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Abstract 

 An artificial neural network-based model was developed to predict the performances of the 

p,p’-dinitrodibenzyl (DNDB) electroreduction under different operating conditions. Six feed-

forward networks with a three-layer structure were trained and then optimized through the 

validation process. The performance of the neural network was examined with respect to the 

learning coefficient, number of hidden nodes and number of iterations required to reduce the 

total error to an acceptable level. The best predictions were obtained with a neural network 

having an 8-12-2 architecture and “tansig”, “tansig” as threshold functions. The 8 nodes of the 

input layer correspond to two input variables, current density and quantity of electricity 

passed, and six state variable, temperature, initial concentration of DNDB in the electrolyte, 

mass transfer  coefficient,  electrode  surface  area,  number  of  electrons  involved,  and  

volume of the catholyte. The 2 nodes of the output layer correspond to current efficiency and 

yield of the main reaction product, the p,p’-Diaminodibenzyl (DADB).  
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1. Introduction 

   p,p’-Dinitrodibenzyl electroreduction to p,p’-Diaminodibenzyl is a complex 

electrochemical reaction (Olea, 1996; Danciu, 1998). This reaction was carried out at 

constant current density in a divided batch electrolyzer, with a rapid external recirculation of 

the hydro-alcoholic electrolyte at 333K (Oniciu, 1990). During the electroreduction of 

DNDB, two side chemical reactions, namely a condensation reaction and a reaction that lead 

to the formation of quinoine-imine intermediates, occur as well. These intermediates can 

afterwards be electroreduced, even easier than DNDB. Thus, the analytical 

(phenomenological) modelling of the DNDB electroreduction, i.e., via mass, energy, 

momentum and potential balance equations, becomes difficult. Also, the exhaustive 

experimentation required to collect the kinetic data needed to the analytical modelling of the 

process turns out to be cumbersome and prohibitively costly.  

 In recent years, the artificial neural networks (ANNs) based modelling approach has 

opened a new avenue for developing empirical models useful to predicting the performance 

of the process outside the experimental domain. Especially, neural networks proved to be a 

powerful tool for catalyst development and optimization. Many applications evidenced the 

strong capability of the neural networks to provide relations between the catalyst 

components and its activity. As for example, an artificial neural-network analysis has been 

applied to the prediction of conversions and yields in the catalytic reaction of decomposition 

of NO into N2 and O2 over Cu/ZSM-5. With a proper network structure and training sets, the 

evolved neural-network system provides plausible activities of catalysts from a discrete and 

finite number of experimental data. A two- or three-dimensional graphical expression of the 

calculated data seems to be useful to reveal the relationship between the catalytic activity 
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and reaction conditions. Therefore, they can be utilized in finding optimum reaction 

conditions or in examining effects of various factors on catalytic reaction (Sasaki, 1995).  

Based on the properties of neural network, improved back-propagation networks were 

developed and used for the design of the best catalyst for propane ammoxidation (Hou, 

1997), methane oxidative coupling (Huang, 2001), and preferential CO oxidation in excess 

hydrogen (Omata, 2005). 

Besides of the prediction of catalytic activity, neural networks were successfully used for 

modelling the kinetics of catalytic reactions, models applicable to catalyst scale up and 

process control and optimization in the frame of combinatorial catalysis (Serra, 2003). 

Moreover, in the frame of high-throughput synthesis, the ANN kinetic models for a series of 

zeolites aided at the rapid determination of the occurrence and crystallinity of zeolite beta 

and competing phases (Moliner, 2005). 

On the other hand, a neural network has been found relevant for the estimation of acid 

strengths of mixed oxides, and it has been shown that not only the interpolation but also the 

extrapolation of given acid strength data is possible within reasonable experimental error 

(Hattori, 1995). 

 The ANNs being nonparametric models have the advantage that the model coefficients can 

be estimated directly from the samples of process input-output data. 

