is used to show the configuration of the carbon node if necessary. Each carbon with
an asterisk is a centroid, while an adjacent pair of carbons with asterisks represents a
bicentroid.
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Hence, we obtain the following relationship:

N
(K2)
k = N

(K4)
k . (123)

This relationship is confirmed by the inspection of the N
(K2)
k -column and the N

(K4)
k -

column of Table 4. Note again that a pair of enantiomeric N
(K2)
k -alkanes (p—p and p—p)

is counted just once in the present enumeration, while an achiral N
(K4)
k -alkane (p—p) is

spontaneously counted just once.
It is informative to compare the functional equation N(x)(K2) (eq. 90) with the func-

tional equation N(x)(K4) (eq. 92). Although the two functional equations give the same
numbers as shown in eq. 123, they are different in the component terms, i.e., b(x2) vs.
c(x2), which stem from the sphericities of orbits. The component term b(x2) is concerned
with a two-membered hemispheric orbit, where the chirality fittingness of the orbit per-
mits the accommodation of p—p (paired with p—p). On the other hand, the component
term c(x2) is concerned with a two-membered enantiospheric orbit, where the chirality
fittingness of the orbit permits the accommodation of an enantiomeric pair (p—p).

8.2 Examination of Alkanes of Carbon Content 9

All of the alkanes of carbon content 9 are centroidal, because all of the bicentroidal alkanes
should have even carbon contents under the criterion shown in eq. 95. The (k = 9)-row
of Table 3 shows that there exist 21 achiral centroidal alkanes (Â9 = 21), which are

categorized into 15 Cs-stereoisomers (N
(Cs)
9 = 15), five C2v-stereoisomers (N

(C2v)
9 = 5),

and one Td-stereoisomers (N
(Td)
9 = 1), as shown in the (k = 9)-row of Table 1. These

centroidal alkanes are depicted in Fig. 9.
The centroidal alkanes depicted in Fig 9 can be correlated to the promolecules depicted

in Fig. 2. The Cs-stereoisomers (70–84) except 73 are assigned to the Cs-promolecule
(11). The exceptional Cs-stereoisomer (73) corresponds to the Cs-promolecules (12).
There appear no Cs-stereoisomers of carbon content 8 which correspond to the other
Cs-promolecules (13 and 14), which are referred to as pseudoasymmetry.

The criterion for centroidal 3D-trees (eq. 68) means that the carbon content k = v = 9
is generated from m = 4 (i.e., 2m+1 = 9) so that all of the alkyl ligands incident to each
centroid (marked with an asterisk) have carbon contents equal to or less than 4. They are
selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl,
and t-butyl which are achiral except that the sec-butyl ligand is chiral. Hence, the Cs-
stereoisomers (70–84) except 73 are composed of such achiral alkyl ligands as having
carbon content equal to or less than 4. The exceptional Cs-stereoisomer (73) consists of
two hydrogens and an enantiomeric pair of sec-butyl ligands. Obviously, this case is akin
to so-called meso-compounds.

The five C2v-stereoisomers of carbon content 9 (85–89) correspond to the C2v-promolecule
(5), where the ligands X and Y are selected from the above set of achiral alkyl ligands of
carbon content equal to or less than 4. The one Td-stereoisomer of carbon content 9 (90)
corresponds to the Td-promolecule (2), where we place X = CH2CH3 (ethyl).

The (k = 9)-row of Table 3 shows there exist 17 chiral centroidal alkanes (Ĉ9 = 17),

which are categorized into 16 C1-stereoisomers (N
(C1)
9 = 16) and one C2-stereoisomer

(N
(C2)
9 = 1), as shown in the (k = 9)-row of Table 2. These centroidal alkanes are depicted
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Figure 9: Symmetry-itemized numbers of achiral alkanes of carbon content 9. A wedged
edge is used to show the configuration of the carbon node if necessary. Each carbon with
an asterisk is a centroid.
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in Fig. 10. Note again that an arbitrary enantiomer is depicted for a representative of
each enantiomeric pair of chiral alkanes throughout the present discussion.

By the inspection of Fig. 2, the 16 C1-stereoisomers shown in Fig. 10 are categorized
by means of promolecule-types as follows: C1-stereoisomers of 17-type (91, 97, 101,
102, 103, and 104); C1-stereoisomers of 19-type (92, 93, 94, 98, 102, 105, and 106);
and C1-stereoisomers of 20/21-type (95/96 and 99/100). Note that the promolecules
20 and 21, which are linked with a brace, are diastereomeric to each other. The one
C2-stereoisomer (107) is ascribed to the C2-promolecule of 15-type.

