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Abstract The vertex set of the resonance graph of a benzenoid graph G  consists of 1-factors 
of G , two 1-factors being adjacent whenever their symmetric difference forms the edge set of 
a hexagon of G . We describe a computer program that generates and visualizes the resonance 
graphs of catacondensed benzenoid graphs. 

1. INTRODUCTION 

The drawing of complex molecules as well as the drawing of the related conceptual 

structures is a crucial element in many computer chemistry applications. Graph drawing 

algorithm is a method to produce graph drawing that meets some aesthetic criteria1. Since 

aesthetics frequently conflicts with each other, the most graph drawing algorithms set up a 

precedence relation among aesthetics. In order to establish a suitable precedence, it is often 

important to take into account the class of graphs to which a graph that needs to be drawn 

belongs. Specialized drawing algorithms then usually works better on the corresponding class 

of graphs than more general ones. Moreover, besides producing a more readable drawing, a 

tailor-made drawing algorithm can also illustrate the combinatorial properties of a graph. 

Benzenoid graphs are defined as 2-connected subgraphs of the hexagonal lattice. A benzenoid 

graph G is catacondensed if any triple of hexagons of G  has empty intersection, cf. Figure 1.  
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Figure 1. Two examples of catacondensed benzenoid graphs. 

Catacondensed benzenoid graphs form a well studied class of graphs. Among many 

different topics studied on this class of graphs we briefly mention counting the number of 

Kekulè structures17,18, the theory of elementary edge-cuts9,11, the Schultz index (or molecular 

topological index, MTI)3 and the coding problem of Kekulè structures12. For more 

information on benzenoid graphs and related concepts we refer to the book8.

The concept of the resonance graph was brought out independently in mathematics (under 

the name Z -transformation graphs) by Zhang, Guo, and Chen19 (see also20, 21) and in 

chemistry first by Gründler6,7 and later by El-Basil4, 5 as well as by Randi  with co-workers15, 

16. The concept appears to be very natural in chemistry. Some authors consider Kekulè 

structures as quantum - mechanical objects among which some (quantum - mechanical) 

interactions exist. In the case of benzenoid molecules the simplest model for such interactions 

is the following: if two Kekulè structures differ in the position of three double bonds, then 

they interact (by an unspecified, but constant amount); otherwise their interaction is 

neglected. Within this model the concept of the so-called resonance graph occurs naturally: 

The vertices of the resonance graph ( )R G  of the benzenoid hydrocarbon B  are the Kekulè 

structures of B ; two vertices of ( )R G  are adjacent if the corresponding Kekulè structures 

interact, that is if they differ in the position of just three double bonds. 

In this paper we describe a computer program that generate and visualize the resonance 

graphs of benzenoid graphs. In the next section we give definitions and concepts needed in 

this paper. In particular we describe the decomposition theorem and the canonical coding of 

the resonance graphs of benzenoid graphs that play a crucial role in our drawing algorithm. 
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This algorithm is presented in Section 3, while the other functionalities of the program are 

given in Section 4. 

2. MATHEMATICAL BACKGROUND 

By a graph we mean a set ( )V G  of vertices, together with a set ( )E G  of edges. A graph is 

the complete graph nK  if any two of its distinct vertices are adjacent. A graph is the path nP

if it is isomorphic to a graph on n  distinct vertices 1 2, , , nv v v  and 1n  edges 1,i iv v ,

1 <i n .

A 1-factor (or perfect matching) of a graph G  on n  vertices is a selection of /2n  mutually 

independent edges of G  . Only graphs with even number of vertices may have 1-factors, and 

then every vertex is the endpoint of exactly one of the selected edges. The fact that a Kekulè 

structure of a conjugated molecule is in a one – to - one correspondence with a 1-factor of the 

underlying molecular graph is well and long known. In the following considerations we shall, 

where appropriate, instead of "Kekulè structure" use the equivalent, but somewhat more 

precise, mathematical term "1-factor". 

Let G  be a benzenoid graph. Then the vertex set of the resonance graph ( )R G  of G

consists of the 1-factors of G , two 1-factors being adjacent whenever their symmetric 

difference forms the edge set of a hexagon of G . For instance, the construction of the 

resonance graph of the linear chain with four hexagons 4L  is presented in Figure 2. Note that 

it is straightforward to see that the resonance graph of the linear chain with h  hexagons is 

isomorphic to the path on 1h  vertices. More formally: 1( ) =h hR L P . We also set 

2 1 1( ) = ( ) =R K R K K .

