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Abstract

Some of the most popular multicomponent models for the prediction of surface free energies
and adhesion works share the same typical mathematical form. The general methods for
the computation of liquid and solid components are illustrated. It is shown that the
component estimate may take great advantage from application of Principal Component
Analysis techniques, owing to the characteristic structure of adhesion work equations. The
related problem of scale multiplicity is also discussed as a consequence of the symmetries
involved in the model equations of adhesion work and surface free energy. Special attention
is paid to the specific cases of van Oss-Chaudhury-Good acid-base theory, Qin and Chang

model, extended Drago theory.
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1. Introduction

Multicomponent models play an important role in the description of the interfacial inter-
actions of many materials and, more specifically, in the prediction of the solid-liquid work
of adhesion and surface free energy of solid surfaces. The idea of describing the surface
interaction of two materials by means of a certain number of “components” pertaining to
contributions of different physico-chemical nature is shared my many models proposed in
various years. One of the most known and succesful multicomponent models 1s van Oss-
Chaudhury-Good (vOCG) theory! ~%1, which expresses the work of adhesion of a liquid /

on a solid s as

'[/Va(lh _ 2{\//‘7%‘@'7[,/”/+\/7-;F717+ ,\’,‘;»’/i’] (11)

while the surface tension of the liquid and the surface free energy of the solid take the form

Y _ LW [+ Y LW
=0 2V Ys = v +2

respectively. In the above relationships the superscript LW denotes the Lifshizt-van del

(1.2)

Waals components of the materials, related to dispersive interactions, whereas + and —
label the acidic and the basic components, which take into account the acid-base interac-
tions between electron-donor (basic) and electron-acceptor (acidic) sites of the interacting
molecules acidity and basicity are thus understood in a Lewis’ sense. All the model
equations reflect the intrinsic complementarity of acid-base interactions. But long before
vOCG, in the late 60s, a prototype of multicommponent theory was already proposed by
Owens and Wendt[™l (OW), whose aim was to determine the specific contribution of dis-
persive and “polar” interaction to the whole work of adhesion through the definition of

suitable dispersive and polar contributions for each material, in such a way that
— ~d P v = ~% A
T= Vs = Ve T8

for liquids and solid respectively. The work of adhesion becomes, accordingly,

wedt = oy Jyaaf ]
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a sort of geometric-mean rule separately applied to dispersive and polar components. From
this point of view the theory can be easily extended, for instance to take specifically into

account hydrogen-bonding interactions

radh ‘ )
Wt = 2\l v+
d ) H d ) H
M= Yo = v+
by introducing further appropriate components, labelled by H. Although relatively aged,
OW theory is still currently applied with satisfactory results, even in very sophisticated
and intriguing experimental contextsl®]. More recentlyl® 1 Qin and Chang (QC) have

revised vOCG theory and proposed a — in principle more general — new three-parameter

model, whose equations can be put into the form

1 @ 3 a
= 5(Pld)2 - Plb Vs = (Pg)z—PsPsb

1
2
wadh = pipt — (PP + PP

for liquid surface tension, solid surface free energy and solid-liquid work of adhesion, the
superscripts d, a and b corresponding to LW-dispersive, Lewis-acidic and Lewis-basic
components respectively. Although developed not to predict adhesion work or surface free
energy, other models present a structure very similar to that of the previous ones. A well-
known case is Drago’s theory'?~"". Drago distinguishes "acidic” and "basic” solvents
(electron acceptors and donors), each characterized by two variables in such a way that

the enthalpy of adduct formation for any acceptor-donor pair is written as
—AH = CsCp+ EsEp

where the subscripts A and B indicate acceptor and donor and E and C represent electro-
static and covalent contributions, respectively. Similar empirical relationships, but for free

energy, have been obtained by electrochemical techniques by Edwards!*], Mulliken®) and

Foss7. Drago’s theory for enthalpy of adduct formation can be readily extended!8] o
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take into account the possible co-existence of acidic and basic sites in the same molecule,

by conceiving an equation of the form
—~AH = 040’3 + CBC;‘ + EAE’B + EBEA .

