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Abstract

PI index is an edge-additive topological index introduced as a counterpart to the vertex-

multiplicative Szeged index. In this paper PI-partitions are introduced and used to simplify the

computation of the PI-index on those graph that admit nontrivial PI-partitions. Partial Ham-

ming graphs that in particular contain many important chemical graphs fall into this category.

For several of them the PI index is obtained explicitly. PI index is also studied on Cartesian

product graphs. In particular, a simple formula for the PI index of powers of bipartite graphs

is obtained.
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1 Introduction

Molecular structure descriptors, frequently called topological indices, are used in theoretical

chemistry for the design of chemical compounds with given physico-chemical properties or given

pharmacologic and biological activities. The Wiener index [37] W is the most celebrated such

index, see [9, 10, 19, 20] and references therein. The Szeged index [13, 25] is another such de-

scriptor and is closely related to the Wiener index, in particular, the Wiener and the Szeged

index coincide on trees. Also the latter index attracted considerable attention, see, for in-

stance [5, 12, 15, 26, 29, 36, 39].

The Szeged index is a vertex-multiplicative type index that takes into account the way

vertices of a given molecular graph G are distributed. Hence it seems natural to introduce an

(additive) topological index that would consider a corresponding distribution of edges. This was

indeed done in [24, 26] by introducing the PI index. Until now, this index has been studied from

several points of view, [1, 2, 6, 7, 27, 28, 30] is just a selection of related references.

Applications of the PI index to QSRP/QSAR were studied in [27]. The index was mostly

compared with the Wiener and the Szeged index. It turned out that the PI index has similar

discriminating power as the other two indices and in many cases (for instance to model Δmax,

the so called difference in doublet of deformation mode, of unbranched cycloalkanes) it gives

better result. Since on the other hand it is usually easier to compute than the Wiener and the

Szeged index, PI is a topological index worth studying.

As we already mentioned, The Szeged index incorporates the distribution of vertices of

a molecular graph, while the PI index does this job for the edges. Hence it seems that a

combination of both could give good results in QSRP/QSAR studies. Indeed, the combination

of the PI index and the Szeged index is the best for modeling polychlorinated biphenyls (PCBs)

in environment among the three possible pairs of indices selected from the PI index, the Szeged

index, and the Wiener index [27]. For the Wiener and the Szeged index such studied were

previously done in [23, 35].

In this paper we introduce a general model for the computation of the PI index. More

precisely, in Section 3 we introduce the so-called PI-partitions and express the PI index of a graph

in terms of its PI-partition. Every graph admits a trivial PI-partition, but the computations

makes sense when the graphs considered allow nontrivial PI-partitions. We note that graphs
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from a very wide class of graphs—partial Hamming graphs—naturally yield such partitions.

Let us just mention that benzenoid systems, phenylenes, and many other molecular graphs are

special examples of partial Hamming graphs. In the last section we consider the computation

of the PI index on Cartesian product graphs. We obtain a general formula for the PI index of a

product that involves the related invariants of the factors. In many cases, as for instance in the

bipartite case, the formula significantly simplifies.

2 Preliminaries

All graph in this paper are supposed to be connected. Let G = (V (G), E(G)) be a graph.

Then we will write |G| and ‖G‖ for the number of vertices and edges of G, respectively, that

is, |G| = |V (G)| and ‖G‖ = |E(G)|. Let G be a graph and X ⊆ V (G). The subgraph of G

induced by X will be denoted 〈X〉. Moreover, let ∂X stands for the set of edges of G with one

end vertex in X and the other not in X.

The Cartesian product G �H of graphs G and H is the graph with vertex set V (G)×V (H)

and (g, h)(g′, h′) ∈ E(G�H) whenever either gg′ ∈ E(G) and h = h′, or g = g′ and hh′ ∈ E(H).

The vertex set of the n-cube Qn consists of all n-tuples b1b2 . . . bn with bi ∈ {0, 1}, where two

vertices are adjacent if the corresponding tuples differ in precisely one place. The vertices of Qn

can also be understood as characteristic vectors of subsets of an n-set.

A graph H is an isometric subgraph of G if dH(u, v) = dG(u, v) for any vertices u, v ∈ H,

where dG denotes the usual shortest path distance in G. G is called a partial Hamming graph if

G is an isometric subgraphs of some Cartesian product of complete graphs.