On the same line as achiral centroidal alkanes listed in Fig. 9, the substituents of
the chiral centroidal alkanes listed in Fig. 10 are selected from hydrogen, methyl, ethyl,
n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, and t-butyl, which are achiral except
that the sec-butyl ligand is chiral. These modes of substitution is in agreement with the
criterion for centroidal 3D-trees (eq. 68), which means that all of the alkyl ligands incident
to each centroid (marked with an asterisk) have carbon contents equal to or less than 4,
where the upper limit m = 4 generates the carbon content 2m + 1 = 9 or 2m + 2 = 10.

The one C2-stereoisomer (107) shown in Fig. 10 corresponds to the Cs-stereoisomer
(73), which is akin to so-called meso-compounds, as shown in Fig. 9. This type of corre-
spondence holds true in general, as found easily by comparing between the corresponding
promolecules, i.e., the C2-promolecule 15 and the Cs-promolecule 12.

8.3 Special Cases to be Commented

The Td-column of Table 1 lists the numbers of achiral centroidal alkanes corresponding to
the promolecule 2 shown in Fig. 2. The four achiral proligands (X’s) of the same kind in 2

are selected so that the number of Td-alkanes of carbon content 4n+1 (N
(Td)
4n+1) is equal to

the number of achiral alkyl ligands of carbon content n. Note that if the notation must be
adjusted in agreement with eq. 68, we should put m = 2n so as to satisfy 4n+1 = 2m+1.
For example, the value N

(Td)
1 = 1 corresponds to a set of four hydrogens; N

(Td)
5 = 1 to a

set of four methyls; N
(Td)
9 = 1 to a set of four ethyls (cf. 90); N

(Td)
13 = 2 to a set of four

n-propyls and a set of four isopropyls; N
(Td)
17 = 3 to a set of four n-butyl, a set of four

isobutyls, and a set of four t-butyls; as well as N
(Td)
17 = 5 to a set of four n-pentyls, a set

of four isopentyls, a set of four t-pentyls, a set of four 2,2-dimethyl-1-propyls, and a set
of four 1-ethyl-1-propyls.

We should add a comment on the recognition of the Td-stereoisomers (e.g., 90) in
terms of matched and mismatched nature.29 Because each ethyl ligand of 90 belongs to a
Cs-symmetry, it exhibits mismatched nature to the local symmetry (C3v) of the Td(/C3v)-
orbit for the Td-promolecule (2). Hence, the symmetry of 90 is restricted into D2d so that
the Cs becomes matched to the local symmetry of the D2d(/Cs)-orbit. In other words,
the highest attainable symmetry of 90 is D2d, which is assigned to one of fixed conformers.
On the other hand, tetramethylmethane (2,2-dimethylmethane) is recognized to belong
to the Td-symmetry even in its highest attainable symmetry. Because the methyl ligand
belong to the C3v-symmetry, it exhibits matched nature to the local symmetry (C3v) of
the Td(/C3v)-orbit for the Td-promolecule (2).

The T-column of Table 2 lists the numbers of chiral centroidal alkanes corresponding
to the promolecule 3 shown in Fig. 2. The four chiral proligands (p’s) of the same kind

in 3 are selected so that the number of T-alkanes of carbon content 4n + 1 (N
(T)
4n+1) is
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Figure 10: Symmetry-itemized numbers of chiral alkanes of carbon content 9. A wedged
edge is used to show the configuration of the carbon node if necessary. Each carbon with
an asterisk is a centroid.
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equal to the number of chiral alkyl ligands of carbon content n. As a result, there appears
the first example in the value N

(T)
17 = 1 for carbon content 4n + 1 = 17 (i.e., n = 4 for

m = 2n = 8). This alkane corresponds to a set of four sec-butyls, each of which is the
smallest alkyl ligand exhibiting chirality.

