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Abstract

Let G be a graph with vertex set V(G). The zeroth-order general Randi¢ index

of G is defined as
Xa(G) = Z (dy)®
veV(G)

where d,, is the degree of the vertex v in G and « is a real number. For o« > 1
or a < 0, we characterize respectively the n-vertex trees and the n-vertex unicyclic
graphs of fixed number of pendent vertices with the first three largest zeroth-order
general Randi¢ indices, and we also characterize respectively the n-vertex trees and
the n-vertex unicyclic graphs of fixed maximum degree with the first two largest
zeroth-order general Randi¢ indices.
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INTRODUCTION

A topological index is a numeric quantity from the structural graph of a molecule.
It is a structural invariant, i.e., it does not depend on the labelling or the pictorial
representation of a graph.

Let G denote a graph with vertex set V(G) and edge set E(G). Let d, denote
the degree of the vertex v in G. Recently, Li and Zheng [1] introduced a kind of

topological index — the zeroth-order general Randi¢ index of a graph G as

Xa(G) = D (d)*
veV(G)
where « is a real number. The cases @ = 0,1 are trivial. For a = 2,—1/2, the
zeroth-order general Randi¢ index x, reduces to the the first Zagreb index M; [2, 3]
and the zeroth-order Randi¢ index x° [4, 5], respectively.

In [6] all trees with the first three largest and smallest zeroth-order general Randié
indices were determined when a € {k,—k,—1/k}, and in [7] all unicyclic graphs
with the largest zeroth-order general Randi¢ index when o € {k,—k, —1/k} were
determined, where k& > 2 is an integer. In [8] zeroth-order general Randi¢ index of
unicyclic graphs was investigated in more detail when the length of the unique cycle
is fixed. In [9] the molecular (n, m)-graphs with the largest and smallest zeroth-order
general Randi¢ indices were characterized.

For @« > 1 or @ < 0 (resp. 0 < a < 1), we characterize respectively the n-vertex
trees and the n-vertex unicyclic graphs of fixed number of pendent vertices with
the first three largest (resp. smallest) zeroth-order general Randi¢ indices, and we
also characterize respectively the n-vertex trees and the n-vertex unicyclic graphs of
fixed maximum degree with the first two largest (resp. smallest) zeroth-order general

Randi¢ indices.

RESULTS

For a graph G, N(v) denotes the set of the (first) neighbors of v € V(G).
If the degree sequence of a graph G is 01,0z, . .., 0,, we write D(G) = [01, 02, . . .,

d,]. Furthermore D(G) = [z', x5, ..., 2] means that the degree sequence of G
consists of z; (a; times), where ¢ = 1,2,...,t, and we drop the superscript 1 of z; if
a; = 1.

Let G be a graph with D(G) = [61,0s,...,d,] such that ¢; > §; > 2 for some
pair of distinct ¢, j. Then for vertices v and v such that d, = ¢;, d, = ¢; and
N(@) \ (N(u) U {u}) # 0, let G’ be the graph obtained from G by increasing the
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degree of vertex u by 1 and reducing the degree of vertex v by 1. So D(G') =
(01,02, ..., 0i-1,0; + 1,0i41, ..., 0j-1,0; — 1,841, ...,0,]. We will say G’ is obtained
from G by replacing the pair (4;,0;) by (d; +1,0; — 1). For a # 0,1, by Lagrange’s
mean-value theorem and noting that az®~! is increasing for > 0 if and only if a > 1

or a < 0, we have

Lemma 1. [9] For the graphs G and G', xo(G) < Xxa(G') if & > 1 or a < 0, and
Xa(G) > xo(G) if0 < a < 1.

In view of Lemma 1, we consider any topological index f(G) such that f(G) <
f(G") (resp. f(G) > f(G")) instead of x, for a > 1 or @ < 0 (resp. 0 < a < 1).

We first consider trees with fixed number of pendent vertices.

Theorem 2. Let f(G) be a topological index such that f(G) < f(G') (resp. f(G) >
f(G")). Let T be a tree with n vertices, p of which are pendent vertices, 3 < p < n—2.

(i) f(T) attains the largest (resp. smallest) value if and only if D(T) = [p, 2" P71,
17].

(ii) Forp >4, f(T) attains the second largest (resp. smallest) value if and only if
D(T) = [p - 17 37 2n7p72, 1p]

(iil) For p = 5, f(T) attains the third largest (resp. smallest) value if and only
if D(T) = [3%,2"8,1%], and for p > 6, f(T) attains the third largest (resp.
smallest) value if and only if D(T) = [p — 2,4,2"P=2 17].