For an edge e = uv of a graph G set

G1(e) = {x ∈ V (G) | dG(x, u) < dG(x, v)}

and

G2(e) = {x ∈ V (G) | dG(x, u) < dG(x, v)} ,

that is, G1(e) is the set of vertices closer to u than to v while G2(e) consists of those vertices that

are closer to v. Note that the roles of G1(e) and G1(e) would be interchanged if the edge e would

be considered as e = vu. Since these two sets will always be considered in pairs, this imprecision

in the definition will cause no problem. We did, however, selected the present notation in order

to simplify the presentation.
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Observe that if G is bipartite then for any edge e of G, G1(e) and G2(e) form a partition of

V (G). We also note that in metric graph theory these sets are usually denoted Wuv and Wvu,

respectively. (The latter notation however does not reflect the graph G in question.)

For an edge e = uv of a graph G let n1(G, e) (resp., n2(G, e)) be the number of edges in the

subgraph of G induced by G1(e) (resp., G2(e)). Again, the roles of n1(G, e) and n2(G, e) could

be interchanged, but since only the sum n1(G, e)+n2(G, e) will be considered, such a definition

suffices. Now, the PI index of G is defined as

PI(G) =
∑

e∈E(G)

(
n1(G, e) + n2(G, e)

)
.

As we already mentioned, the PI index is the edge-additive counterpart of the Szeged index.

Indeed, the Szeged index of G is defined as
∑

e∈E(G) |G1(e)| · |G2(e)|.

3 PI index and PI-partitions

Let G be a graph. Then we say that a partition E1, . . . , Ek of E(G) is a PI-partition of G if for

any i, 1 ≤ i ≤ k, and for any e, f ∈ Ei we have G1(e) = G1(f) and G2(e) = G2(f).

Let e = uv be an edge a graph G. In addition to the sets G1(e) and G2(e) introduced

earlier, let G3(e) be the set of all vertices that are at equal distance from u and v. Then

V (G) = G1(e) ∪ G2(e) ∪ G3(e).

Theorem 3.1 Let E1, . . . , Ek be a PI-partition of a graph G. Then

PI(G) = ‖G‖2 −
k∑

i=1

|Ei| ·
(
|Ei| + ‖〈G3(e)〉‖ + |∂G3(e)|

)
.

Proof. Compute as follows:

PI(G) =
∑

e∈E(G)

(
n1(G, e) + n2(G, e)

)

=
k∑

i=1

∑
e∈Ei

(
n1(G, e) + n2(G, e)

)

=
k∑

i=1

∑
e∈Ei

(
‖G‖ − |Ei| − ‖〈G3(e)〉‖ − |∂G3(e)|

)

=
k∑

i=1

∑
e∈Ei

‖G‖ −
k∑

i=1

∑
e∈Ei

(
|Ei| + ‖〈G3(e)〉‖ + |∂G3(e)|

)

= ‖G‖2 −
k∑

i=1

|Ei|
(
|Ei| + ‖〈G3(e)〉‖ + |∂G3(e)|

)
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which is the claimed expression. �

If G is bipartite then G3(e) = ∅ and consequently ∂G3(e) = ∅. In such a case Theorem 3.1

reduces to a very simple form.

Corollary 3.2 Let E1, . . . , Ek be a PI-partition of a bipartite graph G. Then

PI(G) = ‖G‖2 −
k∑

i=1

|Ei|2 .

Consider the n-cube Qn. For an edge uv of Qn we say that it is of color i if u and v differ

in the ith coordinate. Then we have n colors and this coloring forms a PI-partition of Qn.

Consequently,

PI(Qn) = (n2n−1)2 − n · (2n−1)2 = n · (n − 1) · 22n−2 =
(

n

2

)
· 22n−1 .

Let G be a graph with edges e1, . . . , em. Then the partition E1 = {e1}, . . . , Em = {em}
of E(G) is a PI-partition, let us call it the trivial partition. Of course, for an application of

Theorem 3.1 we wish to find some nontrivial partition of G. This is not always possible, for

instance, odd cycles admit only trivial partitions. On the other hand, there exist important

classes of graphs (containing important molecular graphs) that allows natural nontrivial PI-

partitions. One such class is the class of partial Hamming graphs. Let us explain this in more

detail.