Because p4 and p2p2 exhibit the same carbon content, a T-promolecule (3) corresponds
to a S4-promolecule (5) in one-to-one fashion. Hence, we obtain the following relationship:

N
(T)
k = N

(S4)
k . (124)

This relationship is confirmed by the inspection of the N
(T)
k -column of Table 2 as well

as the N
(S4)
k -column of Table 1. Note again that a pair of enantiomeric N

(T)
k -alkanes is

counted just once in the present enumeration, while an achiral N
(S4)
k -alkane is sponta-

neously counted just once.
Let us compare the functional equation N(x)(S4) (eq. 60) with the functional equation

N(x)(T) (eq. 65). Although the two functional equations give the same numbers as shown
in eq. 124, they are different in the component terms, i.e., c(x4) vs. b(x4). The component
term c(x4) is concerned with a four-membered enantiospheric orbit, while the component
term b(x4) is concerned with a four-membered hemispheric orbit. The difference in their
sphericities decide the chirality fittingness of the orbits so as to generate such different
promolecules as the S4-promolecule (5) and the T-promolecule (3).

8.4 Fujita’s PCI Method vs. Fujita’s Proligand Method

Fujita’s PCI method described in the present paper uses the functional equations (eqs.
56–66) based on the PCI-CFs (eqs. 2–12) for counting centroidal alkanes as well as the
functional equations (eqs. 89–93) based on the PCI-CFs (eqs. 31–35) for counting bicen-
troidal alkanes. Thereby, the enumeration results (Tables 1, 2, and 4) are itemized with
respect to the subgroups of the Td-point groups or of the K-factor groups.

On the other hand, Fujita’s proligand method26–28 uses the functional equations (eqs.
79–81) based on the CI-CFs (eqs. 13, 77, and 78) for counting bicentroidal alkanes as well
as the functional equations (eqs. 108–110 and eqs. 117–119) based on the CI-CFs (eqs. 102–
104 and eqs. 111–113) for counting bicentroidal alkanes. Thereby, the enumeration results
are itemized with respect to achiral and chiral alkanes (Table 3) as well as with respect
to centroidal & unbalanced alkanes, bicentroidal & unbalanced ones, and bicentroidal &
balanced ones (Tables 5 and 6). Although the CI-CFs have been subsidiarily obtained
through Fujita’s PCI method in the present paper, they can be more directly obtained by
using Fujita’s proligand method.

As found by comparing the set of Tables 1, 2, and 4 with the set of Tables 3, 5, and 6,
the itemization generated by Fujita’s PCI method is more detailed than that of Fujita’s
proligand method. However, Fujita’s PCI method requires tables of marks,20 which are
not always easy to be constructed. On the other hand, Fujita’s proligand method uses
the cycle structure of each permutation, which is easily obtained in general. Obviously,
the easy accessibility of Fujita’s proligand method is accomplished at the expense of such
detailed itemization as brought about by Fujita’s PCI method.

It follows that there is a trade-off between the more detailed itemization and the less
availability of mark tables in Fujita’s PCI method. Once a mark table is available, how-
ever, Fujita’s PCI method turns out to be a versatile tool for discussing stereoisomerism
comprehensively, as exemplified in the present article.
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9 Conclusion

Alkanes are counted as stereoisomers or 3D-trees by means of Fujita’s PCI (partial-cycle-
index) method.20, 25 where the alkanes are categorized according to the dichotomy between
centroidal and bicentroidal 3D-trees. The centroidal alkanes are enumerated by using a
tetrahedral skeleton of Td-symmetry under the criterion of defining such centroidal 3D-
trees, where they are itemized in terms of the eleven subgroups of the Td-symmetry. On
the other hand, the bicentroidal alkanes are enumerated by using a two-nodal skeleton
belonging to the K-symmetry, where they are itemized in terms of the five subgroups of
the factor group K = D∞h/C∞. Both the enumerations are based on functional equa-
tions derived from partial cycle indices with chirality fittingness (PCI-CFs), where the
component functions a(xd), c(xd), and b(xd) (or their modifications) are substituted for
three kinds of sphericity indices (SIs), i.e., ad for homospheric orbits, cd for enantiospheric
orbits, and bd for hemispheric orbits. Respective functional equations based on the item-
ization by subgroups are programmed by means of the Maple programming language.
The resulting programs are executed to give respective stereoisomer numbers, which are
collected in tabular forms with itemization up to carbon content 100.

We gratefully acknowledge the financial support given to our recent project by the
Japan Society for the Promotion of Science: Grant-in-Aid for Scientific Research B (No.
18300033, 2006).
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[6] Pólya, G.; Tarjan, R. E.; Woods, D. R. Notes on Introductory Combinatorics;
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