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Abstract

Let G be a graph with vertex set V (G). The zeroth-order general Randić index

of G is defined as

χα(G) =
∑

v∈V (G)

(dv)
α

where dv is the degree of the vertex v in G and α is a real number. For α > 1

or α < 0, we characterize respectively the n-vertex trees and the n-vertex unicyclic

graphs of fixed number of pendent vertices with the first three largest zeroth-order

general Randić indices, and we also characterize respectively the n-vertex trees and

the n-vertex unicyclic graphs of fixed maximum degree with the first two largest

zeroth-order general Randić indices.

∗Corresponding author. E-mail: zhoubo@scnu.edu.cn

MATCH 
Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 58 (2007) 139-146  
 

                                          ISSN 0340 - 6253 
 



INTRODUCTION

A topological index is a numeric quantity from the structural graph of a molecule.

It is a structural invariant, i.e., it does not depend on the labelling or the pictorial

representation of a graph.

Let G denote a graph with vertex set V (G) and edge set E(G). Let dv denote

the degree of the vertex v in G. Recently, Li and Zheng [1] introduced a kind of

topological index — the zeroth-order general Randić index of a graph G as

χα(G) =
∑

v∈V (G)

(dv)
α

where α is a real number. The cases α = 0, 1 are trivial. For α = 2,−1/2, the

zeroth-order general Randić index χα reduces to the the first Zagreb index M1 [2, 3]

and the zeroth-order Randić index χ0 [4, 5], respectively.

In [6] all trees with the first three largest and smallest zeroth-order general Randić

indices were determined when α ∈ {k,−k,−1/k}, and in [7] all unicyclic graphs

with the largest zeroth-order general Randić index when α ∈ {k,−k,−1/k} were

determined, where k ≥ 2 is an integer. In [8] zeroth-order general Randić index of

unicyclic graphs was investigated in more detail when the length of the unique cycle

is fixed. In [9] the molecular (n,m)-graphs with the largest and smallest zeroth-order

general Randić indices were characterized.

For α > 1 or α < 0 (resp. 0 < α < 1), we characterize respectively the n-vertex

trees and the n-vertex unicyclic graphs of fixed number of pendent vertices with

the first three largest (resp. smallest) zeroth-order general Randić indices, and we

also characterize respectively the n-vertex trees and the n-vertex unicyclic graphs of

fixed maximum degree with the first two largest (resp. smallest) zeroth-order general

Randić indices.

RESULTS

For a graph G, N(v) denotes the set of the (first) neighbors of v ∈ V (G).

If the degree sequence of a graph G is δ1, δ2, . . . , δn, we write D(G) = [δ1, δ2, . . . ,

δn]. Furthermore D(G) = [xa1
1 , xa2

2 , . . . , xat
t ] means that the degree sequence of G

consists of xi (ai times), where i = 1, 2, . . . , t, and we drop the superscript 1 of xi if

ai = 1.

Let G be a graph with D(G) = [δ1, δ2, . . . , δn] such that δi ≥ δj ≥ 2 for some

pair of distinct i, j. Then for vertices u and v such that du = δi, dv = δj and

N(v) \ (N(u) ∪ {u}) �= ∅, let G′ be the graph obtained from G by increasing the
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degree of vertex u by 1 and reducing the degree of vertex v by 1. So D(G′) =

[δ1, δ2, . . . , δi−1, δi + 1, δi+1, . . . , δj−1, δj − 1, δj+1, . . . , δn]. We will say G′ is obtained

from G by replacing the pair (δi, δj) by (δi + 1, δj − 1). For α �= 0, 1, by Lagrange’s

mean-value theorem and noting that αxα−1 is increasing for x > 0 if and only if α > 1

or α < 0, we have

Lemma 1. [9] For the graphs G and G′, χα(G) < χα(G′) if α > 1 or α < 0, and

χα(G) > χα(G′) if 0 < α < 1.

In view of Lemma 1, we consider any topological index f(G) such that f(G) <

f(G′) (resp. f(G) > f(G′)) instead of χα for α > 1 or α < 0 (resp. 0 < α < 1).

We first consider trees with fixed number of pendent vertices.

Theorem 2. Let f(G) be a topological index such that f(G) < f(G′) (resp. f(G) >

f(G′)). Let T be a tree with n vertices, p of which are pendent vertices, 3 ≤ p ≤ n−2.