Let G be a graph and e = uv and f = xy edges of G. Then we say that e is in the Djoković

relation ∼ with f if x ∈ G1(u) and y ∈ G2(v). Then it is well known, see [3, 38], that ∼ is

an equivalence relation on the edge set of a partial Hamming graph G. Moreover, if e ∼ f

then G1(e) = G1(f) and G2(e) = G2(f). Consequently, the partition of E(G) induced by the

Djoković relation ∼ is a PI-partition of G.

In the bipartite case, partial Hamming graphs reduce to partial cubes, that is, isometric

subgraphs of hypercubes [8, 22]. Already here one finds important examples of molecular graphs.

For instance, every benzenoid system is a partial cube [32] as well as is every phenylene [11, 17].

In the case of benzenoid systems and phenylenes, the Djoković relation ∼ partitions the edge

set of a given graph into the so-called orthogonal cuts. This was first implicitly observed in [32]

and later elaborated and applied in several papers to obtain many appealing properties of the

Wiener index, Szeged index, as well as the hyper-Wiener index, see [4, 16, 33, 34].
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let Gh be a catacondensed benzenoid system with h hexagons. Then ‖G‖ = 5h+1, therefore

Corollary 3.2 implies the following result that is a reformulation of [6, Theorem 1]:

Corollary 3.3 Let G be a catacondensed benzenoid system with h hexagons and let E1, . . . , Ek

be the PI-partition of G consisting of orthogonal cuts of G. Then

PI(G) = 25h2 + 10h + 1 −
k∑

i=1

|Ei|2 .

In the rest of the section we demonstrate the introduced method on several important classes

of molecular graphs.

Example 1. Linear chains Lh, h ≥ 1 (see Fig. 1).

1 2 h-1 h

Figure 1: The linear chain Lh

Clearly, Lh has one cut containing h + 1 edges and 2h cuts containing 2 edges. Therefore,

applying Corollary 3.3,

PI(Lh) = 25h2 + 10h + 1 − (h + 1)2 − (2h) · 22 = 24h2 .

Example 2. Linear phenylenes Ph, h ≥ 1 (see Fig. 2).

1 2 h-1 h

Figure 2: The linear phenylene Ph

Clearly, ‖Ph‖ = 8h− 2. The horizontal cut of Ph contains 2h edges, while any of the remaining

(h − 1) + 2h cuts contains 2 edges. Therefore from Corollary 3.2 we immediately get:

PI(Ph) = (8h − 2)2 − (2h)2 − (3h − 1) · 22 = 60h2 − 44h + 8 .
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We note that this expression has been previously computed in [28] but it is evident that the

present method further simplifies computations.

Example 3. Fibonacenes.

Fibonacenes are unbranched catacondensed benzenoid hydrocarbons in which all non-terminal

hexagons are angularly annelated. See Fig. 3 for an example of a fibonacene and [18] for an

overview of the chemical graph theory of this class of molecular graphs.

Figure 3: A fibonacene with h = 10

A fibonacene Fh with h hexagons contains h− 1 cuts with 3 edges and h + 2 cuts with 2 edges.

Therefore, using Corollary 3.3,

PI(Fh) = 25h2 + 10h + 1 − 9(h − 1) − 4(h + 2) = 25h2 − 3h + 2 .

Example 4. Parallelograms P (n, k), 1 ≤ k ≤ n (see Fig. 4).

Figure 4: The parallelogram P(8,3)

The Wiener index of P (n, k) has been computed in [33]. We will now apply Corollary 3.2 to

obtain the PI index of P (n, k). The followings facts are straightforward to derive:
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• ‖P (n, k)‖ = n(3k + 2) + 2k − 1;

• There are k horizontal cuts each having n + 1 edges;

• There are n cuts in the direction “\” each having k + 1 edges;

• There are n − k + 1 cuts in the direction “/” each having k + 1 edges; and

• For any j = 2, . . . , k there are 2 cuts in the direction “/” having j edges.

By the above and Corollary 3.2 we conclude that

PI(P (n, k)) = (n(3k + 2) + 2k − 1)2 − k(n + 1)2 − (2n − k + 1)(k + 1)2 − 2 ·
k∑

j=2

j2

=
k3

3
+ 9k2n2 + 10k2n + 4k2 + 11kn2 − 4kn − 19k

3
+ 4n2 − 6n + 2 .

