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Abstract

Many chemical indices have been invented in theoretical chemistry, such
as Wiener index, Merrifield-Simmons index, Hosoya index, spectral radius and
Randi¢ index, etc. The extremal trees and unicyclic graphs for these chemical
indices are interested in existing literature. Let G be a molecular graph (called
a cacti), which all of blocks of G are either edges or cycles. Denote ¥(n,r)
the set of cacti of order n and with r cycles. Obviously, ¢(n,0) is the set
of all trees and ¢ (n, 1) is the set of all unicyclic graphs. In this paper, we
present a unified approach to the extremal cactus, which have the same or
very similar structures, for Wiener index, Merrifield-Simmons index, Hosoya
index and spectral radius. From our results, we can derive some known results.

1. Introduction

Mathematical descriptors of molecular structure, such as various topological in-
dices, have been widely used in structure-property-activity studies (see [10, 11, 16]).
Among the numerous topological indices considered in chemical graph theory, only
a few have been found noteworthy in practical application (see [15]). The Wiener
index is the first chemical index introduced in 1947 by Harold Wiener. It was shown
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that there are excellent correlations between the Wiener index of the molecular graph
of an organic compound and a variety of physical and chemical properties of the or-
ganic compound (see [20], [21]). M. Randi¢ [18] showed that if alkanes are ordered so
that their Randié¢-index decrease then the extent of their branching should increase.
The Hosoya index of a graph was introduced by Hosoya in 1971 [9] and was applied
to correlations with boiling points, entropies, calculated bond orders, as well as for
coding of chemical structures (see [14, 17]). Merrifield and Simmons [14] developed
a topological approach to structural chemistry. The cardinality of the topological
space in their theory turns out to be equal to Merrifield-Simmons index of the re-
spective molecular graph G. There have been many publications on these chemical
indices (see [4]-[7], [12], [13], [20]-[24]). In [12], Li and Zheng put forward a problem,
which asked for a more unified approach that can cover extremal result for as many
as chemical indices as possible. Here, we present a unified and simple approach to
extremal cactus for the Wiener index, Merrifield-Simmons index, Hosoya index and
spectral radius.

In order to discuss our results, we first introduced some terminologies and nota-
tions of graphs. Other undefined notations may refer to [1, 2]. Let G = (V, E) be
a simple undirected graph of order n. For a vertex u of G, we denote the neigh-
borhood and the degree of u by Ng(u) and dg(u), respectively. For two vertices
wand v (u # v) of G, the distance between u and v, denoted by dg(u,v), is the
number of edges in a shortest path joining v and v in G. For H C V(G), we let
Ny (u) = Ng(u) N H. Denote Ny[u] = Ng(u) U {u}. We will use G — z or G — zy
to denote the graph that arises from G by deleting the vertex x € V(G) or the edge
zy € E(G). Similarly, G + zy is a graph that arises from G by adding an edge
2y ¢ E(G), where z, y € V(G).

We list the definitions of some topological indices as follows.

(i) The Wiener index of G, is defined as

W(G) = da(u,v),

where dg(u, v) is the distance between u and v in G' and the sum goes over all the
pairs of vertices.
(ii) The Merrifield-Simmons indez, is defined as
o(G) =Y i(G;k),
k>0

where i(G; k) is the number of k-independent vertex sets of G. Note that i(G;0) = 1.
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(iii) The Hosoya indez, is defined as

=Y m(Gsk),

k>0

where m(G; k) is the number of k-independent edge sets of G. Note that m(G;0) = 1.
(iv) The Randi¢ index of G is defined (see [18]) as

R(G) = (d(u)d(v))"2,

u,v

where d(u) denotes the degree of the vertex u of the molecular graph G, the sum-
mation goes over all pairs of adjacent vertices of G.

(v) The spectral radius, p(G), of G is the largest eigenvalue of A(G), where A(G)
be the adjacency matrix of a graph G. When G is connected, A(G) is irreducible and
by the Perron-Frobenius Theorem, the spectral radius is simple and has a unique
positive eigenvector. We will refer to such an eigenvector as the Perron vector of G.

Let G be a connected graph. We call G a cactus if all of blocks of G are ei-
ther edges or cycles. Denote ¢(n,r) the set of cacti of order n and with r cycles.
Obviously, ¢4 (n,0) is the set of all trees and ¢4(n, 1) is the set of all unicyclic graphs.

