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Abstract

The Randié index of an organic molecule whose molecular graph is G is the sum of the
weights (d(u)d(v))~? of all edges uv of G, where d(u) denotes the degree of the vertex u of
the molecular graph G. In this paper, we investigate some minimal Randié index properties
and give the tree with the third minimal Randié¢ index among the trees with n vertices and
k pendant vertices.

1. Introduction

Mathematical descriptors of molecular structure, such as various topological indices, have
been widely used in structure-property-activity studies (see [1, 2, 3]). Among the numerous
topological indices considered in chemical graph theory, only a few have been found noteworthy
in practical application (see [4]). One of these is the connectivity index or Randi¢ index. The
Randi¢ index of an organic molecule whose molecular graph is G is defined (see [5, 6]) as

R(G) = Y (d(u)d(v)) "2,

u,v

where d(u) denotes the degree of the vertex u of the molecular graph G, the summation goes
over all pairs of adjacent vertices of G . In Randi¢’s study of alkanes: he showed that if alkanes
are ordered so that their R(G)-value decrease then the extent of their branching should increase
(see [7]). There are many works to study the trees with extremal Randi¢ index and the bounds

in some graph sets (see [8]).
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In this paper, we are interested in the Randi¢ indices for trees. First we provide a survey of
some known results concerning our results. Let T be a tree of order n. Yu (see [9]) gave a sharp

upper bound of
R(T) < %H
In[10], trees with large general Randi¢ index are considered. For a tree T of order n with k
pendant vertices, the sharp upper bound on Randi¢ index in the case 3 <k <n—2,n >3k —2
was given by Zhang, Lu and Tian(see [11]). In order to illustrate some more results on the
minimal Randi¢ index, we need some notations as follows.
Let K1 x(p1,p2,--+.Ps), (s < k) be a tree created from the star Ky of k + 1 vertices by
attaching paths of lengths pi, ps,---,ps to s pendant vertices of K7, respectively(see Fig.
1(a)). Let K be the tree created from a path of length n —k — 1 by adding s pendant edges

and k — s pendant edges to two ends of the path, respectively (see Fig. 1(b)).Denote
s = 1K Lk(p1,p2, - 5ps) - pi >0, Yy pi=n—k—1},
Sk = Uk ST
Uni = {K::k75 1s=2,..., L%J}v
Tni ={T :T is a tree with n vertices and k pendant vertices }.

Clearly’ STI,J(H U'n,yk, Cc Tn,k~

ST D)

(a) Klﬁk(php% e rps) € ;ﬁk—s (b) Kg’k_s € Un,k‘

Fig. 1

The trees with the minimum and the second minimum Randi¢ index in 7, ;, are characterized
by Liu, Lu and Tian(see[12]) and Li et al.(see [8, 13]), respectively. A tree T € T, has the
minimum Randi¢ index if and only if T' € S{l,kfl and its Randié¢ index

R(T) = %(n — k) %(k +
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And a tree T' € T, 4 has the second minimum Randi¢ index if and only if " € S3,_, and its
Randi¢ index

R(T) = 5(n—k)+ - (k+ VI 2) + V3 3.

1
Vi
Furthermore, we investigate some minimal Randié¢ index properties, and characterize the tree

K3, _, with the third minimal Randi¢ index and its Randi¢ index

2
V3 V6

[y
[=2)
N W

2. Notations and Lemmas

Let G(V,E) be a graph with vertex set V and edge set E. Suppose z € V(G), S C
V(G). Denote the neighborhood of x by Ng(z), Ng(S) = Uyes Na(v) and Vi(G) = {v : v €
V(G),d(v) =| Ng(v) |=i}. The maximum degree of G is denoted by A(G). Let T be a tree.
For z,y € V(T), we use T — z or T — zy to denote the graph which arises from the tree T'
by deleting the vertex € V(T) or the edge xzy € E(T). Similarly, T + zy is a graph that
arises from T by adding an edge zy ¢ E(T). A vertex x € V(T) is called a pendant vertex if
z € Vi(T). An edge in E(T) is called a pendant edge if one end of the edge is in V;(T'). A path
P = wvgvy ---vs of T is called a chain of T if s > 1 and d(v1) = -+ = d(vs—1) = 2. If d(vg) = 1,
d(vs) > 3 or d(vs) =1, d(vp) > 3, then P is called a pendant chain of T.

In order to compare the Randi¢ index between trees, we need two functions with monotonous

properties in the following lemma.
Lemma 1.