Proof. Suppose that D(T) # [p,2"P~1,17] and v is a vertex with maximum degree.
Then there must be a vertex w # v such that d, > 3. Let N(w) = {wy,...,w},

where w; lies on the path from v to w and | = d,,. Let T; = T — wws — -+ —

WW;igo + Vw3 + -+ + vwiyg for i = 1,2,...,1 — 2. By the condition of the theorem,
f(T) < f(Ty) < -+ < f(Ti—2). Repeating the operations above, we obtain a tree
sequence T, T4, ..., Ty with n vertices, p of which are pendent vertices, such that

f(T) < f(T1) < --- < f(Ts), and there is no pair of distinct vertices in T, with degree
greater than or equal to 3. Obviously, D(T,) = [p,2"P~!, 1?]. This proves (i).
Suppose that p > 4. Since Ty is obtained from T,_; by replacing some pair (6;, d;)
by the pair (6;+1,; —1) and D(T;) = [p, 2" P~1, 1P], where D(T,_1) = [61, 02, . . ., 0y,]
and §; > §; > 3, one can see that D(Ts_1) = [p — 1,3,2"7P~2 1P]. This proves (ii).
Similarly, Ts_o = T}, for p > 6 or T2, for p > 5, where D(TL,) = [p —
2,4,27 P71 1P] and D(T?,) = [p — 2,3%,2"7P=217]. Since T} , can be obtained from
T2 , by replacing the pair (3,3) by (4,2), we have f(T2,) < f(TL,). It follows that
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D(T,_5) = [p—2,32,27 P72 1P| for p = 5 and D(T,_5) = [p—2,4,2" P71 17] for p > 6.
This proves (iii). O

Now we consider trees with fixed maximum degree. Motivated by [6, Theorem 3],

we prove the following.

Theorem 3. Let f(G) be a topological index such that f(G) < f(G') (resp. f(G) >
F(G"). Let T be a tree with n vertices and mazimum degree A, where n — 2 =
a(A—=1)4+k—1, ais an integer, k =1,2,3,...,A =1, and 3 < A <n—2.

(i) f(T) attains the largest (resp. smallest) value if and only if D(T) = [A®, 1"
if k=1 and D(T) = [A% k, 1" if kb > 1.

(ii) For a =1 (and then k > 3), f(T) attains the second largest (resp. smallest)
value if and only if D(T) = [Ak —1,2,1"73], and for a > 2, f(T) attains the

second largest (resp. smallest) value if and only if

(a) D(T) = [A™1,A = 1,2,17071] if k= 1,

(b) D(T) = [A LA —1,22,1"%2] for A = 3 and D(T) = [A*"1 A —
1,3,17%) for A >4 if k =2,

(¢) D(T) = [A* (A - 1)%2,1" %2 for A = 3 and D(T) = [A% A —
2,217 for A>4if k= A — 1,

(d) D(T) = D(T?) where i = 1,2, f(T%) = max{f(T"), f(T?)} with D(T") =
[AL A —1,k+1, 1"179 and D(T?) = [A% k —1,2,1"7972] §f3 < k <
A—2.

Proof. Suppose that f(G) < f(G'). The proof for the case f(G) > f(G’) is similar.

Let T be a tree with n vertices and maximum degree A. Let D(T) = [z1, zo, . . .,
xp). A > 2, > x; > 2,1 # j, then construct a tree Ty by increasing z; by 1
and reducing x; by 1. By the condition of the theorem, f(T) < f(T1). Repeating
the operation above, we obtain a tree sequence 1,17, T5, ..., T, with n vertices and
maximum degree A, such that f(T) < f(T1) < f(Tz) < --- < f(Ts), and there is no
pair y;, y; such that A >y, > y; > 2, ¢ # j, where D(T,) = [y1,¥2, ..., Ys). Thus
except at most one vertex of degree k for some k = 2,3,..., A — 1, all vertices of T
have degree A, 1. Denote by a,b and ¢ the number of vertices of degree A,k and 1,
respectively. Then aA +bk+c=2n—2, a+b+c=nand b < 1.

If n—2=0 (mod (A—1)), thena =22 b=0,c=n-aandso D(T,) =
[A® 1" Ifn—1—k =0 (mod (A—1)), thena="25* b=1c=n—1-aand
so D(Ty) = [A% k,1""17%]. Hence (i) follows.
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Ifa=1, then k>3 and so D(T,_1) = [A k —1,2,1"73].

Suppose in the following that a > 2.

