ISSN 0340 - 6253

The genetic reactions of cyclopropane. Part I

VALENTIN VANKOV ILIEV

Section of Algebra, Institute of Mathematics and Informatics Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

(Received November 6, 2006)

1. The groups of cyclopropane

In this paper we shall use freely the terminology and notation from [2]. In accord to [4, V], or [1, Corollary 5.1.3], the group $G \leq S_6$ of univalent substitution isomerism of cyclopropane C_3H_6 coincides up to conjugacy with the group

$$\langle (123)(456), (14)(26)(35) \rangle$$
,

which is isomorphic to the dihedral group of order 6. Since there are chiral pairs among the derivatives of cyclopropane, the group $G' \leq S_6$ of stereoisomerism of cyclopropane contains G and has order 12, so it coincides up to conjugacy with the group

$$\langle (123)(456), (14)(26)(35), (14)(25)(36) \rangle$$

that is isomorphic to the dihedral group of order 12 — see [4, V], or [1, Corollary 5.1.4]. The structural formula (graph) of cyclopropane

yields that its group $G'' \leq S_6$ of structural isomerism, up to conjugacy, coincides with the group

$$\langle (123)(456), (14)(26)(35), (14) \rangle$$

of order 48. Moreover, $G \leq G' \leq G''$.

2. The isomers of cyclopropane and their substitution reactions

Below, for any empirical formula $\lambda \in P_6$, we list the corresponding products of cyclopropane as well as the genetic reactions among them.

Case 1. $\lambda = (6)$.

We have

$$T_{(6);G} = T_{(6);G'} = T_{(6);G''} = \{a_{(6)}\},\$$

where $a_{(6)}$ is the only G- and at the same time G'- and G''-orbit of the tabloid $A^{(6)} = (\{1, 2, 3, 4, 5, 6\})$. The orbit $a_{(6)}$ represents the parent molecule of cyclopropane.

Case 2. $\lambda = (5, 1)$.

The transitivity of the group G yields

$$T_{(5,1):G} = T_{(5,1):G'} = T_{(5,1):G''} = \{a_{(5,1)}\},\$$

where $a_{(5,1)}$ is the only G- and at the same time G'- and G''-orbit of the tabloid $A^{(5,1)} = (\{1, 2, 3, 4, 5\}, \{6\}).$

The only possible substitution reaction between the parent substance of cyclopropane and its mono-substitution derivative is designated $a_{(5,1)} < a_{(6)}$, because $R_{1,6}A^{(5,1)} = A^{(6)}$, and hence $A^{(5,1)} < A^{(6)}$. We remind that the operation $R_{1,6}$ applied on the tabloid $A^{(5,1)}$ means "replace the ligand of type x_2 in position 6 by a ligand of type x_1 ". The converse operation "replace the ligand of type x_1 " in position 6 by a ligand of type x_2 " represents the simple substitution reaction

$$A^{(6)} \longrightarrow A^{(5,1)}$$
.

Case 3. $\lambda = (4, 2)$.

We have

$$T_{(4,2);G} = \{a_{(4,2)}, b_{(4,2)}, c_{(4,2)}, e_{(4,2)}\},$$

where:

 $a_{(4,2)}$ is the G-orbit of the tabloid $A^{(4,2)} = (\{1,2,3,4\},\{5,6\}),$

 $b_{(4,2)}$ is the G-orbit of the tabloid $B^{(4,2)} = (\{1,2,4,5\},\{3,6\}),$

 $c_{(4,2)}$ is the G-orbit of the tabloid $C^{(4,2)} = (\{1,2,4,6\},\{3,5\}),$

 $e_{(4,2)}$ is the G-orbit of the tabloid $E^{(4,2)} = (\{1,3,4,5\},\{2,6\}).$

Below are all inequalities between the structural formulae of di-substitution homogeneous derivatives and the structural formula of the mono-substitution derivative of cyclopropane. We have

$$A^{(4,2)} < A^{(5,1)}, B^{(4,2)} < A^{(5,1)},$$

$$(123)(456)C^{(4,2)} < A^{(5,1)}, E^{(4,2)} < A^{(5,1)},$$

because

$$R_{1.5}A^{(4,2)} = R_{1.3}B^{(4,2)} = R_{1.1}(123)(456)C^{(4,2)} = R_{1.2}E^{(4,2)} = A^{(5,1)}.$$

Thus, we obtain the following substitution reactions

$$A^{(5,1)} \longrightarrow A^{(4,2)}, \ A^{(5,1)} \longrightarrow B^{(4,2)},$$

 $A^{(5,1)} \longrightarrow (123)(456)C^{(4,2)}, \ A^{(5,1)} \longrightarrow E^{(4,2)}.$

which mean "replace the ligand of type x_1 in position 5 of the tabloid $A^{(5,1)}$ by a ligand of type x_2 ", "replace the ligand of type x_1 in position 3 of the tabloid $A^{(5,1)}$ by a ligand of type x_2 ", "replace the ligand of type x_1 in position 1 of the tabloid $A^{(5,1)}$ by a ligand of type x_2 ", and, "replace the ligand of type x_1 in position 2 of the tabloid $A^{(5,1)}$ by a ligand of type x_2 ", respectively.

These simple substitution reactions are also designated by the inequalities

$$a_{(4,2)} < a_{(5,1)}, \ b_{(4,2)} < a_{(5,1)}, \ c_{(4,2)} < a_{(5,1)}, \ e_{(4,2)} < a_{(5,1)}.$$

The set of G'-orbits in $T_{(4,2)}$ is

$$T_{(4,2);G'} = \{a_{(4,2)}, b_{(4,2)}, c_{(4,2)} \cup e_{(4,2)}\},\$$

so the (4,2)-products that correspond to $c_{(4,2)}$ and $e_{(4,2)}$ are members of a chiral pair. The set of G''-orbits in $T_{(4,2)}$ is

$$T_{(4,2);G''} = \{b_{(4,2)}, a_{(4,2)} \cup (c_{(4,2)} \cup e_{(4,2)})\},\$$

hence the products that correspond to $a_{(4,2)}$, $c_{(4,2)}$, and $e_{(4,2)}$ are structurally identical, and any one of them is structurally isomeric with the product which corresponds to $b_{(4,2)}$.

Case 4. $\lambda = (4, 1^2)$.

In this case we have

$$T_{(4,1^2);G} = \{a_{(4,1^2)}, b_{(4,1^2)}, c_{(4,1^2)}, e_{(4,1^2)}, f_{(4,1^2)}\},$$

where.

 $a_{(4,1^2)}$ is the G-orbit of the tabloid $A^{(4,1^2)} = (\{1,2,3,4\},\{5\},\{6\}),$

 $b_{(4,1^2)}$ is the G-orbit of the tabloid $B^{(4,1^2)} = (\{1,2,3,4\},\{6\},\{5\}),$

 $c_{(4,1^2)}$ is the G-orbit of the tabloid $C^{(4,1^2)} = (\{1,2,4,5\},\{3\},\{6\}),$

 $e_{(4,1^2)}$ is the G-orbit of the tabloid $E^{(4,1^2)} = (\{1,2,4,6\},\{3\},\{5\}),$

 $f_{(4,1^2)}$ is the G-orbit of the tabloid $F^{(4,1^2)} = (\{1,3,4,5\},\{2\},\{6\}).$

The following inequalities hold between the di-substitution homogeneous and the disubstitution heterogeneous derivatives of cyclopropane:

$$A^{\left(4,1^{2}\right)} < A^{\left(4,2\right)}, \ B^{\left(4,1^{2}\right)} < A^{\left(4,2\right)},$$

$$C^{\left(4,1^{2}\right)} < B^{\left(4,2\right)}, \ E^{\left(4,1^{2}\right)} < C^{\left(4,2\right)}, \ F^{\left(4,1^{2}\right)} < E^{\left(4,2\right)}.$$

Indeed,

$$R_{2,6}A^{\left(4,1^{2}\right)} = R_{2,5}B^{\left(4,1^{2}\right)} = A^{\left(4,2\right)},$$

$$R_{2,6}C^{\left(4,1^{2}\right)} = B^{\left(4,2\right)}, \ R_{2,5}E^{\left(4,1^{2}\right)} = C^{\left(4,2\right)}, \ R_{2,6}F^{\left(4,1^{2}\right)} = E^{\left(4,2\right)}.$$

In this way we obtain the following substitution reactions

$$A^{(4,2)} \longrightarrow A^{\left(4,1^{2}\right)}, \ A^{(4,2)} \longrightarrow B^{\left(4,1^{2}\right)},$$

$$B^{(4,2)} \longrightarrow C^{\left(4,1^{2}\right)}, \ C^{(4,2)} \longrightarrow E^{\left(4,1^{2}\right)}, \ E^{(4,2)} \longrightarrow F^{\left(4,1^{2}\right)},$$

which mean "replace the ligand of type x_2 in position 6 of the tabloid $A^{(4,2)}$ by a ligand of type x_3 ", "replace the ligand of type x_2 in position 5 of the tabloid $A^{(4,2)}$ by a ligand of type x_3 ", "replace the ligand of type x_2 in position 6 of the tabloid $B^{(4,2)}$ by a ligand of type x_3 ", "replace the ligand of type x_2 in position 5 of the tabloid $C^{(4,2)}$ by a ligand of type x_3 ", and, "replace the ligand of type x_2 in position 6 of the tabloid $E^{(4,2)}$ by a ligand of type x_3 ", respectively. In terms of inequalities these substitution reactions can be represented as follows:

$$a_{(4,1^2)} < a_{(4,2)}, \ b_{(4,1^2)} < a_{(4,2)},$$

$$c_{(4,1^2)} < b_{(4,2)}, \ e_{(4,1^2)} < c_{(4,2)}, \ f_{(4,1^2)} < e_{(4,2)}.$$

Further, we obtain

$$T_{(4,1^2);G'} = \{a_{(4,1^2)} \cup b_{(4,1^2)}, c_{(4,1^2)}, e_{(4,1^2)} \cup f_{(4,1^2)}\},$$

and therefore the products that correspond to the members of any one of the sets $\{a_{(4,1^2)},b_{(4,1^2)}\}$, and $\{e_{(4,1^2)},f_{(4,1^2)}\}$ form a chiral pair, and the product that corresponds to $c_{(4,1^2)}$ is a dimer. Moreover,

$$T_{(4,1^2);G''} = \{(a_{(4,1^2)} \cup b_{(4,1^2)}) \cup (e_{(4,1^2)} \cup f_{(4,1^2)}), c_{(4,1^2)}\}.$$

Hence the four members of the above two chiral pairs are structurally identical, and each one of them is structurally isomeric to the product that corresponds to the dimer $c_{(4,1^2)}$.