(1) Let F(z,b) = f(z,b) — f(z + 1,b) where f(z,b) = /z + % If z > 0 and b < 0, then

F(z,b) is a monotonously increasing function.

(2) Let G(z) = % - \/zlj If > 3, then G(z) is a monotonously decreasing function.

Proof. By derivation to functions F(z,b) and G(z) in x, we obtain

F(2,b) 1 b 1 n b

z,b) = —-— -

* 2y 2vzd 2V + 1 2y/(z+1)°
1.1 1 b, 1 1

= E e R T

> 0
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when x > 0 and b < 0.

, 3 1

G = SUE Ty
PR S
RGN
<0

when z > 3.

Therefore the functions F(z,b) = f(z,b) — f(x + 1,b) and G(x) are monotonous increasing
and monotonous decreasing respectively in z. ]

Lemma 2. Let T € T, 5. If T has s(> 2) pendant chains, then there exist T € T, with
s — 1 pendant chains such that R(T) < R(T).

Proof. Assume that 7" has s pendant chains, and P = vouy---vp, P = vgvf---v]
(h,I > 2) are its two pendant chains with d(vp), d(vj) = 1 and d(vp),d(v]) > 3. Let T =

T — vp—10p—2 + vovh. Then T € T, with s — 1 pendant chains (see Fig.2).

O I S O

Vo V1 Vp Up Up—1Vp—2V0 Vh—2 Vo Vg V1 Up Up Up—1

T T
Fig. 2

It is not difficult to check that

R(T) - R(T) = (

Therefore R(T) < R(T). ]
It is not difficult to check that R(T1) = R(T:) for T4, Tb € Sik—i» =1, 2,...,k. The
Randi¢ index ordering of trees in S, is obtained immediately by Lemma 2.

Corollary. For any 11,75 € S, 1, suppose T} € SZLk—z and T, € S]T-fkfj, 1 <j<k.



- 107 -

(1) If i = j then R(T1) = R(T»);
(2) if i < j the R(TY) < R(Ty).

In order to characterize the tree with the third minimum Randié¢ index, we first characterize

two extremal properties of trees in T, \ (S7)_1 U S35 _o)-

Lemma 3. Suppose T' € T \ (S74_ USS_2), k > 4. If R(T) = min{R(T) : T €

T\ (74 US5 o)}, then T ¢ Sy .

Proof. By contradiction. Choose a tree T € T, such that R(T) = min{R(T) : T €
Tng\(ST k1 USS o)} HT € Sy, then T € S35 by the choice of T and Corollary. It is easy

to obtain that R(T) = g(n—k)+ = (k+ 75 —3)+ 55 —2. Clearly, K35 € Tns\(ST1 US5),

and we have

R(T) - R(K3) o)
Since F'(k—1, % —1) is a monotonously increasing in k by Lemma 1(1). Moreover, %(% —

is monotonously increasing in k. Thus

Z(L-n-FU -+ 5 -F- L4
F - D-F(l, -0+ 5 -2 - J -5
R(T) — R(K3y_9) > %(%—1)—F(137%_1)+%_%_%_%7
F(—D-F8, -+ 5 -Z - -3,
Pl =D PR D+-d-gd

>0 for £ <100 .

if4<k<5
if6<k<8

f9<k<14
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For k > 100 , we have

R(T) — R(Kjjy_»)

_ ik(m%fg) kl_l(H%,zH%,%,%,g
e e e e e e e
> (1 71)G(101)+—7%7%7%

> 0

By Lemma 1(2), G(k) is monotonous decreasing in k. This contradicts to R(T) = min{R(T) :
T€Tni\ (STg_1US3y o)} Consequently, T' ¢ Sy 1. n

Lemma 4. Suppose T € Ty \ (ST_1US5, o), b > 4. If R(T) = min{R(T) : T €
Tog \ (S7-1US5)_5)}, then T contains no any pendant chains.

Proof. By contradiction. Assume that T € Ty \ (S7)_1 USs,_o) with R(T") =
min{R(T) : T € Tk \ (S74_1US5 s o)} and T has a pendant chain P = vgv; ---v; with
d(vg) = 1. There are at least two vertices of degrees greater than 2 in the tree T by Lemma 3.
Therefore there exists an edge or a chain P’ = vjv} ---v] (I > 1) with d(v}), d(v]) > 3. Let T be
obtained from T' — {v,v1,---,vs_2} by using the path P” = vy} ---vj, ., of length I +s5—1
instead of the path P’ = vjv] --- v} (see Fig. 3). Then T € Ty \ (ST USH, o)

ORONEE N ONNO)