(i) f(T ) attains the largest (resp. smallest) value if and only if D(T ) = [p, 2n−p−1,

1p].

(ii) For p ≥ 4, f(T ) attains the second largest (resp. smallest) value if and only if

D(T ) = [p − 1, 3, 2n−p−2, 1p].

(iii) For p = 5, f(T ) attains the third largest (resp. smallest) value if and only

if D(T ) = [33, 2n−8, 15], and for p ≥ 6, f(T ) attains the third largest (resp.

smallest) value if and only if D(T ) = [p − 2, 4, 2n−p−2, 1p].

Proof. Suppose that D(T ) �= [p, 2n−p−1, 1p] and v is a vertex with maximum degree.

Then there must be a vertex w �= v such that dw ≥ 3. Let N(w) = {w1, . . . , wl},
where w1 lies on the path from v to w and l = dw. Let Ti = T − ww3 − · · · −
wwi+2 + vw3 + · · · + vwi+2 for i = 1, 2, . . . , l − 2. By the condition of the theorem,

f(T ) < f(T1) < · · · < f(Tl−2). Repeating the operations above, we obtain a tree

sequence T, T1, . . . , Ts with n vertices, p of which are pendent vertices, such that

f(T ) < f(T1) < · · · < f(Ts), and there is no pair of distinct vertices in Ts with degree

greater than or equal to 3. Obviously, D(Ts) = [p, 2n−p−1, 1p]. This proves (i).

Suppose that p ≥ 4. Since Ts is obtained from Ts−1 by replacing some pair (δi, δj)

by the pair (δi +1, δj −1) and D(Ts) = [p, 2n−p−1, 1p], where D(Ts−1) = [δ1, δ2, . . . , δn]

and δi ≥ δj ≥ 3, one can see that D(Ts−1) = [p − 1, 3, 2n−p−2, 1p]. This proves (ii).

Similarly, Ts−2 = T 1
s−2 for p ≥ 6 or T 2

s−2 for p ≥ 5, where D(T 1
s−2) = [p −

2, 4, 2n−p−1, 1p] and D(T 2
s−2) = [p− 2, 32, 2n−p−2, 1p]. Since T 1

s−2 can be obtained from

T 2
s−2 by replacing the pair (3, 3) by (4, 2), we have f(T 2

s−2) < f(T 1
s−2). It follows that
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D(Ts−2) = [p−2, 32, 2n−p−2, 1p] for p = 5 and D(Ts−2) = [p−2, 4, 2n−p−1, 1p] for p ≥ 6.

This proves (iii). �

Now we consider trees with fixed maximum degree. Motivated by [6, Theorem 3],

we prove the following.

Theorem 3. Let f(G) be a topological index such that f(G) < f(G′) (resp. f(G) >

f(G′)). Let T be a tree with n vertices and maximum degree Δ, where n − 2 =

a(Δ − 1) + k − 1, a is an integer, k = 1, 2, 3, . . . , Δ − 1, and 3 ≤ Δ ≤ n − 2.

(i) f(T ) attains the largest (resp. smallest) value if and only if D(T ) = [Δa, 1n−a]

if k = 1 and D(T ) = [Δa, k, 1n−a−1] if k > 1.

(ii) For a = 1 (and then k ≥ 3), f(T ) attains the second largest (resp. smallest)

value if and only if D(T ) = [Δ, k − 1, 2, 1n−3], and for a ≥ 2, f(T ) attains the

second largest (resp. smallest) value if and only if

(a) D(T ) = [Δa−1, Δ − 1, 2, 1n−a−1] if k = 1,

(b) D(T ) = [Δa−1, Δ − 1, 22, 1n−a−2] for Δ = 3 and D(T ) = [Δa−1, Δ −
1, 3, 1n−a−1] for Δ ≥ 4 if k = 2,

(c) D(T ) = [Δa−1, (Δ − 1)2, 2, 1n−a−2] for Δ = 3 and D(T ) = [Δa, Δ −
2, 2, 1n−a−2] for Δ ≥ 4 if k = Δ − 1,

(d) D(T ) = D(T i) where i = 1, 2, f(T i) = max{f(T 1), f(T 2)} with D(T 1) =

[Δa−1, Δ − 1, k + 1, 1n−1−a] and D(T 2) = [Δa, k − 1, 2, 1n−a−2] if 3 ≤ k ≤
Δ − 2.