Case 5. $\lambda = (3^2)$. Now we have

$$T_{(3^2):G} = \{a_{(3^2)}, b_{(3^2)}, c_{(3^2)}, e_{(3^2)}\},$$

where:

where: $a_{(3^2)}$ is the *G*-orbit of the tabloid $A^{(3^2)} = (\{1, 2, 3\}, \{4, 5, 6\}),$ $b_{(3^2)}$ is the *G*-orbit of the tabloid $B^{(3^2)} = (\{1, 2, 4\}, \{3, 5, 6\}),$ $c_{(3^2)}$ is the *G*-orbit of the tabloid $C^{(3^2)} = (\{1, 2, 5\}, \{3, 4, 6\}),$ $e_{(3^2)}$ is the *G*-orbit of the tabloid $E^{(3^2)} = (\{1, 2, 6\}, \{3, 4, 5\}).$

We have the following inequalities between the tabloids of shape (3^2) and the tabloids of shape (4,2):

$$\begin{split} A^{\left(3^{2}\right)} < A^{(4,2)}, \ B^{\left(3^{2}\right)} < A^{(4,2)}, \ (132)(465)C^{\left(3^{2}\right)} < A^{(4,2)}, \ (123)(456)E^{\left(3^{2}\right)} < A^{(4,2)}, \\ B^{\left(3^{2}\right)} < B^{(4,2)}, \ C^{\left(3^{2}\right)} < B^{(4,2)}, \\ B^{\left(3^{2}\right)} < C^{(4,2)}, \ E^{\left(3^{2}\right)} < C^{(4,2)}, \\ (132)(465)C^{\left(3^{2}\right)} < E^{(4,2)}, \ (132)(465)E^{\left(3^{2}\right)} < E^{(4,2)}, \end{split}$$

because

$$\begin{split} R_{1,4}A^{\left(3^{2}\right)} &= R_{1,3}B^{\left(3^{2}\right)} = R_{1,2}(132)(465)C^{\left(3^{2}\right)} = R_{1,1}(123)(456)E^{\left(3^{2}\right)} = A^{(4,2)}, \\ R_{1,5}B^{\left(3^{2}\right)} &= R_{1,4}C^{\left(3^{2}\right)} = B^{(4,2)}, \\ R_{1,6}B^{\left(3^{2}\right)} &= R_{1,4}E^{\left(3^{2}\right)} = C^{(4,2)}, \\ R_{1,5}(132)(465)C^{\left(3^{2}\right)} &= R_{1,4}(132)(465)E^{\left(3^{2}\right)} = E^{(4,2)}. \end{split}$$

Thus, the substitution reactions among di-substitution homogeneous derivatives of cyclopropane and its tri-substitution homogeneous derivatives, can be represented as follows:

$$\begin{split} a_{(3^2)} &< a_{(4,2)}, \ b_{(3^2)} < a_{(4,2)}, \ c_{(3^2)} < a_{(4,2)}, \ e_{(3^2)} < a_{(4,2)}, \\ b_{(3^2)} &< b_{(4,2)}, \ c_{(3^2)} < b_{(4,2)}, \\ b_{(3^2)} &< c_{(4,2)}, \ e_{(3^2)} < c_{(4,2)}, \\ c_{(3^2)} &< e_{(4,2)}, \ e_{(3^2)} < e_{(4,2)}. \end{split}$$

The set of all G'-orbits is

$$T_{(3^2);G'} = \{a_{(3^2)}, b_{(3^2)} \cup c_{(3^2)}, e_{(3^2)}\},$$

so the products that correspond to the members of the set $\{b_{(3^2)}, c_{(3^2)}\}$ form a chiral pair, and the products that correspond to $a_{(3^2)}$ and $e_{(3^2)}$ are dimers. The set of all G''-orbits is

$$T_{(3^2);G^{\prime\prime}} = \{a_{(3^2)} \cup e_{(3^2)}, (b_{(3^2)} \cup c_{(3^2)})\},$$

and this yields structural identity of the dimers which correspond to $a_{(3^2)}$ and $e_{(3^2)}$, and each one of them is structurally isomeric to any member of the above chiral pair.

Case 6.
$$\lambda = (3, 2, 1)$$
. We have

$$T_{(3,2,1);G} =$$

$$\{a_{(3,2,1)},b_{(3,2,1)},c_{(3,2,1)},e_{(3,2,1)},f_{(3,2,1)},h_{(3,2,1)},k_{(3,2,1)},\ell_{(3,2,1)},m_{(3,2,1)},p_{(3,2,1)}\}$$

where:

 $a_{(3,2,1)} \text{ is the G-orbit of the tabloid } A^{(3,2,1)} = (\{1,2,3\},\{4,5\},\{6\}), \\ b_{(3,2,1)} \text{ is the G-orbit of the tabloid } B^{(3,2,1)} = (\{1,2,4\},\{3,5\},\{6\}), \\ c_{(3,2,1)} \text{ is the G-orbit of the tabloid } C^{(3,2,1)} = (\{1,2,4\},\{3,6\},\{5\}), \\ e_{(3,2,1)} \text{ is the G-orbit of the tabloid } E^{(3,2,1)} = (\{1,2,4\},\{5,6\},\{3\}), \\ f_{(3,2,1)} \text{ is the G-orbit of the tabloid } F^{(3,2,1)} = (\{1,2,5\},\{3,4\},\{6\}), \\ h_{(3,2,1)} \text{ is the G-orbit of the tabloid } H^{(3,2,1)} = (\{1,2,5\},\{3,6\},\{4\}), \\ k_{(3,2,1)} \text{ is the G-orbit of the tabloid } K^{(3,2,1)} = (\{1,2,5\},\{4,6\},\{3\}), \\ \ell_{(3,2,1)} \text{ is the G-orbit of the tabloid } L^{(3,2,1)} = (\{1,2,6\},\{3,4\},\{5\}), \\ m_{(3,2,1)} \text{ is the G-orbit of the tabloid } M^{(3,2,1)} = (\{1,2,6\},\{3,5\},\{4\}), \\ p_{(3,2,1)} \text{ is the G-orbit of the tabloid } P^{(3,2,1)} = (\{1,2,6\},\{3,5\},\{4\}), \\ p_{(3,2,1)} \text{ is the G-orbit of the tabloid } P^{(3,2,1)} = (\{1,2,6\},\{4,5\},\{3\}). \\ \text{The inequalities between the tabloids of shape } (3,2,1) \text{ and the tabloids of shape } (4,1^2) \\ \text{and } (3^2), \text{ respectively, are as follows:}$

$$\begin{split} A^{(3,2,1)} &< A^{(4,1^2)}, \ B^{(3,2,1)} < A^{(4,1^2)}, \\ (132)(465)H^{(3,2,1)} &< A^{(4,1^2)}, \ (123)(456)L^{(3,2,1)} < A^{(4,1^2)}, \\ (132)(465)A^{(3,2,1)} &< B^{(4,1^2)}, \ C^{(3,2,1)} < B^{(4,1^2)}, \\ (132)(465)F^{(3,2,1)} &< B^{(4,1^2)}, \ (123)(456)M^{(3,2,1)} < B^{(4,1^2)}, \\ B^{(3,2,1)} &< C^{(4,1^2)}, \ (15)(24)(36)E^{(3,2,1)} < C^{(4,1^2)}, \\ F^{(3,2,1)} &< C^{(4,1^2)}, \ (15)(24)(36)K^{(3,2,1)} < C^{(4,1^2)}, \\ C^{(3,2,1)} &< E^{(4,1^2)}, \ (14)(26)(35)E^{(3,2,1)} < E^{(4,1^2)}, \\ L^{(3,2,1)} &< E^{(4,1^2)}, \ (14)(26)(35)P^{(3,2,1)} < E^{(4,1^2)}, \\ (132)(465)H^{(3,2,1)} &< F^{(4,1^2)}, \ (15)(24)(36)K^{(3,2,1)} < F^{(4,1^2)}, \\ (132)(465)M^{(3,2,1)} &< F^{(4,1^2)}, \ (15)(24)(36)P^{(3,2,1)} < F^{(4,1^2)}, \\ \end{split}$$

and

$$\begin{split} A^{(3,2,1)} &< A^{\left(3^2\right)}, \\ B^{(3,2,1)} &< B^{\left(3^2\right)}, \ C^{(3,2,1)} &< B^{\left(3^2\right)}, \ E^{(3,2,1)} &< B^{\left(3^2\right)}, \\ F^{(3,2,1)} &< C^{\left(3^2\right)}, \ H^{(3,2,1)} &< C^{\left(3^2\right)}, \ K^{(3,2,1)} &< C^{\left(3^2\right)}, \\ L^{(3,2,1)} &< E^{\left(3^2\right)}, \ M^{(3,2,1)} &< E^{\left(3^2\right)}, \ P^{(3,2,1)} &< E^{\left(3^2\right)}, \end{split}$$

because

$$\begin{split} R_{1,4}A^{(3,2,1)} &= R_{1,3}B^{(3,2,1)} = R_{1,2}(132)(465)H^{(3,2,1)} = R_{1,1}(123)(456)L^{(3,2,1)} = A^{\left(4,1^2\right)}, \\ R_{1,4}(132)(465)A^{(3,2,1)} &= R_{1,3}C^{(3,2,1)} = R_{1,2}(132)(465)F^{(3,2,1)} = \\ R_{1,1}(123)(456)(36)M^{(3,2,1)} &= B^{\left(4,1^2\right)}, \\ R_{1,5}B^{(3,2,1)} &= R_{1,1}(15)(24)(36)E^{(3,2,1)} = R_{1,4}F^{(3,2,1)} = \end{split}$$

$$R_{1,2}(15)(24)(36)K^{(3,2,1)} = C^{\left(4,1^2\right)},$$

$$R_{1,6}C^{(3,2,1)} = R_{1,2}(14)(26)(35)E^{(3,2,1)} = R_{1,4}L^{(3,2,1)} =$$

$$R_{1,1}(14)(26)(35)P^{(3,2,1)} = E^{\left(4,1^2\right)},$$

$$R_{1,5}(132)(465)H^{(3,2,1)} = R_{1,3}(15)(24)(36)K^{(3,2,1)} = R_{1,4}(132)(465)M^{(3,2,1)} =$$

$$R_{1,1}(15)(24)(36)P^{(3,2,1)} = F^{\left(4,1^2\right)},$$

and

$$\begin{split} R_{2,6}A^{(3,2,1)} &= A^{\left(3^2\right)},\\ R_{2,6}B^{(3,2,1)} &= R_{2,5}C^{(3,2,1)} = R_{2,3}E^{(3,2,1)} = B^{\left(3^2\right)},\\ R_{2,6}F^{(3,2,1)} &= R_{2,4}H^{(3,2,1)} = R_{2,3}K^{(3,2,1)} = C^{\left(3^2\right)},\\ R_{2,5}L^{(3,2,1)} &= R_{2,4}M^{(3,2,1)} = R_{2,3}P^{(3,2,1)} = E^{\left(3^2\right)}. \end{split}$$

Therefore all simple substitution reactions between (3, 2, 1)-derivatives of cyclopropane and its $(4, 1^2)$ -derivatives and (3^2) -derivatives, respectively, are:

$$\begin{split} &a_{(3,2,1)} < a_{(4,1^2)}, \ b_{(3,2,1)} < a_{(4,1^2)}, \\ &h_{(3,2,1)} < a_{(4,1^2)}, \ \ell_{(3,2,1)} < a_{(4,1^2)}, \\ &a_{(3,2,1)} < b_{(4,1^2)}, \ c_{(3,2,1)} < b_{(4,1^2)}, \\ &f_{(3,2,1)} < b_{(4,1^2)}, \ m_{(3,2,1)} < b_{(4,1^2)}, \\ &b_{(3,2,1)} < c_{(4,1^2)}, \ e_{(3,2,1)} < c_{(4,1^2)}, \\ &f_{(3,2,1)} < c_{(4,1^2)}, \ k_{(3,2,1)} < c_{(4,1^2)}, \\ &c_{(3,2,1)} < e_{(4,1^2)}, \ e_{(3,2,1)} < e_{(4,1^2)}, \\ &\ell_{(3,2,1)} < e_{(4,1^2)}, \ p_{(3,2,1)} < e_{(4,1^2)}, \\ &h_{(3,2,1)} < f_{(4,1^2)}, \ k_{(3,2,1)} < f_{(4,1^2)}, \\ &m_{(3,2,1)} < f_{(4,1^2)}, \ p_{(3,2,1)} < f_{(4,1^2)}, \end{split}$$

and

$$\begin{aligned} a_{(3,2,1)} &< a_{(3^2)}, \\ b_{(3,2,1)} &< b_{(3^2)}, \ c_{(3,2,1)} < b_{(3^2)}, \ e_{(3,2,1)} < b_{(3^2)}, \\ f_{(3,2,1)} &< c_{(3^2)}, \ h_{(3,2,1)} < c_{(3^2)}, \ k_{(3,2,1)} < c_{(3^2)}, \\ \ell_{(3,2,1)} &< e_{(3^2)}, \ m_{(3,2,1)} < e_{(3^2)}, \ p_{(3,2,1)} < e_{(3^2)}. \end{aligned}$$

The set of G'-orbits in $T_{(3,2,1)}$ is

$$T_{(3,2,1):G'} =$$

$$\{a_{(3,2,1)},b_{(3,2,1)}\cup f_{(3,2,1)},c_{(3,2,1)}\cup h_{(3,2,1)},e_{(3,2,1)}\cup k_{(3,2,1)},\ell_{(3,2,1)}\cup m_{(3,2,1)},p_{(3,2,1)}\}.$$