Even more general models, with an analogous formulation, are the LFERs (Linear Free
Energy Relationships). In recent papers!'®2% it has been emphasized that from a math-
ematical point of view the GvOC theory can be classified in the realm of Linear Free
Energy or Solvation Energy Relationships (LFER or LSER)[21722], where a thermodynam-
ical quantity ), pertaining in this case to Lewis acid-base properties of two materials X

and Y, is expressed as a sum of pairwise products of some material coefficients

Q=> XiV;.

() may assume different meanings according to the kind of application, it may be a free
energy or an enthalpy, but this is not mandatory. Typically the index ¢ specifies the class
of the coefficient: dispersive, acidic, basic, etc, whereas symbols X and Y denote the
interacting materials. These kinds of relations are widely employed in physical organic
21,22] [12]

chemistry! , as is done in the acid-base theory by Dragol'<.

All the multicomponent models previously listed can be expressed as bilinear or quadratic
forms of components, for adhesion work and surface free energy respectively. Not all
the multicomponent theories are constructed in this way; an interesting exception is for
instance the model by Wul?*?4, who distinguishes dispersive and “polar” contributions
to adhesion work, as in WO, but assuming a harmonic-mean combining rule instead of a
geometric-mean approximation
N PP
VVadh — 4 TV T 7s (1 3)
- ~d d AP AR )
it i T s

The general mathematical form of almost all the above multicomponent models is imme-

diately recognized. For a set of s solids, labeled by the index ¢, and [/ liquids, denoted with
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the index j, the adhesion work I’Vlajdh of the solid 7 on the liquid j is written as
wrt =23 Mg vi=1s =100 (1.4)
k=1

while the surface tension v; of the liquid j, susceptible of a direct measurement, holds

c

h) (k . =
vi= Y APsA =1 (1.5)
h,k=1
where:
o 55"'), h=1,...,c are the components of the solid ¢;
) A;k), k=1,...,¢stand for the components of the liquid j;
o §= {Sbk}h bl e is a ¢ X ¢ structure matrix, characteristic of the multicomponent

model, which we will assume real, symmetrical and nonsingular.

Equations of the form (1.4)-(1.5), with the assumed prescriptions on S, are certainly valid
for all the multicomponent models previously listed, provided that the “components” are

identified with the square roots of surface free energy parameters:

£ — Vs A —

The only exception is QC theory, where parameters P,, P; coincide with components up

to a scale factor

1 1
EPS AHEP[

If dy,...,d. are the (real and nonvanishing) eigenvalues of S and sgn(z) denotes the sign

£ +——

function, an orthogonal matrix C' exists such that
v/ da] () sgn(dy) (0) v/ 1d1| O
s =c" C
(0) Vde| (0) sgu(d.) O Vde|
and therefore the multicomponent model can always be reduced to the standard form

I,I/fit;dlz — 9 Z Sgl’l(dh) éfill)A/;IL) v = Z sgn(dh) (AI‘(,""))_

h=1 h=1
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by applying the same linear transformation to solid components

VIdil 0 & &
cl - = : Vi=1,...,s
0 Vd.] ¢l ¢
and to liquid ones. Multicomponent models of the form (1.4)-(1.5) are thus actually
different if their structure matrices do not share the same signature {sgu(ds),...,sgn(d.)},
otherwise they should be regarded as mathematically equivalent up to a linear gauge of

COIllpOllth S (18] .

The main goal of multicomponent theories is to provide reliable estimates of solid and
liquid components, in such a way that equations (1.4) and (1.5) hold true with a satis-
factory accuracy for the largest set of liquids and solid surfaces. More specifically, since
no unquestionable direct measurement technique is available in this respect, one of the
most important skills of multicomponent theories is the prediction of surface free energy of

solids by means of relationships analogous to (1.5), involving the components of the solids

e

S S LR 19

hok=1
The problem can be numerically tackled in essentially three different ways, according to

the available data and the application purposes.

2. Component estimate

The conceivable methods for component estimate, by using adhesion work and surface
tension data only, can be classified as follows:

(a) determined linear method,;

(b) overdetermined linear method (linear best-fit);

(¢) nonlinear method (nonlinear best-fit).

