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Abstract

The general Randi¢ index of an organic molecule whose molecular graph
is G is defined as the sum of (d(u)d(v))® over all pairs of adjacent vertices of
G, where d(u) is the degree of the vertex u in G and « is a real number with
a # 0. In this paper, we characterize the trees with minimal and maximal
general Randi¢ indices, respectively, among all trees with a given maximum

degree.

1. Introduction

Given a molecular graph G, the general Randié¢ index, denoted by w,(G), i

s
defined as the sum of (d(u)d(v))® over all pairs of adjacent vertices of G, where d(u)

*email: liuhuiqing@eyou.com; Partially supported by NSFC (No. 10571105).
femail: yanxunl@163.com
femail: yanzhenghubei@yahoo.com.cn



- 156 -

is the degree of the vertex u in G and « is a real number with o # 0. Recently,
the problem concerning graphs with maximal or minimal general Randi¢ indices
of a given class of graphs has been studied extensively by many researches, and
many results have been achieved (see[3]-[7], [10]-[21],[23]). It is well known that
the Randi¢ index w_1(G) was proposed by Randi¢ [22] in 1975 and Bollobés and
Erdés [3] generalized the index by replacing —1 with any real number o in 1998.
The research background of Randié¢ index together with its generalization appears
in chemical field and can be found in the literature (see [8, 9, 22]).

Here, we characterize the trees with minimal and maximal general Randi¢ indices,
respectively, among all trees with a given maximum degree.

In order to discuss our results, we first introduced some terminologies and no-
tations of graphs. Other undefined notations may refer to [1, 2]. Let G = (V, E)
be a graph. For a vertex u of GG, we denote the neighborhood and the degree of
u by Ng(u) and dg(u), respectively. A pendant vertex is a vertex of degree 1. A
vertex v called a claw if all but one of neighbors of v are pendant vertices. Denote
V(@) ={v e V(G) : dg(v) =1} and Vi(G) = {v € V(G) : Ng(v) N W(G) # 0}.
The mazimum degree of G is denoted by A = A(G). We use G—u or G—uv to denote
the graph that arises from G by deleting the vertex u € V(G) or the edge uv € E(G).
Similarly, G 4+ uv is a graph that arises from G by adding an edge uv ¢ E(G), where
u, v € V(G). A pendant chain P? = vyv; - - - v, of a graph G is a sequence of vertices
Vo, V1, - - -, Vs such that vy is a pendant vertex of G, dg(v1) = -+ = dg(vs_1) = 2
(unless s = 1) and dg(vs) > 3. We also call that vs and s the end-vertex and the
length of the pendant chain P?, respectively. If s = 1, then the pendant chain P? is
a pendant edge. Let P(T)={P? : i>1}.

A tree is a connected acyclic graph. Let T be a tree with n vertices and maximum
degree A. If A = 2, then T" = P,, a path of order n; and if A = n — 1, then
T = Ki,_1. Therefore, in the following, we assume that 3 < A < n — 2. Let
Ina =A{T : T is a tree with n vertices and maximum degree A, 3 <A <n —2}.

In order to formulate our results, we need to define three trees S, A (n < 24),
W, a and Y, o (shown in Figure 1) as follows:

Sn.a (n < 2A) is a graph obtained from the star K; o by attaching one pendant

vertex to each of n — A — 1 pendant vertices of Ky .
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Wi, is a graph obtained from the star K; o by attaching n — A — 1 pendant
vertices to one pendant vertex of Kja.

Y, a is a graph obtained from the path P,_a4; of order n — A + 1 by attaching
A — 1 pendant vertices to one end-vertex of P,_a.

Note that S, a, Yna € T, and if n < 2A, then Wy, A € T A.

s

Wn,A

Pn7A+1
n—A—l{:><}2A—n+l A—1{>—‘""—°

Sn,A Y;':,,A

Figure 1

2. Upper Bound

In this section, we first give some lemmas that used in the proof of our results.

Lemma 2.1. For a <0 (or o> 1) and ! > 0, the function f(z) = (x+1)* — z°
is monotonously increasing in x > 1.

Proof. Note that % =aflx+0)*t -2 >0for a <0 (or a > 1), and
hence the lemma holds. [

Lemma 2.2. Let G be a graph, and let u,v € V(G) with dg(u),dg(v) > 3.
Suppose that ugu and vovy---v, (v, = v) are the pendant chains of G with end
vertices u, v, respectively (see Figure 2). Set G* = G — vguy + ugug. If I > 3, then,
for a #0,

Wo(G*) > wo(Q).