In particular, the products that correspond to the members of the two-element sets

$$\{b_{(3,2,1)}, f_{(3,2,1)}\}, \{c_{(3,2,1)}, h_{(3,2,1)}\}, \{e_{(3,2,1)}, k_{(3,2,1)}\}, \{\ell_{(3,2,1)}, m_{(3,2,1)}\},$$

form chiral pairs and the products that correspond to $a_{(3,2,1)}$ and $p_{(3,2,1)}$ are dimers. Further, the set of G''-orbits in $T_{(3,2,1)}$ is

$$T_{(3,2,1);G''} = \{a_{(3,2,1)} \cup (\ell_{(3,2,1)} \cup m_{(3,2,1)}) \cup p_{(3,2,1)},$$
$$(b_{(3,2,1)} \cup f_{(3,2,1)}) \cup (e_{(3,2,1)} \cup k_{(3,2,1)}), (c_{(3,2,1)} \cup h_{(3,2,1)})\}.$$

Hence the members of different sets below are structural isomers:

$$\{a_{(3,2,1)},\ell_{(3,2,1)},m_{(3,2,1)},p_{(3,2,1)}\},\{b_{(3,2,1)},f_{(3,2,1)},e_{(3,2,1)},k_{(3,2,1)}\},\{c_{(3,2,1)},h_{(3,2,1)}\}.$$

Case 7. $\lambda = (3, 1^3)$. Now, we have

$$\begin{split} T_{(3,1^3);G} &= \big\{a_{(3,1^3)}, \bar{a}_{(3,1^3)}, b_{(3,1^3)}, \bar{b}_{(3,1^3)}, c_{(3,1^3)}, \bar{c}_{(3,1^3)}, e_{(3,1^3)}, \bar{e}_{(3,1^3)}, f_{(3,1^3)}, f_{(3,1^3)}, \bar{f}_{(3,1^3)}, \\ h_{(3,1^3)}, \bar{h}_{(3,1^3)}, k_{(3,1^3)}, \bar{k}_{(3,1^3)}, \bar{k}_{(3,1^3)}, \bar{\ell}_{(3,1^3)}, m_{(3,1^3)}, m_{(3,1^3)}, p_{(3,1^3)}, \bar{p}_{(3,1^3)}\big\}, \end{split}$$

where: $a_{(3,1^3)}$ is the G-orbit of the tabloid $A^{(3,1^3)} = (\{1,2,3\},\{4\},\{5\},\{6\}).$ $\bar{a}_{(3,1^3)}$ is the G-orbit of the tabloid $\bar{A}^{(3,1^3)} = (\{1,2,3\},\{4\},\{6\},\{5\}),$ $b_{(3,1^3)}$ is the G-orbit of the tabloid $B^{(3,1^3)} = (\{1,2,4\},\{3\},\{5\},\{6\}),$ $\bar{b}_{(3,1^3)}$ is the G-orbit of the tabloid $\bar{B}^{(3,1^3)} = (\{1,2,4\},\{3\},\{6\},\{5\}),$ $C_{(3,1^3)}$ is the G-orbit of the tabloid $C^{(3,1^3)} = (\{1,2,4\},\{5\},\{3\},\{6\}).$ $\bar{c}_{(3,1^3)}$ is the G-orbit of the tabloid $\bar{C}^{(3,1^3)} = (\{1,2,4\},\{5\},\{6\},\{3\}),$ $e_{(3,1^3)}$ is the G-orbit of the tabloid $E^{(3,1^3)} = (\{1,2,4\},\{6\},\{3\},\{5\}),$ $\bar{e}_{(3,13)}$ is the G-orbit of the tabloid $\bar{E}^{(3,1^3)} = (\{1,2,4\},\{6\},\{5\},\{3\}),$ $f_{(3,13)}$ is the G-orbit of the tabloid $F^{(3,13)} = (\{1,2,5\},\{3\},\{4\},\{6\}),$ $\bar{f}_{(3,13)}$ is the G-orbit of the tabloid $\bar{F}^{(3,13)} = (\{1,2,5\},\{3\},\{6\},\{4\}),$ $h_{(3,1^3)}$ is the G-orbit of the tabloid $H^{(3,1^3)} = (\{1,2,5\},\{4\},\{3\},\{6\}),$ $\bar{h}_{(3,13)}$ is the G-orbit of the tabloid $\bar{H}^{(3,13)} = (\{1,2,5\},\{4\},\{6\},\{3\}),$ $k_{(3,1^3)}$ is the G-orbit of the tabloid $K^{(3,1^3)} = (\{1,2,5\},\{6\},\{3\},\{4\}),$ $\bar{k}_{(3,13)}$ is the G-orbit of the tabloid $\bar{K}^{(3,13)} = (\{1,2,5\},\{6\},\{4\},\{3\}),$ $\ell_{(3,1^3)}$ is the G-orbit of the tabloid $L^{(3,1^3)} = (\{1,2,6\},\{3\},\{4\},\{5\}),$ $\bar{\ell}_{(3,13)}$ is the G-orbit of the tabloid $\bar{L}^{(3,1^3)} = (\{1,2,6\},\{3\},\{5\},\{4\}),$ $m_{(3,1^3)}$ is the G-orbit of the tabloid $M^{(3,1^3)} = (\{1,2,6\},\{4\},\{3\},\{5\}),$ $\bar{m}_{(3,1^3)}$ is the G-orbit of the tabloid $\bar{M}^{(3,1^3)} = (\{1,2,6\},\{4\},\{5\},\{3\}),$ $p_{(3,13)}$ is the G-orbit of the tabloid $P^{(3,1^3)} = (\{1,2,6\},\{5\},\{3\},\{4\}),$ $\bar{p}_{(3,1^3)}$ is the G-orbit of the tabloid $\bar{P}^{(3,1^3)} = (\{1,2,6\},\{5\},\{4\},\{3\}).$

The inequalities between the tabloids of shape $(3,1^3)$ and the tabloids of shape (3,2,1) are as follows:

$$A^{(3,1^3)} < A^{(3,2,1)}, \ \bar{A}^{(3,1^3)} < A^{(3,2,1)},$$

$$\begin{split} B^{\left(3,1^3\right)} &< B^{\left(3,2,1\right)}, \ \bar{B}^{\left(3,1^3\right)} < B^{\left(3,2,1\right)}, \ C^{\left(3,1^3\right)} < B^{\left(3,2,1\right)}, \ \bar{C}^{\left(3,1^3\right)} < B^{\left(3,2,1\right)}, \\ B^{\left(3,1^3\right)} &< C^{\left(3,2,1\right)}, \ \bar{B}^{\left(3,1^3\right)} < C^{\left(3,2,1\right)}, \ E^{\left(3,1^3\right)} < C^{\left(3,2,1\right)}, \ \bar{E}^{\left(3,1^3\right)} < C^{\left(3,2,1\right)}, \\ C^{\left(3,1^3\right)} &< E^{\left(3,2,1\right)}, \ \bar{C}^{\left(3,1^3\right)} < E^{\left(3,2,1\right)}, \ E^{\left(3,1^3\right)} < E^{\left(3,2,1\right)}, \ \bar{E}^{\left(3,1^3\right)} < E^{\left(3,2,1\right)}, \\ F^{\left(3,1^3\right)} &< F^{\left(3,2,1\right)}, \ \bar{F}^{\left(3,1^3\right)} < F^{\left(3,2,1\right)}, \ H^{\left(3,1^3\right)} < F^{\left(3,2,1\right)}, \ \bar{H}^{\left(3,1^3\right)} < F^{\left(3,2,1\right)}, \\ F^{\left(3,1^3\right)} &< H^{\left(3,2,1\right)}, \ \bar{F}^{\left(3,1^3\right)} < H^{\left(3,2,1\right)}, \ K^{\left(3,1^3\right)} < H^{\left(3,2,1\right)}, \ \bar{K}^{\left(3,1^3\right)} < H^{\left(3,2,1\right)}, \\ H^{\left(3,1^3\right)} &< K^{\left(3,2,1\right)}, \ \bar{H}^{\left(3,1^3\right)} < K^{\left(3,2,1\right)}, \ K^{\left(3,1^3\right)} < K^{\left(3,2,1\right)}, \ \bar{K}^{\left(3,1^3\right)} < L^{\left(3,2,1\right)}, \\ L^{\left(3,1^3\right)} &< L^{\left(3,2,1\right)}, \ \bar{L}^{\left(3,1^3\right)} < H^{\left(3,2,1\right)}, \ P^{\left(3,1^3\right)} < H^{\left(3,2,1\right)}, \ \bar{P}^{\left(3,1^3\right)} < H^{\left(3,2,1\right)}, \\ M^{\left(3,1^3\right)} &< P^{\left(3,2,1\right)}, \ \bar{M}^{\left(3,1^3\right)} < P^{\left(3,2,1\right)}, \ P^{\left(3,1^3\right)} < P^{\left(3,2,1\right)}, \\ P^{\left(3,1^3\right)} &< P^{\left(3,2,1\right)}, \ \bar{H}^{\left(3,1^3\right)} < P^{\left(3,2,1\right)}, \ P^{\left(3,1^3\right)} < P^{\left(3,2,1\right)}, \\ H^{\left(3,1^3\right)} &< H^{\left(3,1^3\right)} < H^{\left(3,1^3\right)} < H^{\left(3,2,1\right)}, \\ H^{\left(3,1^3\right)} &< H^{\left(3,1^3\right)} < H^{\left(3,1^3\right)} < H^{\left(3,2,1\right)}, \\ H^{\left(3,1^3\right)} &< H^{\left(3,1^3\right)} < H^{\left(3,1^3\right)} < H^{\left(3,1^3\right)}, \\ H^{\left(3,1^3\right)} &< H^{\left(3,1^3\right)} < H^{\left(3,1^3\right)}, \\ H^{\left(3,1^3\right)} &< H^{\left(3,1^3\right)} < H^{\left(3,1^3\right)}, \\ H^{\left(3,1^3\right)} &< H^{\left$$

because

$$R_{2,5}R_{3,6}A^{\left(3,1^{3}\right)}=R_{2,5}\bar{A}^{\left(3,1^{3}\right)}=A^{\left(3,2,1\right)},$$

$$R_{2,5}R_{3,6}B^{\left(3,1^{3}\right)}=R_{2,5}\bar{B}^{\left(3,1^{3}\right)}=R_{2,3}R_{3,6}C^{\left(3,1^{3}\right)}=R_{2,3}\bar{C}^{\left(3,1^{3}\right)}=B^{\left(3,2,1\right)},$$

$$R_{2,6}B^{\left(3,1^{3}\right)}=R_{2,6}R_{3,5}\bar{B}^{\left(3,1^{3}\right)}=R_{2,3}R_{3,5}E^{\left(3,1^{3}\right)}=R_{2,3}\bar{E}^{\left(3,1^{3}\right)}=C^{\left(3,2,1\right)},$$

$$R_{2,6}C^{\left(3,1^{3}\right)}=R_{2,6}R_{3,3}\bar{C}^{\left(3,1^{3}\right)}=R_{2,5}E^{\left(3,1^{3}\right)}=R_{2,5}R_{3,3}\bar{E}^{\left(3,1^{3}\right)}=E^{\left(3,2,1\right)},$$

$$R_{2,4}R_{3,6}F^{\left(3,1^{3}\right)}=R_{2,4}\bar{F}^{\left(3,1^{3}\right)}=R_{2,3}R_{3,6}H^{\left(3,1^{3}\right)}=R_{2,3}\bar{H}^{\left(3,1^{3}\right)}=F^{\left(3,2,1\right)},$$

$$R_{2,6}F^{\left(3,1^{3}\right)}=R_{2,6}R_{3,4}\bar{F}^{\left(3,1^{3}\right)}=R_{2,3}R_{3,4}K^{\left(3,1^{3}\right)}=R_{2,3}\bar{K}^{\left(3,1^{3}\right)}=H^{\left(3,2,1\right)},$$

$$R_{2,6}H^{\left(3,1^{3}\right)}=R_{2,6}R_{3,3}\bar{H}^{\left(3,1^{3}\right)}=R_{2,4}K^{\left(3,1^{3}\right)}=R_{2,4}R_{3,3}\bar{K}^{\left(3,1^{3}\right)}=L^{\left(3,2,1\right)},$$

$$R_{2,4}R_{3,5}L^{\left(3,1^{3}\right)}=R_{2,4}\bar{L}^{\left(3,1^{3}\right)}=R_{2,3}R_{3,5}M^{\left(3,1^{3}\right)}=R_{2,3}\bar{M}^{\left(3,1^{3}\right)}=L^{\left(3,2,1\right)},$$

$$R_{2,5}L^{\left(3,1^{3}\right)}=R_{2,5}R_{3,4}\bar{L}^{\left(3,1^{3}\right)}=R_{2,4}P^{\left(3,1^{3}\right)}=R_{2,4}R_{3,3}\bar{P}^{\left(3,1^{3}\right)}=H^{\left(3,2,1\right)},$$

$$R_{2,5}M^{\left(3,1^{3}\right)}=R_{2,5}R_{3,3}\bar{M}^{\left(3,1^{3}\right)}=R_{2,4}P^{\left(3,1^{3}\right)}=R_{2,4}R_{3,3}\bar{P}^{\left(3,1^{3}\right)}=P^{\left(3,2,1\right)}.$$