In the particular case when k = n the result reduces to

PI(P (n, n)) = 9n4 +
64n3

3
+ 4n2 − 37n

3
+ 2 ,

while for k = 1 we get

PI(P (n, 1)) = 24n2 ,

the result reported in Example 1.

4 PI index of Cartesian products

For the results in this chapter, the following well-known result (see [22]) is crucial.

Lemma 4.1 [Distance Lemma] Let G and H be graphs, and (g, h), (g′, h′) be vertices of

G�H. Then

dG �H((g, h), (g′, h′)) = dG(g, g′) + dH(h, h′) .

The PI index of a Cartesian product graph can be expressed in terms of the related invariants

of the factors as follows.

Theorem 4.2 For any graphs G and H,

PI(G�H) = PI(G) · |H|2 + PI(H) · |G|2 + |H| · ‖H‖ ·
∑

e∈E(G)

(
|G1(e)| + |G2(e)|

)

+|G| · ‖G‖ ·
∑

e∈E(H)

(
|H1(e)| + |H2(e)|

)
.
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Proof. The edges of G �H naturally partition into two classes, the edges (g, h)(g′, h′) with

h = h′ and the edges (a, x)(b, y) with g = g′. In other words, the first edges project onto the

edges of G and the other onto the edges of H. Therefore, let us denote these two subsets of

edges of G�H with EG and EH , respectively. Clearly, E(G �H) = EG ∪EH . For an edge e of

EG let pG(e) be the edge of G onto which e is projected and let similarly pH(f) be the edge of

H onto which an edge f ∈ EH is projected.

Let e = (g, h)(g′, h) ∈ E(G �H), so that e ∈ EG. Then Distance Lemma implies that

{(G �H)1(e), (G�H)2(e)} = {G1(pG(e)) × V (H), G2(pG(e)) × V (H)} . (1)

The fact (1) is illustrated in Fig. 5, where pG(e) is denoted with e′.

( )g,h ( )g',h

g g'

h

G

H

G e'( )

( ) ( )G H e ( ) ( )G H e

G e'( )
1

1 2

2

e

e'

Figure 5: Illustration of (1)

Since E(G�H) = EG ∪ EH , PI(G�H) =
∑

e∈E(G �H)

(
n1(G�H, e) + n2(G�H, e)

)
can

be decomposed as

∑
e∈EG

(
n1(G�H, e) + n2(G �H, e)

)
+
∑

e∈EH

(
n1(G�H, e) + n2(G�H, e)

)
. (2)

Consider the first term of (2). Using (1) it can be written as

∑
e∈EG

(
‖ 〈G1(pGe) × V (H)〉 ‖ + ‖ 〈G2(pGe) × V (H)〉 ‖

)
,

which is in turn equal to

∑
e∈EG

(
‖H‖ · |G1(pGe)| + |H| · n1(G, pGe) + ‖H‖ · |G2(pGe)| + |H| · n2(G, pGe)

)
. (3)
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Under the projection map, e ∈ E(G) is the image of precisely |H| edges of G�H. Therefore,

the expression (3) can be further written as

|H| ·
∑

e∈E(G)

(
‖H‖ · |G1(e)| + |H| · n1(G, e) + ‖H‖ · |G2(e)| + |H| · n2(G, e)

)
. (4)

Now rewrite (4) as

|H|2 ·
∑

e∈E(G)

(
n1(G, e) + n2(G, e)

)
+ |H| · ‖H‖ ·

∑
e∈E(G)

(
|G1(e)| + |G2(e)|

)

which gives

PI(G) · |H|2 + |H| · ‖H‖ ·
∑

e∈E(G)

(
|G1(e)| + |G2(e)|

)
. (5)

By the commutativity of the Cartesian product, the second term of (2) is equal to

PI(H) · |G|2 + |G| · ‖G‖ ·
∑

e∈E(H)

(
|H1(e)| + |H2(e)|

)
. (6)

Combining (5) and (6) the result follows. �

As we already mentioned, for a bipartite graph G and its edge e, V (G) = G1(e) ∪ G2(e).