We use G°(n, ) to denote the cactus obtained from the n-vertex star by adding
r mutually independent edges (see Fig. 1).

\V\V

G (n,r)
E—— (n=2r+1) G%(n,r)
G (n,r) (n=2r+2)
Fig. 1

2. Lemmas
Denote the characteristic polynomial of a graph G by ¢(G; \).

Lemma 2.1 (see [19]). Let v be a vertex of a graph G, and let € (v) be the set
of all cycles containing v. Then

G =X(G—v;\) = Y dG—v—w;A) =2 > $(G—V(Z);\).

vweE(Q) Z€E (v)
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Lemma 2.2 (see [22]). Let G be a connected graph, and let u,v € V(G).
Suppose vi,va,...,0s € N(w) \ N(u) (1 < s < dg(v)) and x = (x1,29,...,2,)"
is the Perron vector of A(G), where x; corresponds to the verter v; (1 < i < n).

Let G* be the graph obtained from G by deleting the edges vv; and adding the edges
wyy, 1 <i<s. Ifx, >z, then

p(G) < p(G").

Lemma 2.3 (see [8]). Let G be a graph and v € V(G). Then
(i) o(G)=0(G—v)+0(G— Ng[v]);
(i)  2(G)==2(G—-v)+ > 2(G—{u,v});

uE€NgG(v)
(iii) Moreover, if G1, Ga,- -+, G, are the components of a graph G, then o(G) =
[T;210(G)) and 2(G) = [T;_, 2(G)).

From Lemma 2.3, if v is a vertex of G then J(G) > o(G — v). Moreover, if G is
a graph with at least one edge, then z( —v)

@l

Gl G
Fig. 2

Lemma 2.4. Let H, X,Y be three connected graphs disjoint in pair. Suppose
that u,v are two vertices of H, v' is a vertex of X, u' is a vertex of Y. Let G be the
graph obtained from H, X,Y by identifying v with v' and u with u’, respectively. Let
G5 be the graph obtained from H,X,Y by identifying vertices v,v',u', and let G be
the graph obtained from H, X,Y by identifying vertices u,v',u’ (see Fig. 2). Then

(i) o(G?) > o(G) or o(G3) > o(G);
(i) 2(Gy) < 2(G) or 2(G%) < 2(G);
(i11) W(Gy) < W(G) or W(Gs) < W(G);

(iv) p(GT) > p(G) or p(G3) > p(G).
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Proof. (i) Denote a = o(X —v), a’ = 0(X — Nx[v]), b = o(Y — u) and
b = o(Y — Ny[u]). Thena > a > 0 and b > b > 0. Let i,, be the number
of independent vertex subsets in H containing both v and v. Then i4,, = 0 if
wv € E(G), iy, = 0(H — Nglu] — Ng[v]) if wo € E(G). By Lemma 2.3, we have

0(G) = o(G—-v)+0(G— Nglv])
= abo(H —v—u)+abo(H —v— Nylu]) + a'bo(H — u — Ng[v]) + a'Viyp.
Similarly, we have

o(Gy) = ablo(H—v—u)+o(H—v— Nglu])]+ a'V[c(H —u— Ng[v]) + iuol,
o(Gy) = ablo(H—v—u)+0c(H—u— Ny[v])] +dV[c(H—v— Nglu]) + iy,

Therefore
o(G)—o(Gy) = db-V)o(H—u— Ngv]) —alb—V)o(H —v— Nglu]),
o(G)—0o(Gs) = V(a—a)o(H—v— Nglu]) —bla—a)o(H —u— Nyv]).

If 0(G) — 0(GY) > 0, then (b —¥)[d'o(H —u— Ng[v]) —ac(H — v — Ng[u])] > 0.
Since a > @’ and b > b/, we have 0(H —u — Ny[v]) > o(H — v — Ng[u]). So

d(G)—a(Gy) = (a—d)bo(H—v— Nglu]) —bo(H —u— Ngv])]
< (a—d)[Vo(H—v— Nylu]) —bo(H — v — Nylu])]
= (a—a)¥ —b)o(H —v— Nglu]) <0.

