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Abstract

The Randi¢ index is a graph invariant defined as Y. —A—, where d; denotes the
icj V@i d
degree of the vertex ¢ in the graph G, and the summation goes over all pairs of
adjacent vertices ¢, j . The general Randi¢ index is R, = Ro(G) = 3 (d; d;)®, where
i~j
a is a real number. Up to now most works concerned with bounds for R,(G) focus
on the case |a] < 1. In this paper we investigate bounds for R, (G) for |a| > 1 and

arrive at some new results.

1. INTRODUCTION

Let G = (V, E) be a simple graph with vertex set V = {1,2,...,n}, and edge set

E, such that |E| = m. Sometimes we refer to G as an (n, m)-graph. For i,j € V| if



- 148 -

i is adjacent to j then we write i ~ j. The degree of the vertex ¢ is denoted by d; .
A chemical graph is a graph in which no vertex has degree greater than four.

The general Randi¢ index (or connectivity index [1]) of a (molecular) graph G is
defined as

RQ(G) - Z(dl dj)u

i

where « is a real number. In particular, R_;/5(G) is the ordinary Randié¢ index of G .

The Randi¢ index is an important molecular descriptor and has been closely cor-
related with many chemical properties (see [2, 3]). Many mathematical properties
of R_1/p and of its generalized version R, have been established, including lower
and upper bounds [1]; for some most recent results along these lines see [4-10]. Let
Qo = Qu(G) = X (d;)*. Then @, and R; are called the first and the second Za-
greb index, respe?tévely [11]. Up to now, many results on the bounds of @, and R,
have been reported (see [1]). Recently, some bounds for R,(G) for —1 < a < 0 and

0 < a < 1 were obtained in [4]. The purpose of this work is to present bounds for
R,(G)fora < —landa > 1.

2. MAIN RESULTS

Using the Cauchy—Schwartz inequality, the authors of [4] (also see [1] p. 112)
have deduced the inequality Ro(G) R_o(G) > m?. We now get a somewhat stronger

result, namely:
Lemma 2.1. For an (n,m)-graph G,

R(@)Ro(G)=m?  and  Qu(G)Q-o(G) = 0.
As we know (see [1]), the estimates for R, and R_, are usually restricted to
—1<a<0and 0 < a < 1. A natural question is: What about the bounds for
R,(G) for a < =1 and o > 17 We now give such bounds as follows.
By the Holder inequality (see [12], p. 135), he have:

Lemma 2.2. Let o, 8 be real numbers such that a + 5 =1, a,8#0,1. Then

Sor [For] prast

v=1

n
D ayb, >
v=1

Equality holds if and only if (a,)"/*/(b,)"/® = constant or a, = b, = 0.
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Lemma 2.3. (The Pdlya—Szegd inequality) Let 0 < mq < ap < My, 0 < mg < b <
My (k=1,2,...,n). Then

2 2
n n 1( [M; M iy m n
2 b 2 < = 1 2 117702 b
Lgl(a’“) } Lgl( o) < 4( oy T\ 200 (2t

where the equality holds if and only ifa; =as=---=a, , by =by=---=0b, , m; =
]\/[1:(11 ) m2:]\/12:b1.

Denote b(z) := (z + 1/x)/2. Tt is easy to see that b(z) is an increasing function

for x > 1, and that b(1/z) = b(z) .

Lemma 2.4. For an (n,m)-graph G with maximum vertez degree A and minimum

vertexr degree 0 ,
A [e3
Ra(G) R_o(G) <17 ((ﬂ > m?

where the equality holds if and only if G is regular.
Proof. Assume first that a > 0. Since 0 < 62 < d; d; < A? | in view of Lemma 2.3,

let my = 0%, My = A%, mog =A% and My =6 *. Then

D (didy)* -y (did;)™

invj g

Ra(G) R-a(@)

IN

1 /A" 9 : « —a
1 (67+ E) {Z(didj) /2 (dydy)=?

()

where the equality holds if and only if A =4, 1. e., if G is regular.
The proof of Lemma 2.4 for o < 0 is fully analogous. O

Note that if ¢ ~ j, then it is impossible that both ¢ and j are pendent vertices
(provided n > 2). Thus 2 < (d; d;) < (n—1)2, from which follows v2" < (d; d;)*/? <
(n — 1)*. By means of a method similar to what was used in the proof of Lemma

2.4, and noticing that b(x) is an increasing function for x > 1, we get:

Corollary 2.1. For an (n,m)-graph G,

Ru(G) R_o(G) < 12 ((%)a) m?  fora>0.

If G is a connected chemical graph (and n > 2), then 2 < d;d; < 16, and we have
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Corollary 2.2. For a connected (n,m) chemical graph G, n > 2,

Ro(G) R_,(G) < b*((2v2)*) m? fora>0.

Using the Holder inequality we have (see [12] p. 137):

Lemma 2.5. Let a;, b;, and ¢; be positive real numbers, i = 1,2,...,n. Then
n 3 n n n
(o) =[] o] o]
i=1 i=1 i=1 i=1

where equality holds if and only if a; =b; =¢; , i=1,2,...,n.