If k = 1, since D(Ty) = [A*71,1"79], we have D(T,_1) = [A* 1, A — 1,2, 17" 179],

If k = 2, since D(T,) = [A%,2,1"%7Y, we have T,_, = T}, for A > 4 or T2,
for A > 3, where D(T} ;) = [A*1, A —1,3,1" 1] and D(TZ,) = [A* LA -
1,22, 1"7%%]. Note that f(T2;) < f(T-,) for A > 4. It follows that D(T,_,) =
[AT1 A —1,22 1" 2] for A =3 and D(Ty_;) = [A* L, A —1,3,1"%"!] for A > 4.

Ifk=A-1,then T,y =TL | for A >4 or T2 for A > 3, where D(T} ) =
[A% A —2,2,1"7%2] and D(T? ) = [A" (A —1)%2,1"7%72]. Note that f(T?2,) <
f(TL). Tt follows that D(Ty_1) = [A*"1 (A = 1)%2, 1"7*72] for A = 3, D(T,_4)
[A% A — 22,1792 for A > 4.

If3<k<A-2thenT, ; =T fori=1,2,3, where D(T ) = [A*L A-1 k+
1,179 D(T2 ) = [A% k —1,2,1"% 2] and D(T2,) = [A*, A —1,k,2,1" 972
Note that f(T,), f(TZ,) > f(T2,). Tt follows that D(T) = D(T*) where i = 1,2,
FTY) = max{f(T"), f(T?)} with D(T") = [A* Y A —1,k+1, 1" and D(T?) =
A%k —1,2,1"2if3<k < A—2.

Hence (ii) holds. O

Now we turn to unicyclic graphs.

Theorem 4. Let f(G) be a topological index such that f(G) < f(G") (resp. f(G) >
f(G"). Let U be a unicyclic graph with n vertices, p of which are pendent vertices,
2<p<n—3.

(i) f(U) attains the largest (resp. smallest) value if and only if D(U) = [p +
2,2n-P=1 17],

(it) f(U) attains the second largest (resp. smallest) value if and only if D(U) =
[p+1,3,2"7P72 17].

(iti) f(U) attains the third largest (resp. smallest) value if and only if D(U) =
[33,277613] for p=3 and D(U) = [p,4,2" P2 17] for p > 4.

Proof. Suppose that f(G) < f(G'). The proof for the case f(G) > f(G’) is similar.

Suppose that D(U) # [p + 2,27 P71 1P]. There are two vertices v,w such that
d, > dy, > 3. Let the neighbors of w be wy,ws,...,w, with | = d,. If both v
and w lie on the unique cycle, let wq, ws be the two neighbors of w on the cycle. If
v lies on the cycle but w does not, let w; be the neighbor of w on the path from

v to w. If w lies on the cycle but v does not, let w; be the neighbor of w on
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the path from v to w and wsy be one of the two neighbors of w on the cycle. Let

Uy=U—wws— -+ —ww;yo+vws+---+vwyo for i =1,...,1—2. By the condition
of the theorem f(U) < f(Uy) < --- < f(U—2). Repeating the operations above,
we obtain a unicyclic graph sequence U, Uy, Us, ..., Us with n vertices, p of which

are pendent vertices, such that f(U) < f(Uy) < f(Uz) < --- < f(Us), and there is
no pair of distinct vertices in Uy with degree greater than or equal to 3. Obviously
D(Uy) = [p + 2,172,277, This proves (i).

Since U, is obtained from U,_; by replacing some pair (J;, §;) by the pair (6;—1,§;+
1) and D(U,) = [p+ 2,17,2" P71, where D(Us—1) = [01,0a,...,0,) and §; > §; > 3,
one can see that D(U,_1) = [p + 1,3,2"77=2,17]. This proves (ii).

Suppose that p > 3. Then U,y = U}, for p > 4 or U2, for p > 3, where
D(UL,) = [p, 4,27 P=217] and D(UZ,) = [p,3%2"7P~3 17]. Note that UL , can be
obtained from U2, by replacing the pair (3,3) by (4,2). So f(UZ,) < f(UL,) for
p > 4. Tt follows that D(U,_5) = [p, 32,27 P73 17] for p = 3 and [p, 4, 2" P2 17] for
p > 4. This proves (iii). O

Theorem 5. Let f(G) be a topological index such that f(G) < f(G') (resp. f(G) >
f(G"). Let U be a unicyclic graph with n vertices and mazimum degree A, where
n=alA—=1)+k—1, aisan integer, k =1,2,3,...,A =1, and 3 < A <n-—2.