Proof. Suppose that f(G) < f(G′). The proof for the case f(G) > f(G′) is similar.

Let T be a tree with n vertices and maximum degree Δ. Let D(T ) = [x1, x2, . . . ,

xn]. If Δ > xi ≥ xj ≥ 2, i �= j, then construct a tree T1 by increasing xi by 1

and reducing xj by 1. By the condition of the theorem, f(T ) < f(T1). Repeating

the operation above, we obtain a tree sequence T, T1, T2, . . . , Ts with n vertices and

maximum degree Δ, such that f(T ) < f(T1) < f(T2) < · · · < f(Ts), and there is no

pair yi, yj such that Δ > yi ≥ yj ≥ 2, i �= j, where D(Ts) = [y1, y2, . . . , yn]. Thus

except at most one vertex of degree k for some k = 2, 3, . . . , Δ − 1, all vertices of Ts

have degree Δ, 1. Denote by a, b and c the number of vertices of degree Δ, k and 1,

respectively. Then aΔ + bk + c = 2n − 2, a + b + c = n and b ≤ 1.

If n − 2 ≡ 0 (mod (Δ − 1)), then a = n−2
Δ−1

, b = 0, c = n − a and so D(Ts) =

[Δa, 1n−a]. If n− 1− k ≡ 0 (mod (Δ− 1)), then a = n−1−k
Δ−1

, b = 1, c = n− 1− a and

so D(Ts) = [Δa, k, 1n−1−a]. Hence (i) follows.
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If a = 1, then k ≥ 3 and so D(Ts−1) = [Δ, k − 1, 2, 1n−3].

Suppose in the following that a ≥ 2.

If k = 1, since D(Ts) = [Δa−1, 1n−a], we have D(Ts−1) = [Δa−1, Δ − 1, 2, 1n−1−a].

If k = 2, since D(Ts) = [Δa, 2, 1n−a−1], we have Ts−1 = T 1
s−1 for Δ ≥ 4 or T 2

s−1

for Δ ≥ 3, where D(T 1
s−1) = [Δa−1, Δ − 1, 3, 1n−a−1] and D(T 2

s−1) = [Δa−1, Δ −
1, 22, 1n−a−2]. Note that f(T 2

s−1) < f(T 1
s−1) for Δ ≥ 4. It follows that D(Ts−1) =

[Δa−1, Δ − 1, 22, 1n−a−2] for Δ = 3 and D(Ts−1) = [Δa−1, Δ − 1, 3, 1n−a−1] for Δ ≥ 4.

If k = Δ − 1, then Ts−1 = T 1
s−1 for Δ ≥ 4 or T 2

s−1 for Δ ≥ 3, where D(T 1
s−1) =

[Δa, Δ− 2, 2, 1n−a−2] and D(T 2
s−1) = [Δa−1, (Δ− 1)2, 2, 1n−a−2]. Note that f(T 2

s−1) <

f(T 1
s−1). It follows that D(Ts−1) = [Δa−1, (Δ − 1)2, 2, 1n−a−2] for Δ = 3, D(Ts−1) =

[Δa, Δ − 2, 2, 1n−a−2] for Δ ≥ 4.

If 3 ≤ k ≤ Δ−2, then Ts−1 = T i
s−1 for i = 1, 2, 3, where D(T 1

s−1) = [Δa−1, Δ−1, k+

1, 1n−a−1], D(T 2
s−1) = [Δa, k − 1, 2, 1n−a−2] and D(T 3

s−1) = [Δa−1, Δ − 1, k, 2, 1n−a−2].

Note that f(T 1
s−1), f(T 2

s−1) > f(T 3
s−1). It follows that D(T ) = D(T i) where i = 1, 2,

f(T i) = max{f(T 1), f(T 2)} with D(T 1) = [Δa−1, Δ − 1, k + 1, 1n−1−a] and D(T 2) =

[Δa, k − 1, 2, 1n−a−2] if 3 ≤ k ≤ Δ − 2.

Hence (ii) holds. �

Now we turn to unicyclic graphs.