Lemma 2.6. For an (n,m)-graph G with mazimum vertex degree A and minimum
vertex degree ¢,
4m3
Ri(G) > 7 .
(@) 2 n2b(A/6)
Proof. By Lemma 2.3, note that 0 < § < d; < A. Let m; = my = ¢ and
M, = My =A. Then

543 () () ()0

% (% + %) R(G) = % _Zn:(dz‘)3 ;

Then

b(A/6) Ba(G)

V
N =
=
—

&

~

w

and by Lemma 2.5 (by setting b; = ¢; = 1),

3
n
(=
—~
&
fa
w
%
(=
S
S~
w
I
co
3
w

i=1 i=1
n . 8m3
d;)? >
i:l( g n?
and therefore
1 8m?
b(A)O) R (G) > —-
A m©) = 5
4m3
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Corollary 2.3. For an (n,m)-graph G,

4m?
Ri(G) > m .

Corollary 2.4. For a connected (n,m) chemical graph G, n > 2,

4m? _ 32m?

> = .
m(@) = n?b(4)  17Tn?

Theorem 2.1. Let G be an (n,m)-graph with maximum vertex degree A and mini-

mum vertex degree 6 . Then
Ro(G) > 4*n 22 m> ™ p*(A/5) fora > 1

and
Ro(G) < 4*n 2 m2 T p=>(A/5) b*((A/8)?)  for a < —1.

Proof. Let a+8=1, a,8 ¢ {0,1}. By Lemmas 2.2 and 2.6,

Ro(G) = 3 (didy)" -1

Qg

v

a B
(Z(di dj)a'l/a) : (Z 13'1#’) for v > 1

invgj invgj

(E d; dj) -mP
inj

= Ri(G)* -m'™ (1)

4o m3a

(AT ml™ = 4o p2o et (A )6)

For a < —1,1i. e., —a > 1, by Lemma 2.4, Lemma 2.6, and the above result

R((A/5)
Ral@) < =R @)
b2((A/6)?) m?
= R@ ?
<

2
40 =20 2o+ o (%) bz((%) > B
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Corollary 2.5. For an (n,m)-graph G,
Ry(G) > 4% - n72* . m® . p=%(n — 1) fora>1
and

Ro(G) < 4% . n72 . m? . p7%(n — 1) - b*((n — 1)?) fora < —1.

Corollary 2.6. For a connected (n,m) chemical graph G,
Ro(G) > 4% - n72 . m2tL . pma(4) fora>1

and
Ro(G) < 4% . n72 . m? Tt p=o(4) - b*(16) fora < —1.

In order to obtain another form of Theorem 2.1, we first prove:

Lemma 2.7. Let G be an (n,m)-graph, (n > 2), with mazimum vertex degree A and

manimum vertex degree § . Then

Ri(G) > 2m*+[(A-1D)(A+d) - (n—1DA]m
- é(A—l)[4néA+(A—6)2(n—2)]

where the equality holds if and only if G is regular.

Proof.
1 n
R(G) = ) did;= 3 >.di Y d;
inj =1 inj
1

i=1

= 2m?+ % (A-1) i(di)z —(n—1)mA

= 2m2*(TL*].)TILA‘F%(A*l)QQ(G) (3)

where the equality holds if and only if G is regular. O
Let n; be the number of vertices of degree i in G, § <i < A. From a result in

[13] (formula (9), p. 235, note a printing error),

Q2(G) =2m (A+98) —nAd+ Aizl (0—0)(A—i)n; . (4)

i=0+1
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By the arithmetic-geometric inequality
A-l A-1

g:w—mA—ﬂm:—g:@—ﬁﬁ—ﬂm
> B 3 =S s o)
(A —9)?
> = (n-2)

where the equality holds if and only if either § = A or na = ns = 1, nepaye =
n—2,0+A=0mod?2. From formula (4),

(A —0)?

QQ(G)ZZ?’H(A“”(S‘)*TLA(S*T(?’L*Z).

Hence by inequality (3)
Ri(G) > 2m* +[(A—1)(A+68) —(n—1)Alm

- gAfnwmA+mfa%n7m.

Clearly, equalities in the above formulas hold if and only if 6 = A, i. e., if G is

regular. O
By combining inequalities (1), (2) and Lemma 2.7, we get

Theorem 2.2. Let G be an (n,m)-graph with mazimum vertex degree A and mini-

mum vertex degree § . Then

Ro(G) > a®(n,m, 6, A)ym' ™™ fora>1

and
Ro(G) < a®(n,m, 6, A)m' = - b*((A/6)?) fora < —1
where
a(n,m,5,A) = 2m*+[(A - 1)(A+6)— (n—1DA]m
- é(A— DAnsA+ (A —06)*(n—2)] .

Corollaries 2.5 and 2.6 follow also from Theorem 2.2.
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