(i) For a =1 (and then k > 3), f(U) attains the largest (resp. smallest) value if
and only if D(U) = [Ak — 1,2,1"73], and for k > 4, f(U) attains the second
largest (resp. smallest) value if and only if D(U) = [Ak —2,3,1"73] if k > 5
and D(U) = [A, 23,171 if k = 4.

(ii) Fora=2andk =1, f(U) attains the largest (resp. smallest) value if and only if
DU) =[A,A—1,2,1"73], and f(U) attains the second largest (resp. smallest)
value if and only if D(U) = [4,23,1%] for A =4 and D(U) = [A, A —2,3,1"73]
for A >5.

(iii) For a > 3 and k = 1, f(U) attains the largest (resp. smallest) value if and
only if D(U) = [A% 1" , and f(U) attains the second largest (resp. smallest)
value if and only if D(U) = [A"1 A — 1,2, 1777 1)

(iv) Fora>2 and k > 2, f(U) attains the largest (resp. smallest) value if and only
if D(U) = [A% k, 1"*"Y] and f(U) attains the second largest (resp. smallest)
value if and only if

(a) D(U) = [AA —1,22,1"7%72] for A = 3 and D(T) = [A"7!, A —
1,3, 1% for A>4 if k=2,
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(b) D(U) = [A" 1 (A —1)%,2,1"°72] for A = 3 and D(U) = [A",A —
2,212 for A >4 ifk=A— 1,

(c) D(U) = D(U?) where i = 1,2, f(U") = max{f(U'), f(U*)} with D(U') =
(AU A 1,k +1, 179 and D(U?) = [A% k —1,2,1"%%] if 3 < k <
A—2.

Proof. If a > 3 or if a = 2 and k > 2, then by similar arguments as in the proof of
Theorem 3, (iii) and (iv) follow.

Suppose that a = 1. Then n = A+k—2 with £ > 3. Let D(U) = [z1, 22, ..., Ty
We claim that D(U) # [A",17] for any integer r with 1 < r < n — 1. Otherwise
rA + (n —r) = 2n, which is obviously impossible for » = 1. Suppose that r > 2.
Then rA —r = A+ k —2 < 2A — 3 from which we have (r —2)A < r — 3, also
a contradiction. Similarly, we have D(U) # [A",1,1""7!] for any integer r and I
with 1 <r<n-2and2 <1< A-1 If DU) # [Ak—1,2,1"73], then by
repeating the operation to replace some pair (z;,z;) by the pair (z; + 1,2; — 1) for
A > x; > x; > 2, we obtain a unicyclic graph sequence U, Uy, ..., U, with n vertices
and maximum degree A, such that f(U) < f(U;) < --- < f(Us), and except two
vertices of degree | and 2 respectively, all vertices of U, have degree A, 1, where [ is
an integer with 2 <[ < A. Let r be the number of vertices of degree A in U,;. Then
rA+14+24+(n—r—2)=2n,ie., (r—1)(A—1) = k—1—1, from which we have r = 1
and [ =k — 1. So D(U,) = [A, k —1,2,1"73]. Furthermore U,_; = U} | for k > 5 or
UZ , for k > 4, where D(UL ) = [A,k—2,3,1"3] and D(U2,) = [A, k—2,22,1"71].
Since f(UL,) > f(U%,) for k > 5, (i) follows.

Finally, suppose that « = 2 and £k = 1. Then n = 2(A — 1) with A > 4. By
similar argument as above, f(U) attains the largest value if and only if except two
vertices of degree [ and 2 respectively, all vertices of U have degree A, 1, where [ is
an integer with 2 <1 < A. It is easy to see that the number of vertices of degree A

is one and [ = A — 1. Now (ii) follows easily. O

If we replace the part “Let f(G) be a topological index such that f(G) < f(G")
(resp. f(G) > f(G"))” in Theorems 2-5 by “Let a satisfy « > 1 or a@ < 0 (resp.
0 < a < 1) and replace the topological index f of other places in Theorems 2—
5 by Xa, then by Lemma 1, the corresponding results follow. Thus for @ > 1 or
a < 0 (resp. 0 < a < 1), we have determined the n-vertex trees and the n-vertex
unicyclic graphs of fixed number of pendent vertices with the first three largest (resp.
smallest) zeroth-order general Randié¢ indices, and the n-vertex trees and the n-vertex
unicyclic graphs of fixed maximum degree with the first two largest (resp. smallest)

zeroth-order general Randi¢ indices.
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