Approaches (a) and (b) provide strategies for the calculation of solid components and

assuine as ¢ priori known the components of an appropriate set of test liquids. In this sense
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they appear conditioned by the actualy availability of such a set of known components.
Such an occurrence is far from being obvious, owing to the difficulties in gathering an
adequate number of reliable adhesion work or contact angle data, and to the nonunivocal
interpretation of the components eventually calculated by contact angle data, which is
intrinsic to this kind of models. In this respect see Section 6, which is devoted to the
problem of scale multiplicity in the definition of components. It is worthy of note that even
in the realm of maybe one of the most classical and successful multicomponent theories, the
vOCG one, different scales of acid-base strength have been proposed29. Method (¢) faces
up to the problem of component calculation in the most complete way, since it assumes no
known component. Noneless, it requires a large number of high-quality data and numerical
calculations are more cumbersome and time-consuming than for the previous approaches

(a) and (b).

(a) Determined linear method
If the components and adhesion works, on a given solid 7, of ¢ liquids specified by appro-

priate values of the index j € A C{1,2,...,1} are known, then there holds

c

Z( Sh,lc/\‘(jk)) ssh) _ W/lajdh VJ c AL (21)
k=1

h=1
The latter is a linear set of algebraic equations to be solved in the solid components fi L),

h =1,...,¢c. Solution exists and is unique provided that the square matrix
c
A = S jeA =1 ¢
k=1

is nonsingular. Even in this case, however, the possible ill-conditioning of the matrix may

seriously affect the accuracy of the estimated components!25].

(b) Overdetermined linear method (linear best-fit)
When the number of probe liquids is larger than ¢, the linear set (2.1) consists of more
equations than the unknown components, so that it is expected that no solution generally

exists. If this is the case, one may anyway look for a best-fit solution in a least-square
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sense, always defined. The latter may be unique or not, but the smallest-Euclidean norm

solution can be written as
(1) Wadh
$ ij

c = At
& jeA
[26]

in terms of the Moore-Penrose pseudoinverse matrix AT Problems arising from ill-

conditioning are similar to those of method ()51,

(¢) Nonlinear method (nonlinear best-fit)

The most general approach to the problem of component calculation consists in searching
a best-fit solution for the whole set of adhesion work and surface tension equations. Out
of a set of s solids and [ liquids there are sl equations for the adhesion work and / further
equations for surface tension. The s equations for the surface free energies of solids are
not considered in the calculation, since the surface free energies 4%, ¢ = 1,...,s are not
experimentally known. The number of components to be determined is then ¢(s+1), versus
a whole of sl 4+ [ equations. As ¢ is fixed, there certainly holds sl +1 > ¢(s + 1) for s and
[ large enough. In this hypothesis there is only a remote possibility that equations (1.4)
and (1.5) can be solved exactly, so that a best-fit solution may represent a reasonable

compromise. For instance, one can minimize the sum of squares or residuals

s 1 c 2 ] c 2
B(E,)) = ZZ[Z 3 Mgt - Irwffif;dll] +Z[ 3 AN SR — o,
i=1j=1"' hk=1 j=1 " hk=1

or any other suitable residual-dependent merit function. The calculations involved are
much more cumbersome than in the linear approach (a) or (b), and more delicate is the
problem of error propagation. But the method requires no @ priori estimate of or assump-

tion on components of the liquids used[2%].

3. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) can be viewed as a particular technique to filter data

which are arranged in an array(2728]. Let X be a n x p matrix of data. One can assume
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that each of its rows corresponds to a point in the space R? of vectors with p components,

one per each column; the matrix X specifies then a set of n points x; in R?:

2T
L

wm €RY Vi=1,...,n.

T

Ty

It may happen that the points x; are not distributed at random in R”, but along a particular

subset of RP. More specifically, it may be that the data approximately lie on a linear space
., hg} of vectors in RP

Sy of dimension k¥ < p, spanned by an orthonormal set {hy, ha,

see Figure 1
Viig=1,....k,

hlhg = 64

which will form the columns of a p x k matrix H

hk> .