Figure 2.  Linear chain 4L , 1-factors 1 2 3 4 5, , , ,F F F F F  of 4L , and its resonance graph 4( )R L .
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The Cartesian product G H  of graphs G  and H  is the graph with the vertex set 

( ) ( )V G V H  and ( , )( , ) ( )a x b y E G H  whenever ( )ab E G  and =x y  , or, if =a b  and 

( )xy E H . In Figure 3 the Cartesian product of the path on 3 vertices 3P  and the path on 6 

vertices 6P  is depicted. 

Figure 3. 3 6P P

It is well known that the Cartesian product is associative, cf. Prop. 1.36 10. Hence the 

Cartesian product of graphs 1 2, , , kG G G  can be written as 1 2 kG G G . The vertex set of 

such a product is then the set of all k -tuples 1 2( , , , )ku u u , where i iu G , while 

1 2( , , , )ku u u  is adjacent to 1 2( , , , )kv v v  whenever there is an index j  such that j ju v  is an 

edge of jG  and =i iu v  for all =i j . The n -cube nQ  (or the n -dimensional hypercube) is 

the graph whose vertices are all binary words of length n , two words being adjacent 

whenever they differ in precisely one place. In other words, nQ  is just the Cartesian product 

of n  copies of the complete graph on two vertices 2K .

For , ( )u v V G , ( , )Gd u v  or ( , )d u v  denotes the length of a shortest path in G  from u  to 

v . If H  is a subgraph of G , such that ( , ) = ( , )H Gd u v d u v  for all ,u v H , then H  is an 

isometric subgraph. Isometric subgraphs of hypercubes are called  partial cubes.

Klavžar, Žigert and Brinkmann14 proved that the resonance graph of a catacondensed 

benzenoid graph is a partial cube. In other words, the resonance graph ( )R G  of a 

catacondensed benzenoid graph G  with h  hexagons can be isometrically embedded into the 

h -dimensional hypercube hQ . Moreover, they showed an even stronger statement, namely 

that ( )R G  is a median graph. This result turned out to be very useful, as it led to an algorithm 
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that assigns a unique and quite short binary code to every 1-factor of a catacondensed 

benzenoid graph12.

For a subset X  of vertices of a graph G  , the subgraph of G  induced by X  is denoted by 

[ ]G X  . 

Let H  be a fixed subgraph of a graph G , H G . The peripheral expansion p ( ; )e G H  of 

G  with respect to H  is the graph obtained from the disjoint union of G  and an isomorphic 

copy of H , in which every vertex of the copy of H  is joined by an edge with the 

corresponding vertex of H G . Note that the ends of the newly introduced edges induce a 

subgraph of p ( ; )e G H  isomorphic to 2H K . This concept is illustrated on Figure 4. 

Let e  be an edge of a hexagonal graph G . Then the  cut eC  corresponding to e  is the set 

of edges so that with every edge e  of eC  also the opposite edge with respect to a hexagon 

containing e  belongs to eC .

Figure 4. Peripheral expansion. 

Let G  be a catacondensed benzenoid graph and e  an edge of G  with ends of degree two. 

Let 0 1= , , , ne e e e  be the edges of the cut eC , and let 1 2= , , , nA A A A  be the corresponding 

hexagons. Let e  and e  be the edges of nA  incident to ne , where e  is the right edge 

looking from 0=e e  to ne  while e  is the left edge. We say that e  and e  are the right 

and the left turn-edge of eC , respectively. Remove now from G  the hexagons 1, , nA A ,

except the turn-edges e  and e . Then the remaining graph consists of two connected 

components eG  and eG , where ee G  and ee G . Note that any of eG  and eG  is 
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either a catacondensed benzenoid graph or a 2K . If eG  is a catacondensed benzenoid graph, 

we repeat the described construction on eG , where the construction begins with e . In this 

way we obtain two connected subgraph of G  denoted eG  and eG . Similarly, if eG  is a 

catacondensed benzenoid graph, then we repeat the construction on eG , starting with e , to 

obtain connected subgraphs eG  and eG . In the case that 2=eG K  we set 1=eG K  and 

1=eG K , and if 2=eG K  we set 1=eG K  and 1=eG K . These notations are illustrated in 

Figure 5. 

Figure 5. Recursive structure of a catacondensed benzenoid graph. 