   The present paper reports the artificial neural network model developed for predicting the 

current efficiency and DADB yield as a function of the electrochemical reactor operating 

conditions, such as current density, quantity of electricity passing through the reactor, 

temperature, initial concentration of DNDB, electrode surface area. 
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   As the current efficiency is a measure of the electrochemical reactor’s ability to utilize 

current in favor of one specific component, it could also be a measure of the electrochemical 

process selectivity. 

 At our best knowledge, it is for the first time when the ANN approach is used for modeling 

electrocatalytic data.  

2. Artificial neural network-based modelling 

  Artificial neural network is a system loosely modeled on the human brain. It consists of 

many processing elements, neurons or nodes that work in parallel. Nodes are connected to 

each other in layers (input, hidden and output), and the layers are interconnected. A 

“neuron” is essentially a regression equation with a non-linear output, each neuron (except 

those of the input layer) having the task to process the signals received from its dendrites to 

its own threshold function and to output the answer through its axon to the rest of the 

neurons. Therefore, as it is shown in Fig. 1, each node has two features: (1) the activity a (or 

state of the node) resulting from the inputs and (2) the output, which is a function of the 

activity, f(a). The activity of node j is simply the weighted sum of the inputs given by: 

aj(X) = Wj
T X                                

where X = (X1, X2, ..., Xn, 1)T is the measurement or input pattern vector, which reflects the 

state of the process and Wj
T = (W1j, W2,j, ..., Wn+1 j) is the weight or gain vector. The output 

function f(aj) maps the current state of activation to an output signal (Hoskins, 1998). 
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Fig. 1. Features of the artificial neuron. 

 ANNs have been applied in solving a wide variety of problems. But, in order to “fit” a 

particular ANN to a particular problem it must be trained (or learned) to generate a correct 

response for a given set of inputs (Mitchell, 1997).  Learning (or training) an ANN means that 

if one gives a training set of known pairs of input data and output data, the ANN calculates a 

set of output data from the given set of input data, and it iteratively adjusts its own network 

patterns by the training algorithm so as to make the calculated output data as close to the given 

output data as possible (Kito, 1994). The performance of the network is then compared by 

evaluating the error function using an independent validation set, and the network having the 

smallest error with respect to the validation set is selected. This approach is called the holdout 

method. Since this procedure can itself lead to some over fitting to the validation set, the 

performance of the selected network should be confirmed by measuring its performance on a 

third independent set of data called a test set. Learning in the artificial neural networks can be 

supervised or unsupervised. Supervised learning means that the network has some information 

present during learning (training) to tell what the correct answer should be. In contrast, 

unsupervised learning means that the network has not such knowledge of the current answer 

and thus cannot know exactly what the correct output should be (Bhagat, 1990).  
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    Two supervised learning algorithms were  tested for the off-line training of our six multi-

layer feed-forward proposed networks: the error-back propagation algorithm (EBP) 

(Rumelhalt, 1986) and the Levenberg-Marquardt algorithm (Hagan, 1994). The EBP 

algorithm is based on a gradient descent technique known as the generalized delta rule (GDR), 

while the Levenberg-Marquardt algorithm is based on a non-linear optimization technique 

(Freeman & Skapura, 1991). Because the Levenberg-Marquardt algorithm had the fastest 

convergence, we used this algorithm only in our further attempts to design the best ANN for 

our purpose.       

        Designing an ANN consists of arranging neurons in various layers, deciding the type of 

connection among neurons for different layers, as well as among the neurons within a layer, 

deciding the way a neuron receives input and produces output, and determining the strength of 

connection within the network by allowing the network to learn the appropriate values of 

connection weights by using a training data set. 