Theorem 4. Let f(G) be a topological index such that f(G) < f(G′) (resp. f(G) >

f(G′)). Let U be a unicyclic graph with n vertices, p of which are pendent vertices,

2 ≤ p ≤ n − 3.

(i) f(U) attains the largest (resp. smallest) value if and only if D(U) = [p +

2, 2n−p−1, 1p].

(ii) f(U) attains the second largest (resp. smallest) value if and only if D(U) =

[p + 1, 3, 2n−p−2, 1p].

(iii) f(U) attains the third largest (resp. smallest) value if and only if D(U) =

[33, 2n−6, 13] for p = 3 and D(U) = [p, 4, 2n−p−2, 1p] for p ≥ 4.

Proof. Suppose that f(G) < f(G′). The proof for the case f(G) > f(G′) is similar.

Suppose that D(U) �= [p + 2, 2n−p−1, 1p]. There are two vertices v, w such that

dv ≥ dw ≥ 3. Let the neighbors of w be w1, w2, . . . , wl with l = dw. If both v

and w lie on the unique cycle, let w1, w2 be the two neighbors of w on the cycle. If

v lies on the cycle but w does not, let w1 be the neighbor of w on the path from

v to w. If w lies on the cycle but v does not, let w1 be the neighbor of w on
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the path from v to w and w2 be one of the two neighbors of w on the cycle. Let

Ui = U −ww3 −· · ·−wwi+2 + vw3 + · · ·+ vwi+2 for i = 1, . . . , l− 2. By the condition

of the theorem f(U) < f(U1) < · · · < f(Ul−2). Repeating the operations above,

we obtain a unicyclic graph sequence U,U1, U2, . . . , Us with n vertices, p of which

are pendent vertices, such that f(U) < f(U1) < f(U2) < · · · < f(Us), and there is

no pair of distinct vertices in Us with degree greater than or equal to 3. Obviously

D(Us) = [p + 2, 1p, 2n−p−1]. This proves (i).

Since Us is obtained from Us−1 by replacing some pair (δi, δj) by the pair (δi−1, δj+

1) and D(Us) = [p + 2, 1p, 2n−p−1], where D(Us−1) = [δ1, δ2, . . . , δn] and δi ≥ δj ≥ 3,

one can see that D(Us−1) = [p + 1, 3, 2n−p−2, 1p]. This proves (ii).

Suppose that p ≥ 3. Then Us−2 = U1
s−2 for p ≥ 4 or U2

s−2 for p ≥ 3, where

D(U1
s−2) = [p, 4, 2n−p−2, 1p] and D(U2

s−2) = [p, 32, 2n−p−3, 1p]. Note that U1
s−2 can be

obtained from U2
s−2 by replacing the pair (3, 3) by (4, 2). So f(U2

s−2) < f(U1
s−2) for

p ≥ 4. It follows that D(Us−2) = [p, 32, 2n−p−3, 1p] for p = 3 and [p, 4, 2n−p−2, 1p] for

p ≥ 4. This proves (iii). �

Theorem 5. Let f(G) be a topological index such that f(G) < f(G′) (resp. f(G) >

f(G′)). Let U be a unicyclic graph with n vertices and maximum degree Δ, where

n = a(Δ − 1) + k − 1, a is an integer, k = 1, 2, 3, . . . , Δ − 1, and 3 ≤ Δ ≤ n − 2.

(i) For a = 1 (and then k ≥ 3), f(U) attains the largest (resp. smallest) value if

and only if D(U) = [Δ, k − 1, 2, 1n−3], and for k ≥ 4, f(U) attains the second

largest (resp. smallest) value if and only if D(U) = [Δ, k − 2, 3, 1n−3] if k ≥ 5

and D(U) = [Δ, 23, 1n−4] if k = 4.

(ii) For a = 2 and k = 1, f(U) attains the largest (resp. smallest) value if and only if

D(U) = [Δ, Δ− 1, 2, 1n−3], and f(U) attains the second largest (resp. smallest)

value if and only if D(U) = [4, 23, 12] for Δ = 4 and D(U) = [Δ, Δ− 2, 3, 1n−3]

for Δ ≥ 5.

(iii) For a ≥ 3 and k = 1, f(U) attains the largest (resp. smallest) value if and

only if D(U) = [Δa, 1n−a] , and f(U) attains the second largest (resp. smallest)

value if and only if D(U) = [Δa−1, Δ − 1, 2, 1n−a−1].