For a graph G , let ( )F G  be the set of its 1-factors. If 1 2, , , ne e e  are fixed edges of G , let 

1 2( ; , , , )nF G e e e  denotes the set of those 1-factors of G  that contain the fixed edges. 

Klavžar, Vesel and Žigert 13 proved the following decomposition theorem. (The theorem is 

proved in the original form for more general class of catacondensed hexagonal graphs.) 

Theorem 1 Let G  be a catacondensed benzenoid graph and e  the edge with ends of 

degree two with | |= 1eC n , where 1n . Let = ( )[ ( ; )]Y R G F G e , = ( )[ ( ; , , )]X R G F G e e e ,

and 1X  the copy of X  in 0Y  (the first Y -layer of nY P ). Then  

1( ) = p ( ; ).nR G e Y P X

Moreover,     
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- = ( ) ( )e eY R G R G  and

- 1 = = ( ) ( ) ( ) ( )e e e eX X R G R G R G R G .    

The decomposition theorem shows that the resonance graph of a catacondensed benzenoid 

graph G  (with respect to the edge e  with ends of degree two of G ) is ''almost'' isomorphic to 

the Cartesian product of a smaller graph Y  (defined as the Cartesian product of the resonance 

graphs of eG  and eG  ) and a path on 1n  vertices.

For an example see the graph G  from the right-hand side of Figure 1. Let e  be the 

rightmost vertical edge of G . Then eG  is isomorphic to 2L , while eG , eG , and eG  are 

isomorphic to 2K . Since 1( ) =h hR L P , we have 3( ) =eR G P ,

1( ) = ( ) = ( ) = ( ) = ( ) =e e e e eR G R G R G R G R G K . Therefore 3 1 3= =Y P K P  and 

1 1 1 1 1= =X K K K K K . Since | |= 7eC , we finally get 3 6 1( ) = p ( ; )R G e P P K . The resonance 

graph of G  is depicted in Figure 6. 

We have already mentioned the algorithm by means of which to every 1-factor of a 

catacondensed benzenoid graph (with h  hexagons) a binary code of length h  is assigned. By 

using the decomposition theorem Klavžar, Vesel and Žigert13 designed an algorithm for the 

Figure 6. The resonance graph of G

canonical binary coding of 1-factors of a catacondensed benzenoid (hexagonal) graph. For a 

given edge e  (with ends of degree two) the number of ones in the prefix of the canonical code 

corresponds to the index of the edge ie . In particular, the code 1 0i n i y y  of a vertex of

( ; )iF G e , 0 1i n , (a vertex in a copy of Y  in terms of the decomposition theorem) is 

composed of three parts: the prefix 1 0i n i  defines a position of a copy of Y  in nY P , while 

the substrings y  and y  define a contribution of ( )eR G  and ( )eR G , respectively. The code 

of a vertex in = ( ; )nX F G e  starts with n  1's. In addition, the rest of the digits are composed 
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of two substrings that start with 0: the first is the code of a vertex of ( )eR G  and the second is 

the code of a vertex of ( )eR G . More formally, if x  is the code of a vertex of ( ; )nF G e , then 

= 1nx ab , where a  (b ) is a code of a vertex of ( )eR G  ( ( )eR G ) with 0 in the first place. 

For the linear chain hL  with h  hexagons (note that 1( ) = ( ) =he heR L R L K ) the canonical 

coding obviously returns

000 00,100 00,110 00, ,111 10,111 11.

The canonical binary coding of the resonance graph of the graph G  from Figure 1 is little 

more involved. The code of a vertex in Y  is of the form 6 61 0 = 1 0i i i iy y y  (note that 

1( ) =eR G K ), where y  is a code of 3( ) = ( )eR G R L  from the set {00,10,11} . The codes of 

( )R G  are depicted in Figure 6. 

The visualization algorithm is based on the following proposition.   

Proposition 2   Let G  be a catacondensed benzenoid graph with h  hexagons and e  the 

edge with ends of degree two with | |= 1eC n , where 1n . Then 1 0i h i , 0 i n , is a 

canonical binary code of ( )R G .

Proof.  From the definition of the canonical binary coding follows that 0 0  is a canonical 

binary code of ( )R G . Let x  be a code of the i -th copy of Y . Then = 1 0i n ix y y , 0 <i n ,

where y  and y  are arbitrary canonical codes of ( )eR G  and ( )eR G , respectively. Since 

both ( )eR G  and ( )eR G  contains a code with zeros in all places, the proposition follows for 

1i n .