Proof. Let dg(u) =t. Then t > 3. Note that
Wo(G") —wo(G) = (20)* +2% —t% —4% = (t* —2)(2* — 1) > 0,

and hence the lemma holds. [ ]
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Figure 2

Lemma 2.3. Suppose that G is a graph and u,v € V(G) with dg(u) > dg(v) > 2.
Let uug, vvg € E(G) with ug € Vo(G), Ng(vo) \ {v} = {v1,ve,...,05} (s > 1) and vy
being not on the path connecting u to v (see Figure 3). Set G' = G — vovy — -+ —
VoUs + UgU1 + * + - + ugvs. Then, for a # 0,

wWa(G") > we(G).
Proof. Note that
wa(G) —wa(G) = (s+1)%dg(v) +dg(u) — (s + 1)*dg(u) — dg(v)
(d(u) = dg(v))((s +1)* = 1) > 0,

and hence the lemma holds. ]
Uy
Uo Vo,

Vs

Figure 3

Lemma 2.4. Let G be a connected graph of order n > 4, and let v € V(G).
Suppose that ug, vo € Ng(v) NVo(G). Set G* = G —vug +uguy (see Figure 4). Then,
for a <0,

wa(G") > wa(G).
Proof. Let dg(v) =t. Since G is connected and n > 4, t > 3. Thus
Wa(G*) — wo(G) = S dgu) (1) =] (2 —2)7 27 =240

u€NG (v)\{vo,uo}
29t = 1) 42" =2t =[(2t — 2)* — 1] = (t* = 2%)

vV

> 0.
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The last inequality follows by Lemma 2.1 as 2t — 2 > ¢. [
Vg
vy U
Up
G G*
Figure 4

Theorem 2.5. Let T € T, o and 3 < [2] < A <n—2. Then

wo(T) < (2A =n+ 1A +2%(n— A = 1)(1 + A%) (1)

and equality holds if and only if T =2 S, A for o < 0.

Proof. First we note that if T = S, o, then the equality in (1) holds.

Now we prove that if T € F, A and 3 < [§] < A < n — 2, then (1) holds and
the equality in (1) holds only if 7' 2 S, .

Let T € J,a. Let w € V(T) with dp(w) = A > 3. Since A > [%], we have
Nr(w) N Vo(T) # 0. Let uy € Vo(T') with wug € E(T).

We choose T such that w®(T) is as large as possible. We will show three facts.

Fact 1. For any P? € P(T), we have | < 2.

Proof of Fact 1. Assume P? = vov; - v, € P(T) with end vertex v;, where
vo € Vo(T) and I > 3. Let T = T — vov1 + ugvy. Then TV € J, o. By Lemma 2.2,
we have w, (1) > w,(T), a contradiction with our choice.

Fact 2. Let P’ = vovy---v € P(T) with end vertex v; and vy € Vo(T). If
v # w, then l = 1.

Proof of Fact 2. Assume that [ > 2. Then by Fact 1, [ = 2. Since A > [%]
and v; # w, we have dp(v;) <n—A—-1< 3] —1 <A =dp(w). Set

T, =T — VU1 + UpVp.

Then T € J, . By Lemma 2.3, wo(T") > wo(T), a contradiction with our choice.
n

Fact 3. For any vertez v € V(T) \ {w}, we have dr(v) < 2.
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Proof of Fact 3. Assume that dr(v) > 3 for some v € V(T') \ {w}. We choose
v such that dr(w,v) is as large as possible. Then |Nz(v) NVo(T')| > 2 by Fact 2. Let
', v" € Np(v) N Vo(T'). Set

T =T —vv+u'.

Then T" € , a. By Lemma 2.4, we have wo(T") > w,(T'), a contradiction with our
choice. u

By Fact 3, the proof of the theorem is complete. n

By Theorem 2.5, we have wa(Spa-1) > wa(Spa) for a <0and [5]+1 <AL
n — 1. Thus we obtain the following result.

Corollary 2.6. Let T € T, a and A > 1 > [%]. Then, for a < 0, wo(T) <
W (Sn) with equality if and only if T =2 S, ;.

In [21], Pan, Liu and Xu has shown the following result.

Lemma 2.7 [21]. Let T be a tree with n vertices and m-matching, where n > 2m.
Then, for —% <a <0, we(T) > wal(Snnm) with equality if and only if T = Sy, .

By Lemma 2.7 and Theorem 2.5, we have the following result.

Corollary 2.8. Let T and Ty be trees of order n, n > 4. If T\ has m-matchings
and A(Ty) = A > n—m, then wo(T1) > wa(T2) with equality if and only if Ty =
Ty = S, a for —% <a<0.