(i) Let 6 = 0 if uv ¢ E(G) and 6 = 1 if wv € E(GQ). Let e = 1 if uv ¢ E(G);
and ey = 2 if wv € F(G). Denote p = z2(X —v), ¢=2(Y —u),p' = > HX—v—z)

2(X—v)
zE€Nx (v)
q= > %, re= 3y zZ(H-v—u—tu),r,= >  z2(H-—v—u—1'),
yENy (u) w' €ENg_y(u) v'€Ng (v)—u
ro= > > 2(H=—v—u—2v —1).
v'e€Ng(v)—uuw' €Ny, r(u)

By Lemma 2.3, we have
2(G) = 2(G—v)+ Z 2(G—v—1)462(G—v—u)
v'€Ng(v)—u

= e2(G—v—u)+ Z 2(G—v—u—1u)

wWENG—v(u)

+ Z 2(G—v—v —u)+ Z Z 2(G—v—v —u—1)

v'€Ng(v)—u v'eNg(v)—uw ENg_,_ s (u)
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= epz(G—v—u)+ Z 2(G—v—u—u)+ Z 2(G—v—u—1u)

WENH_,(u) w/€Ny (u)
+ Z Z G—v—u—v —u)+ Z 2(G—v—u—1)
w' €Ny (u) v'ENx (v v'eNg(v)—u
+ Z Z( —v—u—v’)—‘r Z Z 2(G-—v—u—v —u)
v'ENx (v) v'ENx (v) W/ ENp_y(u)

+ Z Z 2(G—v—u—v —u)

v'€ENpg (v)—uuw' €Ny (u)

+ Z Z 2(G—v—u—2v —1u)

VENm (V) —uwENy_,_s(u)

= pq-legz(H—v—u)+¢2(H—v—u)+r, +p¢dz(H—v—u)+r,
+p'2(H — v —u) +ryp’ + 1o’ + 7o)

= pelz(H—v—u)(eo+ ¢ +p' +9¢) +r(1+¢) +r(1+7) + 7o

Similarly, we get

2(GY)
2(Gy)

= pglz(H —v—u)(eo+q +p)+r(1+9 +¢)+ 7+ 70,
pglz(H —v—u)(eg + ¢ + ) +ro(1+p +¢)+ru+ro.

Thus

2(G) = 2(GY)
2(G) — 2(Gy)

pqq,[Z(H — U= u)p, + 1y — ru]7
pap/[2(H — v —u)q +ry =1,

If 2(G) — 2(G%) < 0, then pg¢'[z(H —v —w)p +r, — 1) < 0, that is, r, — r, >
2(H—v—u)p. So

2(H—v—u)q +ry—ry, > 2(H—v—u)d+2(H—v—u)p
2(H—v—u)(¢ +p)>0.

Note that pgp’ > 0, and hence 2(G3) < z(G).
(iii) We have

W(G) = > delwy)+ Y. delvy)+ > da(z,y)

z,y€V(X) z,yeV(Y) zeV (X —v),yeV (Y —u)
z,yeV (H) €V (H)yeV (Y —u) z€V(H)yeV (X —v)

= Z dX(Ivy)+ Z dY(I7y)+ Z dC(Ivy)

z,yeV(X) z,yeV (Y —u) eV (X —v)yeV (Y —u)
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+ Z dy(z,y) + Z da(z,y) + Z da(z,y).

z,yeV (H) zeV(H)yeV (Y —u) zeV(H)yeV(X—v)
Thus
W(G) - W(G)

€V (X —v),yeV (Y —u) z€V(H),yeV (Y —u)
> > lalwy) —dai(zy)l = Y ldu(e,w) —du(x,0)], (1)
z€V(H)yeV(Y) z€V(H—u—v)

W(G) - W (G3)
= > ldelwy) —dey(xyl+ Y ldal(w,y) —doy(@,y)]

zeV(X),yeV(Y) €V (X —v),yeV(H)

> > ldu(x,v) = du(z,u)). (2)
z€V(H—u—v)
IfW(G) = W(GT) <0, then by (1), > ey (s—uvldr(z, u) — dp(z,v)] < 0. Thus by
(2), W(G) —W(G%) >0
(iv) Let & = (24, Tuy, - - - ; Ty, ) 18 the Perron vector of A(G), where z,, corresponds
to the vertex v; (1 < i <n). If z, > x,, then p(G}) > p(G), and if z, < z,, then
p(G%) > p(G@) by Lemma 2.2. n