Thus, all substitution reactions among $(3, 1^3)$ -derivatives and (3, 2, 1)-derivatives of cyclopropane are designated by the following inequalities:

$$\begin{split} a_{(3,1^3)} < a_{(3,2,1)}, \ \bar{a}_{(3,1^3)} < a_{(3,2,1)}, \\ b_{(3,1^3)} < b_{(3,2,1)}, \ \bar{b}_{(3,1^3)} < b_{(3,2,1)}, \ c_{(3,1^3)} < b_{(3,2,1)}, \ \bar{c}_{(3,1^3)} < b_{(3,2,1)}, \\ b_{(3,1^3)} < c_{(3,2,1)}, \ \bar{b}_{(3,1^3)} < c_{(3,2,1)}, \ e_{(3,1^3)} < c_{(3,2,1)}, \ \bar{e}_{(3,1^3)} < c_{(3,2,1)}, \\ c_{(3,1^3)} < e_{(3,2,1)}, \ \bar{c}_{(3,1^3)} < c_{(3,2,1)}, \ e_{(3,1^3)} < e_{(3,2,1)}, \ \bar{e}_{(3,1^3)} < e_{(3,2,1)}, \end{split}$$

$$\begin{split} &f_{(3,1^3)} < f_{(3,2,1)}, \ \bar{f}_{(3,1^3)} < f_{(3,2,1)}, \ h_{(3,1^3)} < f_{(3,2,1)}, \ \bar{h}_{(3,1^3)} < f_{(3,2,1)}, \\ &f_{(3,1^3)} < h_{(3,2,1)}, \ \bar{f}_{(3,1^3)} < h_{(3,2,1)}, \ k_{(3,1^3)} < h_{(3,2,1)}, \ \bar{k}_{(3,1^3)} < h_{(3,2,1)}, \\ &h_{(3,1^3)} < k_{(3,2,1)}, \ \bar{h}_{(3,1^3)} < k_{(3,2,1)}, \ k_{(3,1^3)} < k_{(3,2,1)}, \ \bar{k}_{(3,1^3)} < k_{(3,2,1)}, \\ &\ell_{(3,1^3)} < \ell_{(3,2,1)}, \ \bar{\ell}_{(3,1^3)} < \ell_{(3,2,1)}, \ m_{(3,1^3)} < \ell_{(3,2,1)}, \ m_{(3,1^3)} < m_{(3,2,1)}, \\ &\ell_{(3,1^3)} < m_{(3,2,1)}, \ \bar{\ell}_{(3,1^3)} < m_{(3,2,1)}, \ p_{(3,1^3)} < m_{(3,2,1)}, \ \bar{p}_{(3,1^3)} < m_{(3,2,1)}, \\ &m_{(3,1^3)} < p_{(3,2,1)}, \ \bar{m}_{(3,1^3)} < p_{(3,2,1)}, \ p_{(3,1^3)} < p_{(3,2,1)}, \ \bar{p}_{(3,1^3)} < p_{(3,2,1)}. \end{split}$$

We have

$$T_{(3,1^3)\cdot G'} =$$

$$\{a_{(3,1^3)} \cup \bar{a}_{(3,1^3)}, b_{(3,1^3)} \cup f_{(3,1^3)}, \bar{b}_{(3,1^3)} \cup \bar{f}_{(3,1^3)}, c_{(3,1^3)} \cup h_{(3,1^3)}, \bar{c}_{(3,1^3)} \cup \bar{h}_{(3,1^3)}, \\ e_{(3,1^3)} \cup k_{(3,1^3)}, \bar{e}_{(3,1^3)} \cup \bar{k}_{(3,1^3)}, \ell_{(3,1^3)} \cup \bar{\ell}_{(3,1^3)}, m_{(3,1^3)} \cup p_{(3,1^3)}, \bar{m}_{(3,1^3)} \cup \bar{p}_{(3,1^3)}\}.$$

Therefore the members of any one of the following two-element sets are chiral pairs:

$$\begin{split} \{a_{(3,1^3)}, \bar{a}_{(3,1^3)}\}, \ \{b_{(3,1^3)}, f_{(3,1^3)}\}, \ \{\bar{b}_{(3,1^3)}, \bar{f}_{(3,1^3)}\}, \{\bar{e}_{(3,1^3)}, \bar{k}_{(3,1^3)}\}, \ \{c_{(3,1^3)}, h_{(3,1^3)}\}, \\ \{\bar{c}_{(3,1^3)}, \bar{h}_{(3,1^3)}\}, \ \{e_{(3,1^3)}, k_{(3,1^3)}\}, \ \{\bar{e}_{(3,1^3)}, \bar{k}_{(3,1^3)}\}, \ \{\ell_{(3,1^3)}, \bar{\ell}_{(3,1^3)}\}, \\ \{m_{(3,1^3)}, p_{(3,1^3)}\}, \ \{\bar{m}_{(3,1^3)}, \bar{p}_{(3,1^3)}\}. \end{split}$$

Further,

$$\begin{split} T_{(3,1^3);G''} &= \\ \big\{ \big(a_{(3,1^3)} \cup \bar{a}_{(3,1^3)} \big) \cup \big(\ell_{(3,1^3)} \cup \bar{\ell}_{(3,1^3)} \big) \cup \big(m_{(3,1^3)} \cup p_{(3,1^3)} \big) \cup \big(\bar{m}_{(3,1^3)} \cup \bar{p}_{(3,1^3)} \big), \\ \big(b_{(3,1^3)} \cup f_{(3,1^3)} \big) \cup \big(\bar{e}_{(3,1^3)} \cup \bar{k}_{(3,1^3)} \big), \big(\bar{b}_{(3,1^3)} \cup \bar{f}_{(3,1^3)} \big) \cup \big(e_{(3,1^3)} \cup k_{(3,1^3)} \big), \\ \big(c_{(3,1^3)} \cup h_{(3,1^3)} \big) \cup \big(\bar{c}_{(3,1^3)} \cup \bar{h}_{(3,1^3)} \big) \big\}. \end{split}$$

Thus, the members of any one set from the list below are structurally identical as long as the members of different sets are structural isomers:

$$\begin{split} & \{a_{(3,1^3)}, \bar{a}_{(3,1^3)}, \ell_{(3,1^3)}, \bar{\ell}_{(3,1^3)}, m_{(3,1^3)}, p_{(3,1^3)}, \bar{m}_{(3,1^3)}, \bar{p}_{(3,1^3)}\}, \\ & \{b_{(3,1^3)}, f_{(3,1^3)}, \bar{e}_{(3,1^3)}, \bar{k}_{(3,1^3)}\}, \ \{\bar{b}_{(3,1^3)}, \bar{f}_{(3,1^3)}, e_{(3,1^3)}, k_{(3,1^3)}\}, \\ & \{c_{(3,1^3)}, h_{(3,1^3)}, \bar{c}_{(3,1^3)}, \bar{h}_{(3,1^3)}\}. \end{split}$$

Case 8. $\lambda = (2^3)$. We have

$$\begin{split} T_{(2^3);G} &= \big\{a_{(2^3)}, \bar{a}_{(2^3)}, b_{(2^3)}, \bar{b}_{(2^3)}, c_{(2^3)}, \bar{c}_{(2^3)}, e_{(2^3)}, \bar{e}_{(2^3)}, f_{(2^3)}, \bar{f}_{(2^3)}, \\ & h_{(2^3)}, \bar{h}_{(2^3)}, k_{(2^3)}, \bar{k}_{(2^3)}, \ell_{(2^3)}, \bar{\ell}_{(2^3)}, m_{(2^3)}, \bar{m}_{(2^3)}\big\}, \end{split}$$

where:

$$a_{(2^3)}$$
 is the *G*-orbit of the tabloid $A^{(2^3)} = (\{1, 2\}, \{3, 4\}, \{5, 6\}),$

$$\bar{a}_{(2^3)}$$
 is the G-orbit of the tabloid $\bar{A}^{(2^3)} = (\{1,2\},\{3,5\},\{4,6\}),$

 $b_{(2^3)}$ is the *G*-orbit of the tabloid $B^{(2^3)} = (\{1,2\}, \{3,6\}, \{4,5\}),$ $\bar{b}_{(2^3)}$ is the *G*-orbit of the tabloid $\bar{B}^{(2^3)} = (\{1,2\}, \{4,5\}, \{3,6\}),$ $c_{(2^3)}$ is the *G*-orbit of the tabloid $C^{(2^3)} = (\{1,2\}, \{4,6\}, \{3,5\}),$

```
\bar{c}_{(23)} is the G-orbit of the tabloid \bar{C}^{(23)} = (\{1,2\},\{5,6\},\{3,4\}).
e_{(2^3)} is the G-orbit of the tabloid E^{(2^3)} = (\{1,4\},\{2,3\},\{5,6\}),
\bar{e}_{(23)} is the G-orbit of the tabloid \bar{E}^{(23)} = (\{1,4\},\{2,5\},\{3,6\}).
f_{(2^3)} is the G-orbit of the tabloid F^{(2^3)} = (\{1,4\}, \{2,3\}, \{5,6\}).
\bar{f}_{(23)} is the G-orbit of the tabloid \bar{F}^{(23)} = (\{1,4\},\{3,5\},\{2,6\}):
h_{(2^3)} is the G-orbit of the tabloid H^{(2^3)} = (\{1,5\}, \{2,3\}, \{4,6\}),
\bar{h}_{(2^3)} is the G-orbit of the tabloid \bar{H}^{(2^3)} = (\{1,5\},\{2,4\},\{3,6\}),
k_{(2^3)} is the G-orbit of the tabloid K^{(2^3)} = (\{1,5\}, \{2,6\}, \{3,4\}),
\bar{k}_{(2^3)} is the G-orbit of the tabloid \bar{K}^{(2^3)} = (\{1,5\},\{3,6\},\{2,4\}),
\ell_{(2^3)} is the G-orbit of the tabloid L^{(2^3)} = (\{1,6\}, \{2,3\}, \{4,5\}).
\bar{\ell}_{(2^3)} is the G-orbit of the tabloid \bar{L}^{(2^3)} = (\{1,6\},\{2,4\},\{3,5\}),
m_{(2^3)} is the G-orbit of the tabloid M^{(2^3)} = (\{1,6\}, \{2,5\}, \{3,4\}),
\bar{m}_{(2^3)} is the G-orbit of the tabloid \bar{M}^{(2^3)} = (\{1,6\},\{3,4\},\{2,5\}).
All inequalities between the tabloids of shape (2^3) and those of shape (3,2,1) are as
follows:
                    A^{(2^3)} < A^{(3,2,1)}, \bar{A}^{(2^3)} < A^{(3,2,1)}, (123)(456)B^{(2^3)} < A^{(3,2,1)},
            \bar{B}^{(2^3)} < A^{(3,2,1)}, (123)(456)C^{(2^3)} < A^{(3,2,1)}, (132)(465)\bar{C}^{(2^3)} < A^{(3,2,1)},
                             A^{\left(2^{3}\right)} < B^{\left(3,2,1\right)}, \ \bar{A}^{\left(2^{3}\right)} < B^{\left(3,2,1\right)}, \ \bar{B}^{\left(2^{3}\right)} < B^{\left(3,2,1\right)}
                             E^{\left(2^{3}\right)} < B^{\left(3,2,1\right)}, \ \bar{E}^{\left(2^{3}\right)} < B^{\left(3,2,1\right)}, \ \bar{F}^{\left(2^{3}\right)} < B^{\left(3,2,1\right)}.
   (123)(456)L^{\left(2^{3}\right)} < B^{(3,2,1)}, \ (123)(456)\bar{L}^{\left(2^{3}\right)} < B^{(3,2,1)}. \ (123)(456)\bar{M}^{\left(2^{3}\right)} < B^{(3,2,1)}.
                             A^{(2^3)} < C^{(3,2,1)} \quad B^{(2^3)} < C^{(3,2,1)} \quad C^{(2^3)} < C^{(3,2,1)}
                   E^{(2^3)} < C^{(3,2,1)}, (14)(26)(35)\bar{E}^{(2^3)} < C^{(3,2,1)}, F^{(2^3)} < C^{(3,2,1)}.
  (123)(456)L^{(2^3)} < C^{(3,2,1)}, (14)(26)(35)\bar{L}^{(2^3)} < C^{(3,2,1)}, (123)(456)M^{(2^3)} < C^{(3,2,1)},
                             \bar{B}^{\left(2^{3}\right)} < E^{\left(3,2,1\right)} \quad C^{\left(2^{3}\right)} < E^{\left(3,2,1\right)} \quad \bar{C}^{\left(2^{3}\right)} < E^{\left(3,2,1\right)}
                  (14)(26)(35)E^{(2^3)} < E^{(3,2,1)}, \ \bar{E}^{(2^3)} < E^{(3,2,1)}, \ F^{(2^3)} < E^{(3,2,1)}
(14)(26)(35)L^{(2^3)} < E^{(3,2,1)}, (14)(26)(35)\bar{L}^{(2^3)} < E^{(3,2,1)}, (123)(456)\bar{M}^{(2^3)} < E^{(3,2,1)}.
                            A^{\left(2^{3}\right)} < F^{\left(3,2,1\right)} \quad \bar{A}^{\left(2^{3}\right)} < F^{\left(3,2,1\right)} \quad \bar{B}^{\left(2^{3}\right)} < F^{\left(3,2,1\right)}
 (123)(456)E^{(2^3)} < F^{(3,2,1)}, (15)(24)(36)\bar{E}^{(2^3)} < F^{(3,2,1)}, (123)(456)F^{(2^3)} < F^{(3,2,1)},
                   H^{(2^3)} < F^{(3,2,1)}, \bar{H}^{(2^3)} < F^{(3,2,1)}, (15)(24)(36)K^{(2^3)} < F^{(3,2,1)},
     \bar{A}^{\left(2^{3}\right)} < H^{\left(3,2,1\right)}. B^{\left(2^{3}\right)} < H^{\left(3,2,1\right)}. \bar{C}^{\left(2^{3}\right)} < H^{\left(3,2,1\right)}. (123)(456)E^{\left(2^{3}\right)} < H^{\left(3,2,1\right)}.
```