A A
Vg V1 U, Us Us—1 V1 Vg Uy U1 Vg U3 Vppg_q Us Us—1

T T

Fig. 3
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When | =1,
— 1 1 1 1 1
R(T)-R(T) = —
=R V(wh)d(vy) ") R 2(vh)  \[2d(v])  V(vs)
1 1 1 1 1 1 1
= (- ﬁ)(ﬁ - d(vs)) + (ﬁ - d(u()))(ﬁ - d(’t}l))
> 0
And when [ > 2,
— 1 1 1 1
RO =BT = 5% Ry Vi~ Vaw)
1 1 1
- R v
> 0
This is a contradiction to R(T) = min{R(T) : T € Ty \ (S7}_1US5 o)} n

Lemma 5 [8,13]. Suppose K s Kfpy € Upge If s <t < k—t, then R(K;L’kfs) <
R(K{y)-

3. Extremal Property of K}, _,

Clearly, to determine that K3 _o has the property of the third minimum Randi¢ index
in Ty (3 < k < n—3)is equivalent to determine it has the minimum Randi¢ index in
T \ (kai1 US;,H). Suppose T' € T, . Note that if £ = 2, then T is a path, and hence
R(T) = %‘573; if k = n—1, then T'is a star, and hence R(T') = v/n — 1. Moreover, T € S35 in
the case k=3 andn =5 T € S§,J S5, in the case k = 3 and n = 6; R(T) = &\/g/g orT e Sy
in the case k = 4 and n = 6. If k = 3 and n > 7, then we have 7,, 5 = S5 S5, U S%(. Thus,
for any T; € Sy, _; (1 <4 < 3), we get R(T1) < R(T») < R(T3) by Corollary. If k = n — 2 and
n > 7, then we have 7y, ,,—9 = Up 2. Thus R(K%, 4) < R(K%,_5) < --- < R( [LH%HHT,QW)
by Lemma 5. Therefore we just need to show the final case 4 <k <n—3and n > 7.

Theorem.  Suppose T € T, 1, 4 <k <n-—3,n>7. If R(T) is the third minimal Randié

index in Ty , then T = K, _, and

+77

2
V3 V6

—_
(=)
N W
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Proof. For convenience, denote

o(n, k) = %(n B+

It is easy to obtained that

en—1,k—1)—p(n,k)=F(k—2, 1)

1
V2
and

R(KS) 5) = %(nfk) +ﬁ(1€+ % ~2)+ % + % - g = p(n, k).

Choose a tree T € Ty \ (S7y_1 US5,_o) such that R(T) = min{R(T) : T € Ty \
(STr-1US3s o)} By Lemma 3 and Lemma 4, T ¢ S, 5, and the tree 7' contains no pendant

chain.

We now prove the conclusion by induction on k. When k = 4, we have A(T) = 3. Otherwise
T € Spa, a contradiction. Furthermore, |V3(T)| = 2 and V3(T) € Np(V1). Thus T = K.
Assume that k& > 5 and the result holds for ¥ — 1. Next, choose a vertex u € Np(V;) such
that d(u) is the maximum and 3 < d(u) < k — 1. Let Np(u) N Vi(T) = {v1,---, v }(r > 1),
Nr(u)\Vi(T) = {x1, -+, x4}, and d(z;) = d; (1 < j<t—7r). Thent—7r > 1 (T ¥ Ky pn_1)
and dj >2 (1 <j<t—r). Let T=T-v. ThusT =T —v; € To-1p-1\ (S;’;;US;;L,})
and R(T) > ¢(n — 1,k — 1) by the hypothesis of induction. Therefore

—r r—1 =1 1 1
R(T) = R(T _— I
(T) R Y e R0 Dby v by ey
_ r r—1 1 1 1
Z R(T)—Fﬁ—i,ﬁ“rﬁ(t—T)(W— ﬁ—l)
r r—1 1 1 1
Z W(n717k71)+ﬁ7m+ﬁ(tir)(ﬁf t_l)
= k+Fk211Ft111+11t 11 !
= k) +F(k- 5 )—F(t- 5 ) (ﬁ* E—r— )(W* )
> cp(n,k)+F(k72,%fl)fF(tfl,%fl)

> p(n, k),

since k —1 > ¢ and F(z, % — 1) is monotonously increasing according to Lemma 1(1). R(T) =

©(n, k) if and only if all inequalities above must be equalities. Thus we have R(T) = ¢(n —
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1,k—1),k—1=t1t—7=1and d; = 2. By the induction hypothesis, T = Kg‘;i:; Therefore

T = K35 and the proof is completed.
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