}1,2

H = (h1

Figure 1: The points z;ERP, i=1,...,n, representative of the rows of matrix X, almost aligned along a

linear space Sy, of dimension k<p.
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The orthogonal projections of the vectors a;

see Figure 2
HH"z;

or, equivalently, by the row vectors

«THHT

Vi

Vi

on Sy are given by the column vectors —

=1,...,n

and the matrix of orthogonal projections holds therefore

XHHT

Figure 2: The orthogonal projection HH" ; of a generic point z;ER” on the linear space §,. The

distance of z; from Sp is defined as the norm of the difference z;—H HT z; and denoted with §;.

so that the orthogonal projections of #;’s on Sy coincide with the rows of XHHT. The

distances of the points z; from S; — the “residuals” — can be written

0

2 —HHTZI/‘,‘ = (]I—HHT).’I‘,‘ 1=1,....n
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and the sum of their squares turns out to be
58 = Z# X(I—HHDXT) = o[ XX - e[XHHTXT) =
=t XXT) - to[HTXTX H] (3.1)
on having denoted with tr(A) the trace of a generic square matrix 4. In PCA the matrix
H, and the corresponding linear space Sy, are determined by using a least square fitting
strategy: H must be chosen in such a way that the residual sum of squares is minimum

or, equivalently, that the trace

tr[HTXTXH|

is maximum, with the constraint that the columns hy,. .., hy of H constitute an orthonor-
mal set. An algebraic calculation shows that the vectors hy, ..., hy coincide with the first

k vectors of the orthonormal basis
hiy, hay .., hy
of eigenvectors of the real, symmetric and semipositive defined matrix X7 X
XTXh; = \hi Yi=1,....p
with eigenvalues arranged in decreasing order
M>A > >N, >0,
The corresponding (residual) sum of squares holds then

te[X(T—HH") Z A (3.2)
1=k+1

If we assume that the data z; are principally located along Sy, we replace the points x;

with their orthogonal projections on Sy

r; — HHT,T,L‘
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so that the data matrix X is approximated by the k-principal component model
13
XHH" =) (Xh;)h],

=

where h; is known as the loading of i-th principal component and Xh; denotes the i-th
score. An alternative interpretation of the result is that the sum of squares of data — the

so-called “deviance of the sample”

oY @) = ZZX‘— (XTX) =D,

i=1 j=1 i=1 j=1 j=1

can be expressed as the sum of a “deviance explained by the k-PC model”
_ 2
[ XHHE'X") = tw[H'X"XH] =Y )
=1

and of an “unexplained deviance” (3.2). PCA is strictly related to the Singular Value
Decomposition (SVD) of the data matrix XY, Indeed, one can easily verify that the

k-PC model is no more than a truncation to the largest & singular values of the SVD of X

=V ((; ©>UT Z”?”l”

where:
(i) r = rank(X) = rank(X"X) < min(n,p) is the rank of X;

(ie) U = (ul ‘ug‘ . |up) with wuy,ug,...,up € R? an orthonormal basis of eigenvectors of
X'x

XTXU,;:a?u,- t=1,...,p

for eigenvalues o? > 0 arranged in a decreasing order — % > g2 > ... > 0'72, ;
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(iii) V = (01]og]...

'r'n) with vy, vs,...,v, any orthonormal basis of R" such that

1
v; = —Xu; Vi=1,...,r

i

As a consequence, if & < r — the only interesting case — there holds

k k 1 k

S T L N T o, T
E ojvju; = E (r]U_(Xu])uj = g (Xuj)u;
j=1 j=1 J j=1

and to obtain the k-PC model it is enough to pose h; = u; Vj = 1,..., k. Moreover,
Aj :rff Vi=1,...,k

4. PCA and multicomponent theories

From a purely computational /statistical point of view, multicomponent theories are strictly
related to PCA. Indeed multicomponents equations can be interpreted as PC models of
adhesion work data, although in an indirect way. The number of components coincides
with the number of PC taken into account. Any multicomponent theory describes the
work of adesion between a solid — denoted by the index i = 1,...,s — and a liquid —
specified by j = 1,...,1 — by expressions of the form (1.4), which can be collected into

the matrix relationship

I/I/va(lll — ZZU(A:))\(I‘:)T
k=1

on having introduced the s x [ adhesion work matrix

radh 17adh
wadh
VVadh _
= : 5
17adh radh
wadh W

the solid and liquid component column vectors
(k) (k)
1 )\l

CI AR Vi=1,...
& A
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and the auxiliary solid component column vectors

b

o) = : = Zshkf(m = Zskhf(h) = Zskh
h=1 h=1 h=1

k
o

(h)
1
(»

Throughout the paper, the vectors AV, ..., \(*) will be assumed linearly independent, and

sowill oM ol —or €M . £ due to invertibility of the matrix S.