Qs,t
Figure 5

Lemma 2.9. Let Qs be a graph shown in Figure 5, where H is a connected
graph. If s >t > 2 and dg(v) > dg(u), then, for a > 1,

wa(Q&,l,) < /wa(Qs-f—l,L—l)
Proof. Set dg(v) =p, do(u) = ¢q. Then p > ¢q and

wa(Qs%»l,tfl) — Wq (Qs,t)



-161 -

(s+pM)(s+1)* 4+t —-2+¢*)(t—-1)*=(s=14p%)s* = (t — 1+ ¢*)t*
[(9 + 1)a+1 _ 8a+1] _ [ta+1 _ (t _ 1)a+1}
+(* =D +1)" = s = (¢" = Dt* — (¢ = 1)

If « =1, then

Wo (Qst1-1) — WalQsr) = [(5+ 1)2 - 32] - [tz —(t- 1)2] +p—q
(s+1)?*=s] = — (-1} >0,

V

if @ > 1, then
wu(Qerl,tfl) _ wa(Qs,t) — [(g + 1)cx+1 _ Soz+1} _ [toHrl _ (t _ 1)a+1]

= (s + 1) =57 = (@ = Dl = (= 1)
(5" = DI((s + 1) = 5%) = (1% = (6 = 1)")] > 0,

Vv

the last inequality follows by Lemma 2.1 as s >t — 1, p > ¢ > 2. Hence the lemma
holds. [
Theorem 2.10. Let T € T, a and 3 < [3] < A <n—2. Then

Wa(T) < (A =1)A" + (n— A —1)(n — A)* + A%(n — A)® 2)

and equality holds if and only if T = W, A for o> 1.

Proof.  First we note that if ' = W, A, then the equality in (2) holds.

Now we prove that if T € 7, a, then (2) holds and the equality in (2) holds only
ifT=W,afor3<[3]<A<n-2

Let T € Jpa. Let w € V(T) with dp(w) = A > 3. Since A > [§], we have
Np(w) N Vo(T) # 0. We choose T such that w,(T) is as large as possible. Let
up € Vo(T') with wug € E(T). We first show two facts.

Fact 1. For any vertex v € Np(w) \ Vo(T'), u is a claw.

Proof of Fact 1. Assume that u € Np(w) \ Vy(T') is not a claw. Then there is a
vertex v’ € Nr(u)\{w} such that v’ ¢ Vo(T). Denote Np(uw')\{u} = {u, ..., us}(s >
1). Since A > [5] and u # w, dp(u) <n—A -1< 3] =1 <A =dp(w). Set

2

T =T —vuy — - — vus + uptq + - - - + uglis.



- 162 -

Then T € J, . By Lemma 2.3, wo(1T") > wo(T), a contradiction with our choice.m

Fact 2. w is a claw.

Proof of Fact 2. Assume that w is not a claw. Then there are at least two
vertices u,v € Np(w) such that dp(u) = s > 2, dr(v) =t > 2. By Fact 1, u, v are
claws. Denoted by H the non-trivial component of T — {u,v}. Then T = Q,, (see
Figure 5). Assume that s > ¢. Then wa(Qs+1,4-1) > Wa(Qst) by Lemma 2.9. Since
A>[5],s+t—1<n—A<[3] <A Thus Qsy14-1 € T, and hence we get a
contradiction with our choice. [

By Facts 1 and 2, the proof of the theorem is complete. [
3. Lower Bound

Lemma 3.1. Suppose that G is a graph and u,v € V(G) with dg(u) > dg(v) > 2.
Let uwug, vvg € E(G) with vy € Vo(GQ), Ng(up) \ {u} = {wr,us, ..., us_1} (s >2) and
ug being not on the path connecting u tov. Set G' = G —uguy — - - - — UgUs_1 + Vs +
-+ vous_1. Then, for a # 0,

Wa(G") < wo(G).
Proof. Note that
wa(G') — wa(G) s%dg(v) + dg(u) — s%dg(u) — dg(v)
(d%(v) — d(w) (" — 1) < 0,

and hence the lemma holds. (]
From Lemma 3.1, we immediately get the following result.
Theorem 3.2. Let T € T n and 3 < [3] < A <n—2. Then

Wa(T) > (A= 1)A” + (n— A — 1)(n — A)* + A®(n — A)® (3)

and equality holds if and only if T = W, o for o < 0.

Proof.  First we note that if 7" = W, A, then the equality in (3) holds.

Now we prove that if T € ], A, then (3) holds and the equality in (3) holds only
ifT=Wafor3<[8]<A<n-—2

Let T'€ Fpa. Let w € V(T) with dp(w) = A > 3. Since A > [§], we have
Np(w) N Vo(T) # 0. Let ug € Vo(T) with wug € E(T).
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We choose T such that w,(T') is as small as possible. We first show two facts.