U uqflu1

G G’
Fig. 3
Let F, be the nth Fibonacci number, i.e., Fy = Fy =1, F, = F,_1 + F,_». Note
that o(P,) = Fpy1, 2(P,) = F,

Lemma 2.5. Suppose that G be a graph of order n > 7 obtained from a connected
graph H % Py and a cycle Cy = uguy - - - ug_1ug (q > 4) by identifying uy with a vertex
u of the graph H (see Fig. 3). Let G' = G — ug_1uy—o + wtq_o. Then

(1) o(G') > o(G);
(i) 2(@) < 2(G);
(iii) W(G) < W(G);

(@
(iv) p(G) > p(G).
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Proof. (i) By Lemma 2.3, we have

(G —u)+ o(G — Ngu]) = Fyo(H — u) + Fy_o0(H — Nyu)),
o(G' —u) + o(G" = Ner[u]) =2F,_10(H — u) + Fy_30(H — Nglu]).

Therefore 0(G') — 0(G) = Fy_s0(H — u) — F,_40(H — Ng[u]) > 0.
(ii) By Lemma 2.3, we have

2(G) = 2(G—u)+ Z 2(G—u—u)

u'€Ng(u)
= (Fpa+2F,0):(H—u)+ Y 2(H-u—u),
wENg(u)
2(G) = 2(G —u)+ Z 2(G—u—1)
w' €Ny (u)
= (2F, 2+ 2F, 3)z(H —u) + Z 2(H—u—u).
w ENg(u)

Therefore 2(G') — 2(G) = —F,_42(H —u) < 0.

3 o
.\ . . [ ¢/8 if ¢ is even,
(iii) By the definition of Wiener index, W (C,) = { (¢ — 0)/8 s odd.
Note that if ¢ > 4 is even, then ‘J’.;g der(ug-1,u;) = 1+22+3+---4+¢/2) =
(q¢® +2g — 4)/4, thus

W(G) - W(G&)
q—1
= Y D ol w) —de(zu)+ > [do(us, ) — der(us, ug)]
@€V (H)—ug i=0 0<i<j<g—1
q—2 ¢ (@=1°-(g-1) ¢+2—4
= Z dH (x, Uo) + g - 3 - 4
z€V (H)—uo
_ 3 13 (o 2 _
> 9-2. ¢ (@-V'-(-) ¢+2-4
= 2 8 8 4
2
¢ —2q
= 0.
3 >

Note that if ¢ > 5 is odd, then Z;’;?} der(ug—1,u;) =14+2(2+34+---+(¢—1)/2) +
(q+1)/2 = (¢* + 2¢q — 3)/4, thus

W(G) - W(&)

= > i[dc(x,ui)—d@(x,ui)w > [dauiug) — der(us, uy)]

2€V(H)—ug =0 0<i<j<q—1
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. q-3 ¢—q (@-1° ¢&+2¢-3
- T > dulwuo)+ s 8 4
xeV (H)—ug
-3 ¢—q (@-17° ¢F+2-3
> - . 3
Z 5 T3 8 4 )
2
¢ —49—5
_ -z 4
S (4)

If ¢ > 6, then W(G) — W(G') > 0 by (4); and if ¢ = 5, then |V(H)| >3 by n > 7,

and hence the inequality in (3) should be strictly. Therefore W(G) — W(G') > 0.
(iv) Let © = (Zuy, Tuys - - - Tu,_,) is the Perron vector of A(G), where x,, cor-

responds to the vertex w; (0 < i < n—1, up = w). If 2, > z,_,, then let

G* =G — ug_1ug_s + uug_o. If z, <z, ,, then let
G =G —uu —uwy — -+ — UWs + Ug_1Ug + Ugq W1 + -+ + Ug 1 Wss,

where Ny(u) = {wy,...,ws}. Then in either case, G* = G’. Thus, by Lemma 2.2,
p(G) > p(G). .
Lemma 2.6. (i) o(G%(n,r)) = 3r2n=2~1 4 1;
(ii) 2(G%(n, 7)) = 2"(n —1);
(iis) W(G%(n, 1)) = (n —1)2 —r;
(iv) p(G°(n,r)) is the root of \* —nA2 —2rA+ (n—2r —1) = 0.