Principal components of the adhesion work matrix are obtained from the eigenvectors of

the [ x [ real symmetric and semipositive definite matrix
yadh T ppradh _ 42/\(h)g(h)TZU(k)>\(k)T —y z RORNDNONOM
h=1 k=1 hok=1

which maps the vector space R! into the linear subspace of R? spanned by A1 .. A(©)
radh L s c
pradh s ypradhy, o spa,n{/\(l), A )\(‘)} VaeR!

since

c c

I’VathI/"’adh.’r =4 J(h)TJ(k)A(h))\(k)T.’t =4 [(T(h)iva(k)} [A(k)jv:r] 2B

k=1 hok=1

Obviously the linear space span{/\(l), e ,)\(5)} has dimension [
dim span{ A ,)\(")} =1

due to the assumed linear independency of XV, ..., A9 As a consequence, the real non

ra(lhTV[;adh

negative spectrum of TV consists of

(1) ¢ positive eigenvalues oy,...,0., whose eigenvectors belong to spa‘n{/\”), O }
and define an orthonormal basis therein;

(1) a 0 eigenvalue with multiplicity I — ¢ and eigenvectors forming an arbitrary (orthonor-

mal) basis in the orthogonal complement of spa,n{k(l), L A@ }
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R! is thus decomposed into a direct sum of the corresponding subspaces
R' = span{AD,..., 29} @ span{ AV, ..., A@}

each of which is invariant through W adh L ppradh

et et (span (A, AO) € span{AD, .. A}

. T -
padh I/Vadh(span{/\(l), A@ }L) C SI)H,II{)\(l)7 oae }l

The eigenvalues oy,..., 0, are also the positive singular values of the matrix W, The
loadings p) .. pt of the ¢ first principal components constitute an orthonormal basis
of the linear subspace spdn{/\(“ ..... /\(C)} so that appropriate constants o, defining a

nousingular ¢ X ¢ matrix « allow us to write

4

AB =", P Vk=1,...,c. (4.1)
h=1
The works of adhesion become then

¢

wadh — QZa(k))\(k =2 (T(k) p = ZZ(Z « (k)>p(h)T

k=1 k,h=1 h=1

and the scores of the first ¢ principal components can be expressed as

c

(R :Z(ykhn(k) Yh=1,...,¢
k=1

whence we deduce the inverse relationships

c

oh = 2(0_1)’th("’) VE=1,....¢c (4.2)

h=1

and coming back to the solid component vectors

e e

€0 =387, 0 = Y (57N a7 1 (43)

k=1 b k=1
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As a conclusion, the vectors A®) and € of liquid and solid components can be written
as appropriate linear combinations of loadings p*) and scores t*) of the ¢ principal com-

ponents of Wt

A necessary condition for a multicomponent model to be adequate to
describe the works of adhesion of the materials considered is that adhesion work matrix
Wk gdmits a good principal component representation, with the same number of PCs as
the number of components per each compound (the residual, unexplained deviance of adhe-
sion work data must be small). Noticeably, this statement is independent on the estimate

of components, i.e. it provides an « prior: criterion.

5. The nonlinear best-fit estimate of components revisited

PC loadings and scores entering formulas (4.1) and (4.3) are casily calculated through
SVD of the data matrix W2I"  for which standard and efficient algorithms are available.
For any choice of the nonsingular ¢ x ¢ matrix «, the liquid component vectors A and
the solid component vectors ¢ given by (4.1) and (4.3) respectively, provide formally
equivalent models of the adhesion work matrix, with the same residual sum of squares.
The matrix o has a fixed number ¢? of entries, independent on the number of solids and
liquids involved in the calculations. Such entries can be used as free variables to match,
at least approximately, the surface tension equations of all the liquids (1.5), for instance

by minimizing the sum of squares

1 c 2
S s, )

j=11r k=1

thus leading to an optimization problem with a number of free variables independent on I.
This means that as a first approximation a tentative solution of equations (1.5) is searched
in the known linear space span{p(l), S ,p(c)}. The result will provide a reasonable initial
guess to reckon a nonlinear best-fit solution for the set of both adhesion work and liquid

surface tension equations, (1.4) and (1.5).
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6. Multiplicity of scales