$$(123)(456)\bar{E}^{(2^3)} < H^{(3,2,1)}, \ (123)(456)\bar{F}^{(2^3)} < H^{(3,2,1)}, \ H^{(2^3)} < H^{(3,2,1)}, \ K^{(2^3)} < H^{(3,2,1)}, \ K^{(2^3)} < H^{(3,2,1)}, \ K^{(2^3)} < H^{(3,2,1)}, \ E^{(2^3)} < K^{(3,2,1)}, \ E^{(2^3)} < E^{(3,2,1)}, \ E^{(2^3)} < E^{(2^3)} < E^{(2^3)}, \ E^{(2^3)} > E^{(2^3)} < E^{(2^3)}, \ E^{(2^3)} > E^{(2^3)}, \ E^{(2^3)} > E^{(2^3)} > E^{(2^3)}, \ E^{(2^3)} > E^{(2^3)}, \ E^{(2^3)} > E^{(2^3)} > E^{(2^3)}, \ E^{(2^3)} > E^{(2$$

$$\begin{split} R_{1,5}A^{(2^3)} &= R_{1,5}R_{2,4}\bar{A}^{(2^3)} = R_{1,5}R_{2,3}\bar{B}^{(2^3)} = \\ R_{1,1}R_{2,4}(123)(456)E^{(2^3)} &= R_{1,1}R_{2,3}(15)(24)(36)\bar{E}^{(2^3)} = R_{1,1}(123)(456)F^{(2^3)} = \\ R_{1,2}R_{2,4}H^{(2^3)} &= R_{1,2}R_{2,3}\bar{H}^{(2^3)} = R_{1,2}(15)(24)(36)K^{(2^3)} = F^{(3,2,1)}, \\ R_{1,5}R_{2,6}\bar{A}^{(2^3)} &= R_{1,5}B^{(2^3)} = R_{1,5}R_{2,3}\bar{C}^{(2^3)} = \\ R_{1,1}R_{2,6}(123)(456)E^{(2^3)} &= R_{1,1}(123)(456)\bar{E}^{(2^3)} = R_{1,1}R_{2,3}(123)(456)\bar{F}^{(2^3)} = \\ R_{1,2}R_{2,6}H^{(2^3)} &= R_{1,2}R_{2,3}K^{(2^3)} = R_{1,2}\bar{K}^{(2^3)} = H^{(3,2,1)}, \\ R_{1,5}R_{2,6}\bar{B}^{(2^3)} &= R_{1,5}C^{(2^3)} = R_{1,5}R_{2,4}\bar{C}^{(2^3)} = \\ R_{1,1}(15)(24)(36)E^{(2^3)} &= R_{1,1}R_{2,6}(15)(24)(36)\bar{E}^{(2^3)} = R_{1,1}R_{2,4}(123)(456)\bar{F}^{(2^3)} = \\ R_{1,2}(15)(24)(36)H^{(2^3)} &= R_{1,2}R_{2,6}\bar{H}^{(2^3)} = R_{1,2}R_{2,4}K^{(2^3)} = K^{(3,2,1)}, \\ R_{1,6}A^{(2^3)} &= R_{1,6}R_{2,4}B^{(2^3)} = R_{1,6}R_{2,3}C^{(2^3)} = \\ R_{1,1}R_{2,4}(123)(456)H^{(2^3)} &= R_{1,1}(123)(456)K^{(2^3)} = R_{1,1}R_{2,3}(123)(456)\bar{K}^{(2^3)} = \\ R_{1,2}R_{2,4}L^{(2^3)} &= R_{1,2}R_{2,3}\bar{L}^{(2^3)} = R_{1,2}\bar{R}^{(2^3)} = L^{(3,2,1)}, \\ R_{1,6}\bar{A}^{(2^3)} &= R_{1,6}R_{2,5}B^{(2^3)} = R_{1,6}R_{2,3}\bar{C}^{(2^3)} = \\ R_{1,1}R_{2,5}(123)(456)H^{(2^3)} &= R_{1,1}(123)(456)\bar{H}^{(2^3)} = R_{1,1}R_{2,3}(16)(25)(34)K^{(2^3)} = \\ R_{1,2}R_{2,5}L^{(2^3)} &= R_{1,2}(16)(25)(34)\bar{L}^{(2^3)} = R_{1,6}R_{2,4}\bar{C}^{(2^3)} = \\ R_{1,1}(16)(25)(34)H^{(2^3)} &= R_{1,1}R_{2,4}(16)(25)(34)K^{(2^3)} = R_{1,1}R_{2,5}(123)(456)\bar{K}^{(2^3)} = \\ R_{1,1}(16)(25)(34)L^{(2^3)} &= R_{1,2}R_{2,5}\bar{L}^{(2^3)} = R_{1,2}R_{2,4}M^{(2^3)} = P^{(3,2,1)}. \end{split}$$

Therefore the substitution reactions among (2^3) -products and (3,2,1)-products of cyclopropane are as follows:

$$\begin{split} &a_{(2^3)} < a_{(3,2,1)}, \ \bar{a}_{(2^3)} < a_{(3,2,1)}, \ b_{(2^3)} < a_{(3,2,1)}, \\ &\bar{b}_{(2^3)} < a_{(3,2,1)}, \ c_{(2^3)} < a_{(3,2,1)}, \ \bar{c}_{(2^3)} < a_{(3,2,1)}, \\ &a_{(2^3)} < b_{(3,2,1)}, \ \bar{a}_{(2^3)} < b_{(3,2,1)}, \ \bar{b}_{(2^3)} < b_{(3,2,1)}, \\ &e_{(2^3)} < b_{(3,2,1)}, \ \bar{e}_{(2^3)} < b_{(3,2,1)}, \ \bar{f}_{(2^3)} < b_{(3,2,1)}, \\ &\ell_{(2^3)} < b_{(3,2,1)}, \ \bar{\ell}_{(2^3)} < b_{(3,2,1)}, \ \bar{m}_{(2^3)} < b_{(3,2,1)}, \\ &a_{(2^3)} < c_{(3,2,1)}, \ b_{(2^3)} < c_{(3,2,1)}, \ c_{(2^3)} < c_{(3,2,1)}, \\ &\ell_{(2^3)} < c_{(3,2,1)}, \ \bar{\ell}_{(2^3)} < c_{(3,2,1)}, \ f_{(2^3)} < c_{(3,2,1)}, \\ &\ell_{(2^3)} < c_{(3,2,1)}, \ \bar{\ell}_{(2^3)} < c_{(3,2,1)}, \ m_{(2^3)} < c_{(3,2,1)}, \end{split}$$

$$\begin{split} \bar{b}_{(2^3)} &< e_{(3,2,1)}, \ c_{(2^3)} < e_{(3,2,1)}, \ \bar{c}_{(2^3)} < e_{(3,2,1)}, \\ e_{(2^3)} &< e_{(3,2,1)}, \ \bar{e}_{(2^3)} < e_{(3,2,1)}, \ \bar{h}_{(2^3)} < e_{(3,2,1)}, \\ \ell_{(2^3)} &< e_{(3,2,1)}, \ \bar{\ell}_{(2^3)} < e_{(3,2,1)}, \ \bar{m}_{(2^3)} < e_{(3,2,1)}, \\ e_{(2^3)} &< e_{(3,2,1)}, \ \bar{\ell}_{(2^3)} < e_{(3,2,1)}, \ \bar{m}_{(2^3)} < e_{(3,2,1)}, \\ e_{(2^3)} &< f_{(3,2,1)}, \ \bar{e}_{(2^3)} < f_{(3,2,1)}, \ \bar{b}_{(2^3)} < f_{(3,2,1)}, \\ e_{(2^3)} &< f_{(3,2,1)}, \ \bar{h}_{(2^3)} < f_{(3,2,1)}, \ k_{(2^3)} < f_{(3,2,1)}, \\ h_{(2^3)} &< f_{(3,2,1)}, \ \bar{h}_{(2^3)} < h_{(3,2,1)}, \ \bar{c}_{(2^3)} < h_{(3,2,1)}, \\ e_{(2^3)} &< h_{(3,2,1)}, \ \bar{e}_{(2^3)} < h_{(3,2,1)}, \ \bar{f}_{(2^3)} < h_{(3,2,1)}, \\ h_{(2^3)} &< h_{(3,2,1)}, \ k_{(2^3)} < h_{(3,2,1)}, \ \bar{k}_{(2^3)} < h_{(3,2,1)}, \\ \bar{b}_{(2^3)} &< k_{(3,2,1)}, \ c_{(2^3)} < k_{(3,2,1)}, \ \bar{c}_{(2^3)} < k_{(3,2,1)}, \\ e_{(2^3)} &< k_{(3,2,1)}, \ \bar{e}_{(2^3)} < k_{(3,2,1)}, \ \bar{f}_{(2^3)} < k_{(3,2,1)}, \\ e_{(2^3)} &< k_{(3,2,1)}, \ \bar{h}_{(2^3)} < k_{(3,2,1)}, \ \bar{k}_{(2^3)} < k_{(3,2,1)}, \\ h_{(2^3)} &< k_{(3,2,1)}, \ \bar{h}_{(2^3)} < k_{(3,2,1)}, \ \bar{k}_{(2^3)} < k_{(3,2,1)}, \\ h_{(2^3)} &< \ell_{(3,2,1)}, \ \bar{h}_{(2^3)} < \ell_{(3,2,1)}, \ \bar{k}_{(2^3)} < \ell_{(3,2,1)}, \\ h_{(2^3)} &< \ell_{(3,2,1)}, \ \bar{\ell}_{(2^3)} < \ell_{(3,2,1)}, \ \bar{k}_{(2^3)} < \ell_{(3,2,1)}, \\ h_{(2^3)} &< m_{(3,2,1)}, \ \bar{\ell}_{(2^3)} < m_{(3,2,1)}, \ \bar{k}_{(2^3)} < m_{(3,2,1)}, \\ h_{(2^3)} &< m_{(3,2,1)}, \ \bar{\ell}_{(2^3)} < m_{(3,2,1)}, \ \bar{k}_{(2^3)} < m_{(3,2,1)}, \\ h_{(2^3)} &< p_{(3,2,1)}, \ \bar{\ell}_{(2^3)} < p_{(3,2,1)}, \ \bar{k}_{(2^3)} < p_{(3,2,1)}, \\ h_{(2^3)} &< p_{(3,2,1)}, \ \bar{\ell}_{(2^3)} < p_{(3,2,1)}, \ \bar{k}_{(2^3)} < p_{(3,2,1)}, \\ h_{(2^3)} &< p_{(3,2,1)}, \ \bar{\ell}_{(2^3)} < p_{(3,2,1)}, \ \bar{k}_{(2^3)} < p_{(3,2,1)}, \\ h_{(2^3)} &< p_{(3,2,1)}, \ \bar{\ell}_{(2^3)} < p_{(3,2,1)}, \ \bar{k}_{(2^3)} < p_{(3,2,1)}, \\ h_{(2^3)} &< p_{(3,2,1)}, \ \bar{\ell}_{(2^3)} < p_{(3,2,1)}, \ \bar{k}_{(2^3)} < p_{(3,2,1)}. \\ \end{pmatrix}$$