Fact 1. w is a claw.

Proof of Fact 1. Assume that w is not a claw. Let v € Vi(T) \ {w} with vvy €
E(T), where vy € Vy(T). Then there is a vertex u € Np(w)\ Vo(T) such that u is not
on the only path connecting w and v. Denote Np(u) \ {w} = {uy,...,us}(s > 1).
Since A > [§] and v # w, we have dp(v) <n—A-1<[3] =1 <A -1 < dp(w).
Set

T =T —uuy — - — Uty + Vouq + -+ - + VoUs.
Then 7" € , o. By Lemma 3.1, we have w,(1") < wo(T), a contradiction with our
choice. L]

By Fact 1, we can let u be the unique vertex with wu € E(T') and dr(u) > 2.
Let T}, be the subtree containing w in 7' — w.

Fact 2. T, 2 Ky, a_1.

Proof of Fact 2. Assume that T, 2 K;,_a_1.Then there exists an edge v'v
such that v'v is not a pendant edge. Then dr(v') = s > 2, dp(v) = ¢ > 2. Choose v'v
such that dr(w,v) is as large as possible. Then v is a claw. Denote Nr(v) NVy(T) =
{v1,v2,...,0-1}. Set T' =T —vvy —vvg — -+ — v + Vv + VVa + -+ + V'vy_y.
Then

wo(T) —wo(T') > (6 — 1%+ s —t(s+t— 1)
= (=1t —=(s+t—=1)+(st)* = (s+t—1)
= —at-1(s—1)& +alt—1)(s—1)n"
= at—1)(s—1)(n*—¢&%) >0,
where £ € (t,s+t—1) and p € (s+t—1,st). "
By Facts 1 and 2, the proof of the theorem is complete. [
Theorem 3.3. Let T € I, An. Then
W (T) > (A —1+42%)AY+ 2%+ (n — A — 2)4° (4)
and equality holds if and only if T =Y, A for a > 0.
Proof. First we note that if T' = Y, A, then the equality in (4) holds.
Now we prove that if T € 7, a, then (4) holds and the equality in (4) holds only
ifT2Y,A.
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Let T € J, a. We choose T such that w,(T) is as small as possible. Let w € V(T)
with dr(w) = A > 3. By an argument similar to the proof of Theorem 3.2, we have
|Nr(w) NVo(T)| = A —1, that is, w is a claw. Therefore, we can let u be the unique
vertex with wu € E(T) and dr(u) > 2. Let T, be the subtree containing v in 7' — w.

Fact A. T, = P,_A.

Proof of Fact A. Assume that T, 22 P,_a. Then there is a vertex v such
that dr(v) = s > 3. Choose v such that dr,(u,v) is as large as possible. Let
Pl0 = vov1 -+~ v(v; = v) is a pendant chain with end vertex v. Since T, ia a tree,
there is a unique path between u and v and only one of v’s neighbors, say v, is
on the path. Let Nr, (v) \ {v/,u_1} = {x1,...,25_2}. Then dr,(z;) = a; > 1 and
dp,(V)=b>2.Set T' =T —vxy—- - —vTs_o+ 0Ty ++ -+ VgLs_o. Then T" € T, .
If I =1, then

2

s

Wo(T) —we(T) = b*(s* —2%) + i: af(s*—(s—1)%) + 5% — (25 — 2)°
2%(s* = 2%) + (s = 2)(s* — (s = 1)¥) + s* — (25 — 2)°
2%(s™ —2%) + 5% — (25 — 2)*

29(s™ — (s — 1)%) + 8% — 4.

v

vV

Thus if s > 4, then wo(T) — wo (T") > 0; if s = 3, then wo(T) — wo(T") > 6%+ 3* —
242> 0.
If [ > 2, then

wo(T) — wa (T/)

b (s —2%) 4+ z_:af‘(sa —(s=1)%) +2%(s* —=2%) +2%(1 — (s — 1)%)
> 2%(s% - 2%) 4 (s — 2)(s — (5 — 1)%) +2%(1 — 2% 4 5% — (s — 1)°).

Thus if s > 4, then w, (T) — wa (T") > 2(4% — 20T 4 1) = 2%(2% — 1)? > 0; if s = 3,
then wy (T) —wq (T7) > 2%(3%—2%)4 (3% —2%)+2%(1—2+3%—2%) > 6°+3%—2:4* > (.

Therefore, in either case, we get a tree T € T), o such that w,(T) > wa(T"), a
contradiction with our choice. u

By Fact A, the proof of the theorem is complete. [
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