By definition, equations (4.1) and (4.3) leave invariant the adhesion work matrix W3t for
any choice of the nonsingular matrix «. For a nonsingular & in place of « the liquid and

solid component vectors become

c c c
3B — dehp(h) é(r) — 2(571%”%) — Z (Sil)rk(dyil)hkt(h)
h=1 k=1 k=1

and define a new set of components as accurate as the original one in what concerns the
only adhesion works. If we consider the arbitrary nonsingular ¢ x ¢ matrix # defined by

& = fa, the new components are related to the old ones by the linear transformations

X(k) - Za:khp(h) - Z ’Bk,aaahp(h) - Z’ﬁka)\(u) k= 17 € (61(1)
h=1 hya=1 a=1
and
¢ = Z O I M
k=1 h k=1
= YIS = YIS e ) = (6.1b)
h=1 h=1
— [S_l(,BT)_l(O/T) 1}Tht(h) — Z[S_l(,dT)_lSS—I(GT)_I]Tht(’L) —
h=1 h=1
= DB SIS T ) T 1 = YIS (BT) 8], 6
h k=1 k=1
Vr = 1,...,¢. The further requirement that the transformation (6.1) does not affect

equations (1.5) of the liquid surface tensions implies that the matrix £ is no more arbitrary

but obeys TS5 = 5, since Vj=1,...,1

o e 1 N NS g @ » _
= Z AjSA = Z Z Prati SukBhi

h,k=1 hk=1a,b=1

) : (@) (&) _ - y ‘ (@) (b) _ (a) (b)
= 3 387, S B AT = 3T (8T58),, AN Z 5 AN

a,b=1h,k=1 a,b=1 a,b=1
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so that liquid and solid components undergo the same transformation

AR =N g A fB = N g™ WE =1, e (6.2)
h=1

h=1

We conclude that surface tensions and works of adhesion do not specify components in a
unique way, but only up to a transformation (6.2), thus allowing a multiplicity of scales
for the multicomponent model. In order to remove multiplicity and specify a unique well-
defined scale, a conventional assignment of component values to some reference compounds
is needed. The most general matrix 3 is completely determined by ¢(c — 1)/2 parameters,
thus the reference components must be chosen accordingly. It is easily verified that the set
of matrices

G = {f rcal ¢ X ¢ nonsingular matrix : 7S5 = S} (6.3)

constitutes a non-Abelian group with respect to the usual matrix product, because 17T =

S, while 87'Sp = S implies (37")"'S3~" = S and finally
plsp =5, 15y =5 — (BNESBy = 4181 Spy = 4TSy = 5.

Up to isomorphisms, G can also be identified with the generalized orthogonal group
O(d4,d—;R), on having denoted with dy and d_ respectively the number of positive
and negative eigenvalues of the symmetric matrix SP; as an analytical manifold, the
group O(dy,d_;R) has dimension ¢(¢ — 1)/2. Matrices # € G show very peculiar spectral

properties, because equality 1S = S8~ implies for any pu € C
(8" —pD)S = S(B" — pul)

and therefore

det(AT — ) detS = detS det(3™" — ul)

or, equivalently,

det(8 — pll) = det(371 — ul)
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so that if 4 € C is an eigenvalue of 3, so is p~t. Moreover, any matrix of G infinitesimally

close to the identity can be written into the form
I+eT 4 o(e) (e —=0) (6.4)
in terms of the scalar £ € R and of any ¢ x ¢ real matrix I' which satisfies the relationship

[[+eTT +o0(e)]S[I4+cT +o(e) =S (e —=0)

ST+17s = 0. (6.5)

By using the symmetry of the structure matrix S, equation (6.5) reduces to

ST+ (ST =0
and therefore the most general form of I' must be
r =510 (6.6)

on having denoted with  any real skewsymmetric ¢ x ¢ matrix, which depends on ¢(c¢—1)/2
parameters. Vice versa, a simple calculation shows that whenever (6.5) is satisfied the

exponential of T’

exp(T') = Z %F" = lim (]I—I— g)n

2! n—+oo
belongs to G. Consistently, the spectrum of matrices I' obeying (6.6) is symmetrical with
respect to zero, owing to the chain of equalities
det(T — pul) = det(ST1Q — pul) = det(S™1)det(Q — uS) =

det(S7)det(QT — 1uST) = det(S7)det(—Q — uS) =

(—1)%det(S™H)det(Q + pS) = (—1)°det(S'Q 4 pul) =
= (—1)°det(T" + pI)
so that if p is an eigenvalue of I', so is —pu. Finally, it is easily checked that the whole

set of matrices of type (6.6) forms a Lie algebra with respect to matrix product. The
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general theory of Lie groups and algebras®?) ensures that elements of G can be conveniently
expressed by exponentiation of matrices (6.6).