Therefore:

Corollary 4.3 For any bipartite graphs G and H,

PI(G�H) = PI(G) · |H|2 + PI(H) · |G|2 + 2 · |G| · |H| · ‖G‖ · ‖H‖ .

As a simple example consider the grid graphs, that is, Cartesian products of paths Pm �Pn;

see Fig. 6 for P7 �P4.

Figure 6: P7 �P4
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Let T be a tree on n vertices. Then clearly PI(T ) = (n − 1)(n − 2). Hence Corollary 4.3 gives:

PI(Pm �Pn) = (m − 1)(m − 2)n2 + (n − 1)(n − 2)m2 + 2mn(m − 1)(n − 1)

= 4m2n2 − 5mn(m + n) + 2(m + mn + n) .

The situation further simplifies if we consider the Cartesian product of a graph by itself. In the

bipartite case we have:

Corollary 4.4 For any bipartite graph G,

PI(G�G) = 2 · |G|2 · (PI(G) + ‖G‖2) .

The Cartesian product is associative, hence the product of several factors is well-defined.

Let us denote the Cartesian product of n copies of a graph G with Gn.

Theorem 4.5 For any bipartite graph G and any n ≥ 1,

PI(Gn) = n · |G|2n−2 · (PI(G) + (n − 1) · ‖G‖2) .

Proof. The result clearly holds for n = 1. If holds for n = 2 by Corollary 4.4.

For the induction step we first note that by a simple induction we infer that for any n ≥ 1

and any graph G,

‖Gn‖ = n · |G|n−1 · ‖G‖ . (7)

Suppose now that the result holds for n ≥ 2 and consider PI(Gn+1). Using Corollary 4.3 and

(7) we have:

PI(Gn+1) = PI(Gn �G)

=
(
n · |G|2n−2 · (PI(G) + (n − 1) · ‖G‖2

)
· |G|2

+ PI(G) · |Gn|2 + 2 · |Gn| · |G| · (n · |G|n−1 · ‖G‖) · ‖G‖

= (n + 1) · |G|2n · (PI(G) + n · ‖G‖2) .

�

An equivalent description of the n-cube Qn is that it is the nth power of K2 with respect to

the Cartesian product, that is, Qn = Kn
2 . Since PI(K2) = 0, Theorem 4.5 immediately gives

PI(Qn) = n · 22n−2 · (n − 1) · 12 = n · (n − 1) · 22n−2.
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[22] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition, John Wiley & Sons,

New York, 2000.

[23] S. Karmarkar, S. Karmarkar, S. Joshi, A. Das and P. V. Khadikar, Novel application of

Wiener vis-à-vis Szeged indices in predicting polychlorinated biphenyls in the environment,

J. Serb. Chem. Soc. 62 (1997) 227–234.

[24] P. V. Khadikar, On a novel structural descriptor PI, Nat. Acad. Sci. Lett. 23 (2000) 113–118.

[25] P. V. Khadikar, N. V. Deshpande, P. P. Kale, A. Dobrynin and I. Gutman, The Szeged

index and an analogy with the Wiener index, J. Chem. Inf. Comput. Sci. 35 (1995) 547–550.

[26] P. V. Khadikar, S. Karmarkar and V. K. Agrawal, Relationships and relative correlation

potential of the Wiener, Szeged and PI indices, Nat. Acad. Sci. Lett. 23 (2000) 165–170.

[27] P. V. Khadikar, S. Karmarkar and V. K. Agrawal, A novel PI index and its applications to

QSPR/QSAR studies, J. Chem. Inf. Comput. Sci. 41 (2001) 934–949.

[28] P. V. Khadikar, P. P. Kale, N. V. Deshpande, S. Karmarkar and V. K. Agrawal, Novel PI

indices of hexagonal chains, J. Math. Chem. 29 (2001) 143–150.

- 585 -



[29] P.V. Khadikar, S. Karmarkar, V.K. Agrawal, J. Singh, A. Shrivastava, I. Lukovits and

M.V. Diudea, Szeged index - Applications for drug modeling, Lett. Drug. Design & Disc.

2(8) (2005) 606–624.

[30] P. V. Khadikar, S. Karmarkar and R. G. Varma, The estimation of PI index of polyacenes,

Acta Chim. Slov. 49 (2002) 755–771.
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