(iv) For a ≥ 2 and k ≥ 2, f(U) attains the largest (resp. smallest) value if and only

if D(U) = [Δa, k, 1n−a−1], and f(U) attains the second largest (resp. smallest)

value if and only if

(a) D(U) = [Δa−1, Δ − 1, 22, 1n−a−2] for Δ = 3 and D(T ) = [Δa−1, Δ −
1, 3, 1n−a−1] for Δ ≥ 4 if k = 2,
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(b) D(U) = [Δa−1, (Δ − 1)2, 2, 1n−a−2] for Δ = 3 and D(U) = [Δa, Δ −
2, 2, 1n−a−2] for Δ ≥ 4 if k = Δ − 1,

(c) D(U) = D(U i) where i = 1, 2, f(U i) = max{f(U1), f(U2)} with D(U1) =

[Δa−1, Δ − 1, k + 1, 1n−1−a] and D(U2) = [Δa, k − 1, 2, 1n−a−2] if 3 ≤ k ≤
Δ − 2.

Proof. If a ≥ 3 or if a = 2 and k ≥ 2, then by similar arguments as in the proof of

Theorem 3, (iii) and (iv) follow.

Suppose that a = 1. Then n = Δ+k− 2 with k ≥ 3. Let D(U) = [x1, x2, . . . , xn].

We claim that D(U) �= [Δr, 1r] for any integer r with 1 ≤ r ≤ n − 1. Otherwise

rΔ + (n − r) = 2n, which is obviously impossible for r = 1. Suppose that r ≥ 2.

Then rΔ − r = Δ + k − 2 ≤ 2Δ − 3 from which we have (r − 2)Δ ≤ r − 3, also

a contradiction. Similarly, we have D(U) �= [Δr, l, 1n−r−1] for any integer r and l

with 1 ≤ r ≤ n − 2 and 2 ≤ l ≤ Δ − 1. If D(U) �= [Δ, k − 1, 2, 1n−3], then by

repeating the operation to replace some pair (xi, xj) by the pair (xi + 1, xj − 1) for

Δ > xi ≥ xj ≥ 2, we obtain a unicyclic graph sequence U,U1, . . . , Us with n vertices

and maximum degree Δ, such that f(U) < f(U1) < · · · < f(Us), and except two

vertices of degree l and 2 respectively, all vertices of Us have degree Δ, 1, where l is

an integer with 2 ≤ l < Δ. Let r be the number of vertices of degree Δ in Us. Then

rΔ+ l+2+(n−r−2) = 2n, i.e., (r−1)(Δ−1) = k− l−1, from which we have r = 1

and l = k − 1. So D(Us) = [Δ, k − 1, 2, 1n−3]. Furthermore Us−1 = U1
s−1 for k ≥ 5 or

U2
s−1 for k ≥ 4, where D(U1

s−1) = [Δ, k−2, 3, 1n−3] and D(U2
s−1) = [Δ, k−2, 22, 1n−4].

Since f(U1
s−1) > f(U2

s−1) for k ≥ 5, (i) follows.

Finally, suppose that a = 2 and k = 1. Then n = 2(Δ − 1) with Δ ≥ 4. By

similar argument as above, f(U) attains the largest value if and only if except two

vertices of degree l and 2 respectively, all vertices of U have degree Δ, 1, where l is

an integer with 2 ≤ l < Δ. It is easy to see that the number of vertices of degree Δ

is one and l = Δ − 1. Now (ii) follows easily. �

If we replace the part “Let f(G) be a topological index such that f(G) < f(G′)

(resp. f(G) > f(G′))” in Theorems 2–5 by “Let α satisfy α > 1 or α < 0 (resp.

0 < α < 1 )” and replace the topological index f of other places in Theorems 2–

5 by χα, then by Lemma 1, the corresponding results follow. Thus for α > 1 or

α < 0 (resp. 0 < α < 1), we have determined the n-vertex trees and the n-vertex

unicyclic graphs of fixed number of pendent vertices with the first three largest (resp.

smallest) zeroth-order general Randić indices, and the n-vertex trees and the n-vertex

unicyclic graphs of fixed maximum degree with the first two largest (resp. smallest)

zeroth-order general Randić indices.
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