The set of all G'-orbits is

$$\begin{split} T_{(2^3);G'} &= \\ \{a_{(2^3)} \cup \bar{a}_{(2^3)}, b_{(2^3)}, \bar{b}_{(2^3)}, c_{(2^3)} \cup \bar{c}_{(2^3)}, e_{(2^3)}, \bar{e}_{(2^3)}, f_{(2^3)} \cup \bar{f}_{(2^3)}, \\ h_{(2^3)} \cup \ell_{(2^3)}, \bar{h}_{(2^3)} \cup \bar{m}_{(2^3)}, k_{(2^3)} \cup \bar{\ell}_{(2^3)}, \bar{k}_{(2^3)} \cup m_{(2^3)}\}. \end{split}$$

Hence, the members of any one of the two-element sets

$$\begin{split} & \{a_{(2^3)}, \bar{a}_{(2^3)}\}, \ \{c_{(2^3)}, \bar{c}_{(2^3)}\}, \ \{f_{(2^3)}, \bar{f}_{(2^3)}\}, \\ & \{h_{(2^3)}, \ell_{(2^3)}\}, \ \{\bar{h}_{(2^3)}, \bar{m}_{(2^3)}\}, \ \{k_{(2^3)}, \bar{\ell}_{(2^3)}\}, \ \{\bar{k}_{(2^3)}, m_{(2^3)}\} \end{split}$$

form a chiral pair and $b_{(2^3)}, \bar{b}_{(2^3)}, \, e_{(2^3)}, \, \bar{e}_{(2^3)}$, represent dimers. Moreover, the set of all G''-orbits is

$$T_{(2^3);G''} =$$

$$\begin{split} \{(a_{(2^3)} \cup \bar{a}_{(2^3)}) \cup (c_{(2^3)} \cup \bar{c}_{(2^3)}) \cup (h_{(2^3)} \cup \ell_{(2^3)}) \cup (k_{(2^3)} \cup \bar{\ell}_{(2^3)}), \\ b_{(2^3)} \cup (\bar{k}_{(2^3)} \cup m_{(2^3)}), \bar{b}_{(2^3)} \cup (\bar{h}_{(2^3)} \cup \bar{m}_{(2^3)}), e_{(2^3)} \cup (f_{(2^3)} \cup \bar{f}_{(2^3)}), \bar{e}_{(2^3)}\}. \end{split}$$

Thus, any one from the sets below gathers all formulae that represent structurally identical derivatives, so members of different sets represent structural isomers.

$$\begin{split} & \{a_{(2^3)}, \bar{a}_{(2^3)}, c_{(2^3)}, \bar{c}_{(2^3)}, h_{(2^3)}, \ell_{(2^3)}, k_{(2^3)}, \bar{\ell}_{(2^3)}\} \\ & \{b_{(2^3)}, \bar{k}_{(2^3)}, m_{(2^3)}\}, \ \{\bar{b}_{(2^3)}, \bar{h}_{(2^3)}, \bar{m}_{(2^3)}\}, \ \{e_{(2^3)}, f_{(2^3)}, \bar{f}_{(2^3)}\}, \ \{\bar{e}_{(2^3)}\}. \end{split}$$

3. Identification of the derivatives

Now, we will describe the Lunn-Senior's automorphism groups $Aut_0''(T_{D;G})$ for $D = D_k$, $k = 1, \ldots, 6$, where

$$D_1 = \{(6), (5, 1), (4, 2)\}, D_2 = D_1 \cup \{(4, 1^2)\},$$

$$D_3 = D_2 \cup \{(3^2)\}, D_4 = D_3 \cup \{(3, 2, 1)\},$$

$$D_5 = D_4 \cup \{(3, 1^3)\}, D_6 = D_5 \cup \{(2^3)\}.$$

The elements of the $Aut_0''(T_{D;G})$ -orbits in the set $T_{D;G}$ will represent the products of cyclopropane that can not be distinguished via substitution reactions among the elements of $T_{D;G}$.

We remind that we will use without referring all terminology and notation from [2], especially those from the beginning of section 3. For convenience of the reader, we state explicitly once again the conditions of the main [2, Lemma 3.1], as well as the assumptions and notation introduced before [2, Lemmas 3.3 - 3.7]. We note that the correct version of [2, Corollary 3.2] can be found in [3].

Let $U, V, \bar{V} \subset T_{d;G}$ be unions of G''-orbits, such that $U \subset V$, $V \setminus U \subset \bar{V}$, and the difference $\bar{V} \setminus U$ consists of minimal elements of the partially ordered set $V \cup \bar{V}$. Assume that \bar{V} is a barrier of $V \setminus U$ in V, and the automorphism group $Aut_0''(U)$ is a commutative 2-group. Set $H = \{\beta \in Aut_0''(U) \mid \beta(C_>(\bar{V};a)) = C_>(\bar{V};a), a \in V \setminus U\}$. Moreover, for any pair $X, V \subset T_{d;G}$ of sets that are unions of G''-orbits with $X \subset V$ we denote by $I_{V,X}$ the image of the restriction homomorphism

$$\varrho_{V,X}: Aut_0''(V) \to Aut_0''(X).$$

Lemma 3.1. Let the difference $V \setminus U$ be a G''-orbit that consists of several chiral pairs $\{A,A^1\}$, $\{B,B^1\}$,..., and eventually, of several dimers. Suppose that: $C_>(\bar{V};A) = C_>(\bar{V};A^1) = P$, $C_>(\bar{V};B) = C_>(\bar{V};B^1) = Q$,..., the cones P, Q,... are pairwise different, the cones of the dimers are pairwise different, and that

$$I_{VII} = H$$
.

Then there exists a decomposition

$$Aut_0''(V) = H \times \langle s \rangle \times \langle t \rangle \times \cdots,$$

where $s = (A, A^1)$, $t = (B, B^1)$,..., the restriction homomorphism $\varrho_{V,U}$ has kernel $\langle s \rangle \times \langle t \rangle \times \cdots$, and $Aut_0''(V)$ is a commutative 2-group.

PROOF: [3, Corollary 3.2, (i)] yields $H \cup Hs \cup Ht \cup \ldots \subset Aut_0''(V)$. Now, let $\alpha \in Aut_0''(V)$. Then $\varrho_{V,U}(\alpha) \in H$, and according to [2, Lemma 3.1, (iv)], and to the fact that α maps any chiral pair onto a chiral pair, we have $\alpha(\{A,A^1\}) = \{A,A^1\}$, $\alpha(\{B,B^1\}) = \{B,B^1\},\ldots$, and conclude that α leaves all dimers invariant. Therefore $\alpha \in H \cup Hs \cup Ht \cup \ldots \cup Hst \cup \ldots$ Now, we note that every pair among the automorphisms s,t,\ldots commute, $s^2 = id, t^2 = id,\ldots$, and each one of them commutes with the elements of H. Hence the subgroup $\langle H,s,t,\ldots \rangle$ of $Aut_0''(V)$ is a commutative 2-group. In particular, $\langle H,s,t,\ldots \rangle = H \cup Hs \cup Ht \cup \ldots \cup Hst \cup \ldots$, and the proof is finished.

Lemma 3.2. Let the difference $V\backslash U$ be a G''-orbit that consists of two chiral pairs $\{A,A^1\}$, $\{B,B^1\}$. Suppose that $C_>(\bar{V};A)=C_>(\bar{V};A^1)=P$, there exists a decomposition

$$I_{V,U} = H \times \langle w \rangle,$$

where w(P) = P and $w(Q) = Q^1$, for $Q = C_{>}(\bar{V}; B)$, $Q^1 = C_{>}(\bar{V}; B^1)$. Then there exists a decomposition

$$Aut_0''(V) = H \times \langle s \rangle \times \langle wt \rangle,$$

where $s = (A, A^1)$, $t = (B, B^1)$, the restriction homomorphism $\varrho_{V,U}$ has kernel $\langle s \rangle$, and $Aut_0''(V)$ is a commutative 2-group.

PROOF: Since $w \notin H$, we obtain that the cones Q, Q_1 , P, are pairwise different, and then [3, Corollary 3.2, (i)] yields $H \cup Hs \cup Hwt \cup Hwst \subset Aut_0''(V)$. Now, let $\alpha \in Aut_0''(V)$ with $\varrho_{V,U}(\alpha) \in H$ (respectively, $\varrho_{V,U}(\alpha) \in Hw$). Then in accordance with [2, Lemma 3.1, (iv)], $\alpha(\{A,A^1\}) = \{A,A^1\}$, $\alpha(B) = B$, $\alpha(B^1) = B^1$ (respectively, $\alpha(\{A,A^1\}) = \{A,A^1\}$, $\alpha(B) = B^1$, $\alpha(B^1) = B$), hence $\varrho_{V,V \setminus U}(\alpha) = id$, or $\varrho_{V,V \setminus U}(\alpha) = s$ (respectively, $\varrho_{V,V \setminus U}(\alpha) = t$, or $\varrho_{V,V \setminus U}(\alpha) = st$). Thus, we have $\alpha \in H \cup Hs$ (respectively, $\alpha \in Hwst \cup Hwt$). Since the automorphisms s and wt commute, $s^2 = id$, $(wt)^2 = id$, and each one of them commutes with the elements of H, then the subgroup $\langle H, s, wt \rangle$ of $Aut_0''(V)$ is a commutative 2-group. In particular, $\langle H, s, wt \rangle = H \cup Hs \cup Hwt \cup Hwst$, and the proof is done.

Lemma 3.3. Let the difference $V \setminus U$ be a G''-orbit that consists of a chiral pair $\{A, A^1\}$ and of several dimers. Suppose that the cones of the dimers are pairwise different, $Aut_0''(U)$ -invariant, and that there exists a decomposition

$$I_{V,U} = H \times \langle w \rangle$$

with $w(P)=P^1$, where $P=C_>(\bar{V};A), P^1=C_>(\bar{V};A^1)$. Then there exists a decomposition

$$Aut_0''(V) = H \times \langle ws \rangle,$$

where $s = (A, A^1)$, the restriction homomorphism $\varrho_{V,U}$ is injective, and $Aut_0''(V)$ is a commutative 2-group.

Proof: Straightforward generalization of [2, Lemma 3.7].