Let now x  be a code of X . Then = 1nx ab , where a  (b ) is an arbitrary code of a vertex of 

( )eR G  ( ( )eR G ) with 0 in the first place. Clearly, a  (b ) includes the code that contain zeros 

in all places and the proposition holds for =i n .

Hence we have finished the proof of the proposition.     

Note that the codes defined in Proposition 2 induce a path on n  vertices that crosses all 

copies of Y  as well as the subgraph X . This path will be called the central path.

3. DRAWING   

A computer program that generates and visualizes the resonance graphs of catacondensed 

benzenoid graphs was written in Delphi Turbo Explorer programming environment. The 

program is equipped with a graphical user interface which allows the user to design a 
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catacondensed benzenoid graph as well as to control the visualization process using on-screen 

pull-down menus, icons, option boxes and other graphical devices. The program works on 

Windows computers and is available via the World Wide Web at http://www-mat.pfmb.uni-

mb.si/personal/vesel/visual/visualHBG.html.

The typical run of the program sticks with the following steps. 

1. Catacondensed benzenoid graph G  is created by clicking the hexagons of the 

displayed hexagonal lattice (Figure 7). 

2. An edge e  (with ends of degree two) of G  is chosen (Figure 8). 

3. The codes of 1-factors of ( )R G  are computed using the canonical binary coding. 

4. The resonance graph ( )R G  is drawn (see Figure 9).

Figure 7. Creating catacondensed benzenoid graph G
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Figure 8. An edge e  of G  is chosen 

Figure 9. The resonance graph ( )R G  is drawn 

- 224 -



The following remarks are in order: 

When the edge e  is chosen, components eG , eG , eG , and eG  are marked in 

the drawing of G .

The canonical codes of the resonance graph are displayed at tab Codes as is shown 

on Figure 10. 

The canonical codes are displayed also in the final drawing of the resonance graph. 

Figure 10. The canonical codes and the Hamilton path 

The heart of the program is the procedure that draws the resonance graphs of catacondensed 

benzenoid graph. The procedure uses the benefits of the decomposition theorem as well as of 

the canonical binary coding. As we have already seen, the decomposition theorem shows that 

the resonance graph of a catacondensed benzenoid graph G  (with respect to an edge e  of G )

is almost isomorphic to the Cartesian product of a certain smaller graph Y  and a path on 1n

vertices. More precisely, the resonance graphs of a catacondensed benzenoid graph compose 

n  copies of Y  and a subgraph X  of Y . The canonical coding assigns a binary string to every 

1-factor of a catacondensed benzenoid graph. Every string contains a prefix 11 100 0  of 
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length n , where the number of ones corresponds to the position of a copy of Y  in ( )R G . In 

particular, the 1-factors of the first copy of Y  receive the prefix 00 0 , whilst the 1-factors 

of X  receive the prefix 11 1.

The drawing is based on the representation of ( )R G  in 3R . In other words, we defined a 

mapping from ( )V G  to 3R . The main idea of the mapping is to assign the vertices of each 

copy of Y  as well as the vertices of X  to a separate plane. The following algorithm describes 

the main steps of the idea presented above. 

 Procedure Draw( ( )R G );

   1. Draw Central Path. 
   2.  for all vertices v  of ( )R G  do

     2.1.  for all unvisited vertices u  adjacent to v  do
       2.1.1  if the number of visited vertices adjacent to u  is at least 2  then
                 Determine coordinates of u  using the parallelogram rule  
                else
                 Determine coordinates of u  using the coordinate table  
       2.1.2  if coordinates do not satisfy constraints  then
                 Visualization: = unsuccessful.  
                 Exit Draw.  
   3. Visualization:= successful.  

The procedure Draw first calls an auxiliary procedure Draw Central Path. The result of 

Draw Central Path is a straight horizontal or inclined (depending on the complexity of the 

graph) line, which indicates the final look of ( )R G . Furthermore, the distances between 

planes to which vertices of X  and consecutive copies of Y  are mapped are also computed. 

Particularly, Draw Central Path visualizes the vertices and the edges of the central path 

together with the corresponding codes. The codes of the central line are depicted bold as can 

we see in Figure 12. Since from Prop. 2 follows that the central path crosses all copies of Y

(as well as the subgraph X ), a vertex of the central path represents a starting point for the 

visualization of the corresponding copy of Y  (as well as of X ).