3. ANNs approach for the DNDB electroreduction 

   For the ANN-based modelling of the DNDB electroreduction, six feed-forward networks 

with eight input - two output neuron structure were designed. The reactor operating 

conditions represented by the eight inputs are: input I-current density, i, (A/m2), input II-the 

quantity of electricity passed, Qp, (C), input III-temperature, T, (K), input IV-initial 

concentration of DNDB in the electrolyte, C°
DNDB, (mol/m3), input V-mass transfer 

coefficient, Km, (m/s), input VI-surface electrode area, A, (m2), input VII-number of 

electrons involved in the DNDB electroreduction, n, and input VIII-volume of catholyte, V, 

(m3). The two output neurons for each of the six networks represented the calculated current 

efficiency, CEc, and calculated yield of DADB, YcDADB. Measured current efficiency, CEm 
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and measured DADB yield, YmDADB , were obtained through the quantitative analysis of the 

experimental data  of product distribution. 

   The number of nodes in the hidden layer is not fixed and requires to be optimized. 

   The six neural networks were trained and optimized using the experimental data (inputs) 

given in Table 1. The training set consisted of sixteen patterns. Initial weights assigned 

randomly between ±0.1 worked best for this system. The validation set consisted of three 

patterns. The performance of the neural network was examined with respect to the learning 

coefficient, number of hidden nodes and number of iterations required to reduce the total 

error to an acceptable level. Along with the initial process conditions used for the training of 

the networks, Table 1  presents   the measured current efficiency,  CEm,  and  yield, Ym DADB, 

as well as the calculated, CEc, and YcDADB, respectively, and the total error.  

Pattern 

No. 

i [A/ m2] Qp*10-5[C] CEm[%] CEc[%] YmDADB[%] YcDADB[%] Total Error 

1 500 1.30 80.70 80.64 81.03 81.37 -0.28 

2 1000 0.90 74.50 74.72 71.90 72.05 -0.37 

3 1000 1.45 82.29 82.09 70.34 70.63 -0.09 

4 1000 1.50 90.27 91.07 88.23 87.55 -0.12 

5 1000 1.80 83.78 83.62 85.52 85.65 -0.03 

6 1000 2.30 56.82 56.89 77.61 77.75 -0.21 

7 1500 1.50 85.68 85.69 76.25 76.18 0.06 

8 1500 1.90 80.26 80.24 89.11 89.09 0.04 

9 2000 0.63 59.92 59.99 90.55 90.75 -0.27 

10 2000 0.90 48.12 48.57 46.05 46.59 -0.85 

11 2000 0.92 71.90 71.48 68.73 68.35 0.80 

12 2000 1.25 91.80 91.10 67.17 67.95 -0.01 

13 2000 1.40 72.27 72.39 79.09 79.88 -0.90 

14 2000 1.80 69.84 69.79 74.42 74.53 -0.06 

15 2000 1.90 65.50 65.43 76.19 76.98 -0.72 

16 2000 2.00 62.04 62.07 71.60 72.58 -0.83 

Table 1. Measured and calculated current efficiency and DADB yields for different current 
densities and quantities of electricity passed 
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We did not include in Table 1 the initial values for the inputs III-VIII because their values 

were not changed from experiment to experiment. They were: T = 333 K, C°
DNDB = 229 

mol/m3, Km = 1.37 10-5 m/s, A = 1.76 10-2 m2, n = 12, and V = 1.5 10-3 m3. 

 The network having 12 neurons in the hidden layer and as threshold functions the sigmoid 

activation functions ”tansig”, “tansig”, gave the best performance (smallest error with 

respect to the validation set), as it shown in Table 2.  

CEm[%] CEc[%] YmDADB[%] YcDADB[%] 

87.28 87.85 75.29 75.32 

94.38 93.66 85.78 85.63 

90.19 91.28 76.25 75.99 

Table 2.  Results obtained during the validation procedure for the ANN which gave the best 
results (8-12-2 architecture, “tansig”,” tansig”). 

It should be added that ANNs are not unique, that is many nets can produce identical outputs 

from prespecified inputs (Himmelblau, 2000). 

4. Simulation results

   Simulation studies were then performed in order to check if the ANN developed here 

could be used for the prediction of the current efficiency and product yield under other 

reactor operating conditions, outside its training regime. 