LEMMA 3.4. Let the difference $V \setminus U$ be a G''-orbit that consists of two types of chiral pairs: several chiral pairs $\{A,A^1\}$, $\{B,B^1\}$,..., with $C_>(\bar{V};A) = C_>(\bar{V};A^1) = P$, $C_>(\bar{V};B) = C_>(\bar{V};B^1) = Q$,..., two chiral pairs $\{C,C^1\}$, $\{E,E^1\}$, with $C_>(\bar{V};C) = C_>(\bar{V};E) = R$, $C_>(\bar{V};C^1) = C_>(\bar{V};E^1) = R^1$, and of several dimers. Let us suppose that the cones P, Q,..., are pairwise different, and the cones \tilde{P} , \tilde{Q} ,..., of the dimers are pairwise different. If

$$I_{V,U} = H \times \langle w \rangle,$$

where $w(P)=P,\,w(Q)=Q,\ldots,\,w(\tilde{P})=\tilde{P},\,w(\tilde{Q})=\tilde{Q},\ldots,$ and $w(R)=R^1,$ then there exists a decomposition

$$Aut_0''(V) = H \times \langle z \rangle \times \langle s \rangle \times \langle t \rangle \times \cdots \times \langle wx \rangle,$$

where $s = (A, A^1), t = (B, B^1), \ldots, z = (C, E)(C^1, E^1), x = (C, C^1)(E, E^1)$, the restriction homomorphism $\varrho_{V,U}$ has kernel $\langle z \rangle \times \langle s \rangle \times \langle t \rangle \times \cdots$, and $Aut_0''(V)$ is a commutative 2-group.

PROOF: The relation $w \notin H$ implies $R \neq R^1$, and then each of the cones R and R^1 is different from any of the cones P, Q, \ldots, \tilde{P} , \tilde{Q}, \ldots [3, Corollary 3.2, (i)] yields that H, Hs, Ht, ..., Hz, Hwx are subsets of $Aut_0''(V)$. Now, let $\alpha \in Aut_0''(V)$, and let $\beta = \varrho_{V,U}(\alpha)$, $\alpha_0 = \varrho_{V,V\setminus U}(\alpha)$. Suppose that $\beta \in H$. In accordance with [3, Corollary 3.2, (i)] we obtain $C_>(\tilde{V};\alpha) = C_>(\tilde{V};\alpha_0(a))$ for all $a \in V\setminus U$. Hence $\alpha_0(\{A,A^1\}) = \{A,A^1\}$, $\alpha_0(\{B,B^1\}) = \{B,B^1\},\ldots,\alpha_0(\{C,E\}) = \{C,E\},\alpha_0(\{C^1,E^1\}) = \{C^1,E^1\}$, and α_0 leaves the dimers invariant. Moreover, α_0 maps any chiral pair onto a chiral pair, therefore α_0 on the set $\{C,E,C^1,E^1\}$ is either id, or z. Thus, $\alpha \in K \cup Kz$, where $K = H \times \langle s \rangle \times \langle t \rangle \times \cdots$. Now, suppose that $\beta \in Hw$. Then $\beta(R) = R^1$, and β leaves the cones P, Q, ..., and the cones \tilde{P} , \tilde{Q} , ..., invariant. According to [3, Corollary 3.2, (i)], we have $\alpha_0(\{A,A^1\}) = \{A,A^1\}$, $\alpha_0(\{B,B^1\}) = \{B,B^1\},\ldots,\alpha_0(\{C,E\}) = \{C^1,E^1\}$, $\alpha_0(\{C^1,E^1\}) = \{C,E\}$, and α_0 leaves the dimers invariant. Since α_0 maps any chiral pair onto a chiral pair, we obtain that α_0 on the set $\{C,E,C^1,E^1\}$ is either x, or y = zx. Now, we have $\alpha \in Kwx \cup Kwy$. Since x, y, z, commute among themselves, and each of them commutes with K, the proof is completed.

LEMMA 3.5. Let the difference $V \setminus U$ be a G''-orbit that consists of several chiral pairs $\{A, A^1\}$, $\{B, B^1\}$, ..., $\{C, C^1\}$, $\{E, E^1\}$, with $C_>(\bar{V}; C) = C_>(\bar{V}; E) = R$, $C_>(\bar{V}; C^1) = C_>(\bar{V}; E^1) = R^1$, and of several dimers. Suppose that the cones of the members of the chiral pairs $\{A, A^1\}$, $\{B, B^1\}$, ..., the cones R, R^1 , and the cones of the dimers, are all pairwise different, and suppose that

$$I_{V,U} = H \times \langle w \rangle,$$

where w permutes the cones of the members of each chiral pair and leaves the cones of the dimers invariant. Then there exists a decomposition

$$Aut_0''(V) = H \times \langle z \rangle \times \langle wx \rangle,$$

where $z = (C, E)(C^1, E^1)$, $x = (A, A^1)(B, B^1) \dots (C, C^1)(E, E^1)$, the restriction homomorphism $\varrho_{V,U}$ has kernel $\langle z \rangle$, and $Aut_0''(V)$ is a commutative 2-group.

PROOF: [3, Corollary 3.2, (i)] yields that H, Hz, Hwx, Hwy, where y=zx, are subsets of $Aut_0''(V)$. Now, let $\alpha \in Aut_0''(V)$, and let $\beta = \varrho_{V,U}(\alpha)$, $\alpha_0 = \varrho_{V,V\setminus U}(\alpha)$.

Suppose that $\beta \in H$. In accordance with [3, Corollary 3.2, (i)], the bijection α_0 leaves the members of the chiral pairs $\{A,A^1\}$, $\{B,B^1\}$,..., as well as the dimers invariant, and $\alpha_0(\{C,E\}) = \{C,E\}$, $\alpha_0(\{C^1,E^1\}) = \{C^1,E^1\}$. Moreover, α_0 maps any chiral pair onto a chiral pair, therefore α_0 on the set $\{C,E,C^1,E^1\}$ is either id, or z. Thus, $\alpha \in H \cup Hz$. Now, suppose that $\beta \in Hw$. Again, according to [3, Corollary 3.2, (i)], we have $\alpha_0(A) = A^1$, $\alpha_0(A^1) = A$, $\alpha_0(B) = B^1$, $\alpha_0(B^1) = B$,..., $\alpha_0(\{C,E\}) = \{C^1,E^1\}$, $\alpha_0(\{C^1,E^1\}) = \{C,E\}$, and α_0 leaves the dimers invariant. Since α_0 maps any chiral pair onto a chiral pair, we obtain that α_0 on the set $\{C,E,C^1,E^1\}$ is either wx, or wy. Now, we have $\alpha \in Hx \cup Hy$. Since x,y,z, commute, and since each of them commutes with H, the proof is done.

Theorem 3.6. One has:

$$(i) \ Aut''_0(T_{D_1;G}) = \langle (c_{(4,2)},e_{(4,2)}) \rangle \simeq C_2;$$

$$(ii) \ Aut''_0(T_{D_2;G}) = \langle (a_{(4,1^2)},b_{(4,1^2)}),(c_{(4,2)},e_{(4,2)})(e_{(4,1^2)},f_{(4,1^2)}) \rangle \simeq C_2 \times C_2;$$

$$(iii) \ Aut''_0(T_{D_3;G}) = \langle (a_{(4,1^2)},b_{(4,1^2)}),(c_{(4,2)},e_{(4,2)})(e_{(4,1^2)},f_{(4,1^2)})(b_{(3^2)},c_{(3^2)}) \rangle \\ \simeq C_2 \times C_2;$$

$$(iv) \ Aut''_0(T_{D_4;G}) = \langle (c_{(4,2)},e_{(4,2)})(a_{(4,1^2)},b_{(4,1^2)})(e_{(4,1^2)},f_{(4,1^2)})(b_{(3^2)},c_{(3^2)}) \rangle \\ (c_{(3,2,1)},h_{(3,2,1)})(b_{(3,2,1)},f_{(3,2,1)})(e_{(3,2,1)},k_{(3,2,1)})(\ell_{(3,2,1)},m_{(3,2,1)}) \rangle \simeq C_2;$$

$$(v) \ Aut''_0(T_{D_5;G}) = \langle (c_{(3,1^3)},\bar{c}_{(3,1^3)})(h_{(3,1^3)},\bar{h}_{(3,1^3)}),(m_{(3,1^3)},\bar{m}_{(3,1^3)})(p_{(3,1^3)},\bar{p}_{(3,1^3)}), \\ (a_{(3,1^3)},\bar{a}_{(3,1^3)}),(\ell_{(3,1^3)},\bar{\ell}_{(3,1^3)}),(c_{(4,2)},e_{(4,2)})(a_{(4,1^2)},b_{(4,1^2)})(e_{(4,1^2)},f_{(4,1^2)}) \rangle \\ (b_{(3^2)},c_{(3^2)})(c_{(3,2,1)},h_{(3,2,1)})(b_{(3,2,1)},f_{(3,2,1)})(e_{(3,2,1)},k_{(3,2,1)})(\ell_{(3,2,1)},m_{(3,2,1)}) \\ (b_{(3,1^3)},f_{(3,1^3)})(\bar{e}_{(3,1^3)},\bar{k}_{(3,1^3)})(\bar{h}_{(3,1^3)},\bar{f}_{(3,1^3)})(e_{(3,1^3)},k_{(3,1^3)})(c_{(3,1^3)},h_{(3,1^3)}) \rangle \\ (\bar{c}_{(3,1^3)},\bar{h}_{(3,1^3)})(m_{(3,1^3)},p_{(3,1^3)})(\bar{h}_{(3,1^3)},\bar{h}_{(3,1^3)}),(m_{(3,1^3)},\bar{m}_{(3,1^3)})(p_{(3,1^3)},\bar{h}_{(3,1^3)}), \\ (c_{(4,2)},e_{(4,2)})(a_{(4,1^2)},b_{(4,1^2)})(e_{(4,1^2)},f_{(4,1^2)})(b_{(3^2)},c_{(3^2)})(c_{(3,2,1)},h_{(3,2,1)}) \\ (b_{(3,1^3)},\bar{f}_{(3,1^3)})(e_{(3,1^3)},k_{(3,1^3)})(e_{(4,1^2)},f_{(4,1^2)})(b_{(3^2)},c_{(3^2)})(c_{(3,2,1)},h_{(3,2,1)}) \\ (b_{(3,2,1)},f_{(3,2,1)})(e_{(3,2,1)},k_{(3,2,1)})(\ell_{(3,2,1)},m_{(3,2,1)})(b_{(3,2,1)},h_{(3,1^3)})(\bar{e}_{(3,1^3)},\bar{h}_{(3,1^3)}) \\ (\bar{b}_{(3,1^3)},\bar{f}_{(3,1^3)})(e_{(3,1^3)},k_{(3,1^3)})(c_{(3,1^3)},h_{(3,1^3)})(\bar{c}_{(3,1^3)},h_{(3,1^3)})(\bar{e}_{(3,1^3)},\bar{h}_{(3,1^3)}) \\ (\bar{b}_{(3,1^3)},\bar{f}_{(3,1^3)})(e_{(3,1^3)},k_{(3,1^3)})(c_{(3,1^3)},h_{(3,1^3)})(\bar{c}_{(3,1^3)},h_{(3,1^3)})(\bar{e}_{(3,1^3)},\bar{f}_{(3,1^3)}) \\ (\bar{b}_{(3,1^3)},\bar{f}_{(3,1^3)})(h_{(2^3)},\ell_{(2^3)})(k_{(2^3)},\bar{\ell}_{(2^3)})(\bar{k}_{(2^3)},m_{(2^3)})(\bar{h}_{(2^3)},\bar{h}$$

PROOF: (i) Let us set $D_0' = \{(6), (5, 1)\}$. Section 2, Cases 2, 3, yield that $Aut_0''(T_{D_0;G})$ is the trivial group. The structure of the (4, 2)-level as well as the inequalities among tabloids that correspond to the dominance order inequality (4, 2) < (5, 1) are presented in Section 2, Case 3. We set $U = T_{D_0;G}$, $U_1^{(1)} = T_{D_0;G} \cup \{c_{(4,2)}, e_{(4,2)}, a_{(4,2)}\}$, $\bar{V} = T_{D_1';G}$, where $D_1' = \{((5, 1), (4, 2)\}$, and note that \bar{V} is a barrier of $T_{(4,2);G}$ in $T_{D_1;G}$. We have

$$C_{>}(\bar{V};c_{(4,2)}) = C_{>}(\bar{V};e_{(4,2)}) = C_{>}(\bar{V};a_{(4,2)}) = C_{>}(\bar{V};b_{(4,2)}) = \{a_{(5,1)}\}.$$

Since the conditions of Lemma 3.1 are satisfied for $V = U_1^{(1)}$, we obtain $Aut_0''(U_1^{(1)}) = \langle (c_{(4,2)}, e_{(4,2)}) \rangle$. By adding the dimer $b_{(4,2)}$ to the set $U_1^{(1)}$, we get $T_{D_1;G}$, and [2, Lemma 3.3] implies (i).