Proof. (i) By Lemma 2.3, we get
a(G(n, 1)) = o(G%(n,r) —u) + o(G°(n,r) — Ngognmlu]) = 3727721 + 1.
(i) By Lemma 2.3, we get
2(G%n,r)) = 2(G%n,r) —u)+ Z 2(G%n,r) —u—u)
uu'€E
= 2+ (n—2r—1)2"+ 202" =2"(n — 7).

(iii) Note that W (K, ,) = (n — 1)2, and hence W(G%(n,r)) = (n — 1)*> — 1.
(iv) By Lemma 2.1, we have

&(G%(n,r); ) AN 1) = (n—2r — DA 2N - 1)"
72,’,‘)\TL*27‘(A2 o 1)7"71 _ 2,"/\71727'71(/\2 _ 1)7‘71

= A2 1) A = A2 =20 A 4 (n = 2r — 1)).

Since p(G°(n,r)) > 1, p(G°(n,r)) is the root of A* —nA2 —2rA+ (n—2r—1) =0m
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Let C(ay,as,...,a;; k) be a graph obtained from r cycles C,;,1 < ¢ < 7 and k
edges by taking one vertex of each cycle and each edge, and combining them as one
vertex. Denote €°(n,r) = {C(a1,az,...,ar5k) 1 a; > 3,1 <i<r, >0 (a;—1)+
k+1=mn}. Then €°(n,r) C € (n,r) and G'(n,7) =C(3,...,3;n —2r —1).

N——

r

3. Results

In this section, we derive the extremal cacti for the Wiener index, Merrifield-
Simmons index, Hosoya index and spectral radius by a unified approach.

In [3], Borovicanin and Petrovic show that G°(n, ) is the maximal spectral radius
in the set 4(n,r). Here, in order to discover the unification of our approach, we still
consider the spectral radius.

Denote f(G) € {U(G)a p(G) _Z(G)> _W(G)}
Theorem 3.1. Let G € 9(n,r), n> 7. Then
F(G) < f(G(n,1))
with equality holds if and only if G = G°(n, ).

Proof. We have to prove that if G € ¥(n,r), then f(G) < f(G°(n,r)) with
equality only if G 22 G°(n, ).

Let V. = {v € V(G) : v is a cutvertex of G}.

Choose G € ¥(n,r) such that f(G) is as large as possible. In the following, we
will show some facts.

Fact 1. G € 9%(n,r), ie., |V.|=1.

Proof of Fact 1. Suppose that |V,| > 1. Let u,v € V. and H be a component
containing u, v with Ng(u) \ Ng(u), Ng(v) \ Ng(v) # 0. Denote Ng(u) \ Ny (u) =
{wy,ws,...,ws} and Ng(v) \ Ng(v) = {v1,ve,...,v}. Then s,¢ > 1. Let G} =
G —A{uwy, ..., uws} + {vwy,...,vws} and G5 = G — {vvy, ..., vv ) + {uwvy, ..., uv ).
Then G, G5 € 9(n,r). But, by Lemma 2.4, either f(G}) > f(G) or f(G%) > f(G),
a contradiction. Therefore |V,| = 1. L]

By Fact 1, we let u denote the only cut-vertex of G.

Fact 2. G 2 G%n,r).

Proof of Fact 2. Assume that G % G%(n,r). Then there exists a cycle C, =
uuy -+ ug—1u with ¢ > 4. Let G/ = G — uqug + uug. Then G’ € 9(n,r). By Lemma
2.5, f(G") > f(G), a contradiction. L]

Therefore the proof of Theorem 3.1 is complete. [
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In [13], Lu, Zhang and Tian prove that G°(n,r) is the minimal Randi¢ index in
the set 4(n,r). Combining to Theorem 3.1, we have the following result.

Theorem 3.2. The mazimal spectral radius [3], the mazimal Merrifield-Simmons
index, the minimal Hosoya index, the minimal Wiener index and the minimal Randié
index [13] in the set (n,r) (n > 17) are obtained uniquely at G°(n,r).

Acknowledgments. The authors are thankful to anonymous referee for his/her
useful comments.
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