Scale multiplicity due to the invariance transformation group (6.3) has the important
consequence that the material parameters (components) of a multicomponent theory do
not necessarily admit a direct interpretation, as they are obtained by surface tension and
contact angle data only, unless it is possible to establish a correlation with other scales of

surface energetics admitting a direct measurement of the model parameters25).

7. Special cases of scale multiplicity

In the very special case of vOCG theory, the ¢ = 3 components can be more satisfactorily

identified with the square roots of the dispersive, acidic and basic parameters

\/Wv \/7+7 \/F

The structure matrix is given by
1 00
S=10 01
0 10
and has signature {1,1,—1}, which is also its spectrum. For matrices of the invariance

group G close to unity according to (6.4), condition (6.6) provides

0 w1 Wy 0 w1 [o%5)
I = S —w1 0 wg - —Wws —Wws3 0
—Ww —Ws3 0 —Ww1 0 w3

since S is clearly idempotent. Arbitrary choices of the real scalars wy,ws,w; allow us to

write the elements of group G in the exponential form

0 Wy wa
B =exp| —ws —wz 0
—Wwy 0 w3
As already outlined, the ¢ = 3 components of the QC model coincide with the Qin and

Chang parameters up to a constant scale factor
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with a structure matrix of the form

and signature {1,1,—1} as in vOCG theory. Owing to idempotency of S, the group

generators I' take then the general form

0 wq wo 0 w1 wo
I = S —Wi 0 w3 = Wy W3 0
—Ww9y —Wws 0 Wi 0 —Wws3

and the matrices of the connected component of G containing the identity are expressed

as
0 w  wy
B =exp| wy w3 0 Vwi,wy,wy € R.
w1 0 —ws3
Extended Drago model describes surface energetics in terms of ¢ = 4 parameters per
compound

Ca, Cp, Ea, Ep,

the idempotent structure matrix being given by

01 0 0
10 0 0
S =
0 0 0 1
00010
with signature — and spectrum — {1,1,—1,—1}. Invariance group transformations are
generated by the matrices
0 wi w9 ws —w1 0 Wy ws
r=3g —Wwq 0 Wy ws _ 0 Wi w2 w3
—Ww —wi 0 we —yq —Wws —We 0
—Wyg W5 —Wwe 0 —Wwy —w1 0 We

and can then be put into the exponential form

—W1 0 wa ws
Wi w2 w3 .
3 = exp Yw, eR,1=1,2 ,6
—yq —Ws —we 0
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It is worthy of note that in the original Drago model it is not mandatory to apply the same
linear transformation to both acids and bases, since the inclusion of a compound in the
class of acids or in that of bases is a prior: decided and the two classes appear predefined
and disjoint. Therefore, no constraint of the form 8753 = S applies and the matrix 3 is
simply requested to be nonsingular — G € GL(¢, R), the general linear group of real ¢ x ¢

matrices.

8. Conclusions.

It has been shown that PCA techniques may be helpful in the calculation of material
parameters of multicomponent theories reducible to a bilinear/quadratic structure. The
necessary precondition to do that is the availability of a full and reliable set of adhesion
works between given test liquids and solids, to which the nonlinear best-fit approach may
be applied. An interesting by-product is the general occurrence of scale multiplicity, due to
the possibility of changing the whole set of components by an appropriate group of linear
transformations which leave all the multicomponent model equations invariant. Selection
of a specific scale requires the arbitrary definition of a suitable number of components for
appropriately chosen reference compounds. This circumstance prevents the direct chemico-
physical interpretation of material components as they are estimated from surface tension
and adhesion work equations, that is from surface tension and equilibrium contact angle
data only. Such an interpretation could come only from an eventual theoretical or empirical
correlation between a particular scale of a multicomponent theory and other models of

surface energetics where the material parameters are susceptible of a direct measurement.
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