   Figures 2 to 5 present the results of our simulation studies. We studied the influence of 

current density at constant quantity of electricity passed as well as the influence of the 

electricity passed at constant current density on the current efficiency and DADB yield. The 

simulation results were consistent with the experimental results.  
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   By varying the current density between 500 A/m2 and 2000 A/m2, the response of the 

electrochemical process in respect with the current efficiency strongly depends on the 

quantity of electricity (Fig. 2).  
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 Fig. 2. Variation of  the ANN predicted current efficiency with current 
density at constant amount of electricity passed. 

By passing through the reactor of some relatively small quantities of electricity (Qp= 0.5*105

and 1*105 C, respectively), an almost linear increase of the current efficiency with current 

density was observed. In this region the side reactions are less probable. By increasing the 

amount of electricity passed through the reactor (that means the increasing of the reaction 

time, too) the side reactions are more likely to happen. If the reaction time is long enough, 
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the quinoine-imine intermediates formed through the side reaction accumulated, their further 

electroreduction to the cathode was then  possible.  

   As for the situation presented in Fig. 3, the conclusion was evident: ANN could detect the 

existence of an optimal reaction time. Moreover, as the maximum of the CEc is obtained for 

current densities about 1600 A/m2, the simulation results are very consistent with the 

experimental ones. The experimental value for the optimum current density was 1550 A/m2. 

The same value was obtained using an optimization procedure (Oniciu,  1990). 
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 Fig. 3.  Variation of  the ANN predicted current efficiency with electricity 
passed at constant current density. 

 As regarding the influences on the DADB yield, the conclusion was: the maximum yield 

could be obtained in the conditions of a current density of about 1500 A/m2 (the same value 
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like in the case of  maximum current efficiency) but for Qp = 2*105 C, so the reaction time 

should be two times longer (Fig. 4 and 5). Of course, if the time is longer we could obtain a 

bigger amount of DADB, but this affects the selectivity (once the reaction time is longer the 

side reactions are more favorable). 
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 Fig. 4. Variation of the ANN predicted DADB yield with current density 
at constant amount of electricity passed. 

   We have found interesting features by analyzing the shape of the curves presented in Fig. 

5. As it can be seen in Fig. 6, all these curves seem to have the same shape (they are almost 

parallel). We can say that in this region of current densities the reaction mechanism was the 

same. We are only talking about the direct electroreduction of the DNDB without 

considering the DNDB electrocatalytical hydrogenation. But, at higher current densities and 
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higher quantities of electricity passed, this process occurs and it is competitive with the H2

formation process. 

0.5  1 1.5  2 2.5

-20

0

20

40

60

80

100

i = 2000 A/m2

i = 1200 A/m2
 

i = 1500 A/ m2

i = 800 A/m2 

i = 500 A /m2 

Yc [%]

Qp *10-5 [C] 

Fig. 5. Variation of the ANN predicted DADB yield with electricity  passed at 
constant current density. 
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Fig. 6. The shape of the curves showed in Figure 5.
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    Fig. 7. a) Contour plots for Cec = f (i, Qp); b) Contour plots for Yc = f (i,  Qp). 

  Next simulation step was to vary both the current density and the quantity of electricity 

passed.    

  Fig. 7 presents as contour plots, the 3D representations of CEc  and Yc, respectively, versus 

Qp and i. Simultaneously, a good current efficiency and a good yield could be obtained at Qp

about 0.8*105 C and i about 1480 A/m2. 

 Experimental measurements of current efficiency and DADB yield performed using these 

values for input parameters revealed a good agreement between experimental and ANN 

predicted output data. 

   Therefore, the developed ANN proved to be able to predict the behavior of our complex 

reaction system. 

5. Conclusion 

 This study proves that ANN can be successfully used for the simulation of the behavior of 

a complex electrochemical process, allowing in the same time the determination of the 
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optimal operation conditions. We have carried out simulations varying one by one the 

variables and the two variables at once, current density and quantity of electricity, in fact 

imposing different reaction rates and different reaction times. We observed that the 

predictions, which are in fact related to the conversion and the selectivity of the 

electrochemical process, improve significantly when the two variables were used for 

simulation.   
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