In the main for loop of the procedure all vertices of ( )R G  are examined. The order of the 

vertices depends on the Central Path, i.e. the vertices of the Central Path are considered first, 

then their neighbors etc. The procedure for every vertex of a graph searches for its adjacent 

unvisited vertices. An adjacent unvisited vertex u  is checked, whether it has at least two 

already visited neighbors. If it does, then Step 2.1.1. is executed and the coordinates of u  are 
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determined by the parallelogram rule. The situation is illustrated on Figure 11 where a  and b

denote some already visited vertices adjacent to u  while c  denotes the common neighbor of 

a  and b .

Figure 11. Coordinates of u

If u  does not have at least two visited adjacent vertices, then the coordinates are determined 
using the directions table (see  

Table 1), which contains all possible coordinates of the vertex u  relative to the vertex v .

The coordinates depend on the value denoted edge which is set to 80 pixels by default and can 

be altered by the user. Coordinates of u  are determined in the order given by directions table, 

thus changing the order in the table results in changed representation of ( )R G .

In Step 2.1.2 the algorithm checks, whether computed coordinates satisfy some obvious 

constraints. In other word, the algorithms determines, if the position of the current vertex 

overlaps some other vertex or lies on some already determined edge of ( )R G . If this happens 

for all coordinates computed in Step 2.1.1, the attempt to visualize ( )R G  fails. 

The procedure is successful, when appropriate coordinates for all vertices of ( )R G  are 

found. 
direction x  - coordinate y  - coordinate 

1
vx edge vy

2
vx vy edge

3
vx edge vy

4
vx vy edge

5 ( /4)vx edge ( /4)vy edge
6 ( /4)vx edge ( /4)vy edge
7 ( /4)vx edge ( /4)vy edge
8 ( /4)vx edge ( /4)vy edge

Table 1. Directions table 
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4. OTHER FUNCTIONALITIES OF THE PROGRAM 

Hamilton path  

Chen and Zhang2 proved that the resonance graph of a catacondensed benzenoid graph has 

a Hamilton path. An algorithm that for a (slightly) more general class of catacondensed 

hexagonal graphs returns such a path is presented by Klavžar, Vesel and Žigert 13. The 

algorithm intrinsically uses the canonical coding in order to list the vertices in a Hamilton 

path. The sequence of labels that composes a Hamilton path in the resonance graph of a given 

graph is displayed on tab Codes (see Figure 10). 

Saving and loading a graph  

The program saves resonance graphs in various graphic formats, e.g. eps, jpeg and bmp. It 

is also possible to save canonical codes of the graph in a plain text file for a later use. The 

user can also load canonical codes from a text file and the corresponding graph is then drawn 

and presented on tab Resonance graph (see Figure 12). 

Customization of the drawn resonance graph  

If the user wants to change the resonance graph in order to try some other aspect of the 

visualization, he/she can pick the vertex (with the left mouse button) and move it to the 

desired location. The user can also move simultaneously the whole array of corresponding 

vertices of all copies of Y  (the concept is illustrated on Figure 13). It is also possible to turn 

on the grid of lines in predetermined spacing, which are meant as visual aid for the user. 

Some other options regarding customization of the drawing are described bellow. 
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Figure 12. Example of the resonance graph 

Figure 13. Moving the array of vertices 
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Figure 14. Settings 

Options  

Various options for controlling the process of drawing the resonance graphs are available in 

tab Settings (see Figure 14).  

- Length of edges: the user can change the length of the edges of the central path. The 

other edges of the graph are then also proportionally altered. 

- Draw Hamilton path: if checked, the edges of the Hamilton path are inscribed in the 

resonance graph with green color. The starting and ending vertex are also marked. 

- Grid options: grid options were designed to add visual aid for the user when moving 

vertices in the resonance graph 

o Show grid: turns on/off the grid 

o Grid spacing: determines the vertical and horizontal whitespace between the 

lines in the grid 

o Snap to grid: if checked, junctions in the grid become magnetic i.e. they 

attract vertices to them when user moves them 
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o Snap sensitivity: determines the range where vertices are still attracted to the 

grid junction 

o Move point copies: if checked, the corresponding vertices of the vertex held 

by the mouse in all copies of Y  are also moved.  

More detailed instructions on how to use the program are in the program help and on the 

website22.
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