(ii) We can find in Section 2, Case 4, the structure of $(4,1^2)$ -level, as well as the inequalities among tabloids that correspond to the inequality $(4,1^2)$ < (4,2). We set $U=T_{D_1;G}$, $U_2^{(1)}=U\cup\{a_{(4,1^2)},b_{(4,1^2)},e_{(4,1^2)},f_{(4,1^2)}\}$, and $\bar{V}=T_{D_2';G}$, where $D_2'=\{((4,2),(4,1^2)\}$. The set \bar{V} is a barrier of $T_{(4,1^2):G}$ in $T_{D_2:G}$. We have

$$P = C_{>}(\bar{V}; a_{(4,1^2)}) = C_{>}(\bar{V}; b_{(4,1^2)}) = \{a_{(4,2)}\},\$$

$$Q = C_{>}(\bar{V}; e_{(4,1^2)}) = \{c_{(4,2)}\}, \ Q^1 = C_{>}(\bar{V}; f_{(4,1^2)}) = \{e_{(4,2)}\}.$$

There exists a decomposition $Aut_0''(U) = H \times \langle w \rangle$, where H is the trivial subgroup, $w = (c_{(4,2)}, e_{(4,2)})$, and, moreover, w(P) = P, $w(Q) = Q^1$. Now, in accord with [3, Corollary 3.2, (i)], we have $H \cup Hwt \subset Aut_0''(U_2^{(1)})$, where $t = (e_{(4,1^2)}, f_{(4,1^2)})$, so, in particular, the restriction homomorphism $\varrho_{U_2^{(1)},U}$ is surjective. Therefore Lemma 3.2 for $s = (a_{(4,1^2)}, b_{(4,1^2)})$ yields

$$Aut_0''(U_2^{(1)}) = \langle (a_{(4,1^2)},b_{(4,1^2)}), (c_{(4,2)},e_{(4,2)})(e_{(4,1^2)},f_{(4,1^2)}) \rangle.$$

The cone $C_>(\bar{V};c_{(4,1^2)})$ of the dimer $c_{(4,1^2)}$ is $Aut_0''(U_2^{(1)})$ -invariant, and by adding this dimer to the set $U_2^{(1)}$ we get $T_{D_2;G}$. Now, [2, Lemma 3.3] finishes the proof of (ii). (iii) The inequalities among tabloids, which correspond the dominance order inequality $(3^2) < (4,2)$, as well as the description of the (3^2) -level are presented in Section 2, Case 5. We set $\bar{V} = T_{D_3';G}$, where $D_3' = \{((4,2),(4,1^2),(3^2)\}$ and note that \bar{V} is a barrier of $T_{(3^2);G}$ in $T_{D_3;G}$. First, we add the two dimers to $T_{D_2;G}$ and get $U_3^{(1)} = T_{D_2;G} \cup \{a_{(3^2)},e_{(3^2)}\}$. The cones $C_>(\bar{V};a_{(3^2)}) = \{a_{(4,2)}\}, C_>(\bar{V};e_{(3^2)}) = \{a_{(4,2)},c_{(4,2)},e_{(4,2)}\}$ of the dimers are $Aut_0''(T_{D_2;G})$ -invariant, therefore [2, Lemma 3.3] yields

$$Aut_0''(U_3^{(1)}) = \langle (a_{(4,1^2)}, b_{(4,1^2)}), (c_{(4,2)}, e_{(4,2)})(e_{(4,1^2)}, f_{(4,1^2)}) \rangle.$$

Next, we supplement the set $U_3^{(1)}$ with the chiral pair $\{b_{(3^2)},c_{(3^2)}\}$ and obtain $T_{D_3;G}$. We have $P=C_>(\bar{V};b_{(3^2)})=\{a_{(4,2)},b_{(4,2)},c_{(4,2)}\}$, $P^1=C_>(\bar{V};c_{(3^2)})=\{a_{(4,2)},b_{(4,2)},e_{(4,2)}\}$, and the group $Aut_0''(U_3^{(1)})$ can be decomposed as $Aut_0''(U_3^{(1)})=H\times\langle w\rangle$, where as usual $H=\langle(a_{(4,1^2)},b_{(4,1^2)})\rangle$ is the group of automorphisms that leave the cones P and P^1 invariant, and the automorphism $w=(c_{(4,2)},e_{(4,2)})(e_{(4,1^2)},f_{(4,1^2)})$ permutes P and P^1 . Now, [2, Lemma 3.4, (i)] implies (iii).

(iv) In Section 2, Case 6, we have a description of the (3,2,1)-level, and the inequalities among tabloids that correspond to the inequalities $(3,2,1) < (4,1^2)$ and $(3,2,1) < (3^2)$ in the dominance order. We set $\bar{V} = T_{D_4';G}$, where $D_4' = \{(4,1^2),(3^2),(3,2,1)\}$ and note that \bar{V} is a barrier of $T_{(3,2,1);G}$ in $T_{D_4;G}$. Let us first add the chiral pair that taken alone is a G''-orbit: $U_4^{(1)} = T_{D_3;G} \cup \{c_{(3,2,1)},h_{(3,2,1)}\}$. We have $P = C_>(\bar{V};c_{(3,2,1)}) = \{b_{(4,1^2)},b_{(3^2)}\}$, $P^1 = C_>(\bar{V};h_{(3,2,1)}) = \{a_{(4,1^2)},f_{(4,1^2)},c_{(3^2)}\}$. Among the four elements of the automorphism group $Aut_0''(T_{D_3;G})$ only two induce a permutation of the cones P and P^1 : id and $w = (a_{(4,1^2)},b_{(4,1^2)})(c_{(4,2)},e_{(4,2)})(e_{(4,1^2)},f_{(4,1^2)})(b_{(3^2)},c_{(3^2)})$.

Then [3, Corollary 3.2, (i), (ii)] yields $H \leq Aut_0''(U_4^{(1)})$, and $Hwr \leq Aut_0''(U_4^{(1)})$, where $H = \langle id \rangle$, and $r = (c_{(3,2,1)}, h_{(3,2,1)})$. Thus, $I_{U_4^{(1)}, T_{D_3;G}} = H \times \langle w \rangle$. Now, [2, Lemma 3.4, (i)] implies $Aut_0''(U_4^{(1)}) = H \times \langle wr \rangle$. Next we set $U_4^{(2)} = U_4^{(1)} \cup \{b_{(3,2,1)}, f_{(3,2,1)}, e_{(3,2,1)}, k_{(3,2,1)}\}$. We denote for short the corresponding cones as follows:

$$\begin{split} Q &= C_{>}(\bar{V}; b_{(3,2,1)}) = \{a_{(4,1^2)}, c_{(4,1^2)}, b_{(3^2)}\}, \\ Q^1 &= C_{>}(\bar{V}; f_{(3,2,1)}) = \{b_{(4,1^2)}, c_{(4,1^2)}, c_{(3^2)}\}, \\ R &= C_{>}(\bar{V}; e_{(3,2,1)}) = \{c_{(4,1^2)}, e_{(4,1^2)}, b_{(3^2)}\}, \\ R^1 &= C_{>}(\bar{V}; k_{(3,2,1)}) = \{c_{(4,1^2)}, f_{(4,1^2)}, c_{(3^2)}\}. \end{split}$$

We have $u(Q)=Q^1,\ u(R)=R^1,$ for u=wr. Again, [3, Corollary 3.2, (i), (ii)] implies $H\leq Aut_0''(U_4^{(2)}),$ and $Hus\leq Aut_0''(U_4^{(2)}),$ where $s=(b_{(3,2,1)},f_{(3,2,1)})(e_{(3,2,1)},k_{(3,2,1)}),$ so the restriction homomorphism $\varrho_{U_4^{(2)},U_4^{(1)}}$ is surjective, and in accordance with [2, Lemma 3.6, (i)] we obtain $Aut_0''(U_4^{(2)})=H\times\langle us\rangle$. Further, we supplement $U_4^{(2)}$ with the last G''-orbit consisting of a chiral pair and two dimers:

$$T_{D_4;G} = U_4^{(2)} \cup \{\ell_{(3,2,1)}, m_{(3,2,1)}, a_{(3,2,1)}, p_{(3,2,1)}\}.$$

The corresponding cones are

$$\begin{split} X &= C_{>}(\bar{V};\ell_{(3,2,1)}) = \{a_{(4,1^2)},e_{(4,1^2)},e_{(3^2)}\}, \\ X^1 &= C_{>}(\bar{V};m_{(3,2,1)}) = \{b_{(4,1^2)},f_{(4,1^2)},e_{(3^2)}\}, \\ \tilde{P} &= C_{>}(\bar{V};a_{(3,2,1)}) = \{a_{(4,1^2)},b_{(4,1^2)},a_{(3^2)}\}, \\ \tilde{Q} &= C_{>}(\bar{V};p_{(3,2,1)}) = \{e_{(4,1^2)},f_{(4,1^2)},e_{(3^2)}\}. \end{split}$$

We have $Aut_0''(U_4^{(2)}) = H \times \langle v \rangle$, where v = us, and $v(X) = X^1$, $v(\tilde{P}) = \tilde{P}$, $v(\tilde{Q}) = \tilde{Q}$. Moreover, if $t = (\ell_{(3,2,1)}, m_{(3,2,1)})$, then $H \leq Aut_0''(T_{D_4;G})$, and $Hvt \subset Aut_0''(T_{D_4;G})$, because of [3, Corollary 3.2, (i), (ii)]. Therefore the corresponding restriction homomorphism is surjective, and Lemma 3.3 yields part (iv).

(v) The $(3,1^3)$ -level is described in Section 2, Case 7, where all inequalities between tabloids, that correspond to the inequality $(3,1^3) < (3,2,1)$, are presented. Let $\bar{V} = T_{D_5';G}$, where $D_5' = \{((3,2,1),(3,1^3)\}$. The set \bar{V} is a barrier of $T_{(3,1^3);G}$ in $T_{D_5;G}$. First, we supplement consecutively the set $T_{D_4;G}$ with two G''-orbits that consist of two chiral pairs each: $U_5^{(1)} = T_{D_4;G} \cup \{b_{(3,1^3)}, f_{(3,1^3)}, \bar{k}_{(3,1^3)}\}$, and $U_5^{(2)} = U_5^{(1)} \cup \{\bar{b}_{(3,1^3)}, \bar{f}_{(3,1^3)}, e_{(3,1^3)}, k_{(3,1^3)}\}$. The chiral involution u from $Aut_0''(T_{D_4;G})$ permutes the cones

$$C_{>}(\bar{V};b_{(3,1^3)}) = C_{>}(\bar{V};\bar{b}_{(3,1^3)}) = \{b_{(3,2,1)},c_{(3,2,1)}\},\$$

$$C_{>}(\bar{V};f_{(3,1^3)}) = C_{>}(\bar{V};\bar{f}_{(3,1^3)}) = \{f_{(3,2,1)},h_{(3,2,1)}\},\$$

and the cones

$$C_{>}(\bar{V}; e_{(3,1^3)}) = C_{>}(\bar{V}; \bar{e}_{(3,1^3)}) = \{c_{(3,2,1)}, e_{(3,2,1)}\},\$$

$$C_{>}(\bar{V}; k_{(3,1^3)}) = C_{>}(\bar{V}; \bar{k}_{(3,1^3)}) = \{h_{(3,2,1)}, k_{(3,2,1)}\}.$$

Now, the decomposition $Aut_0''(T_{D_4;G}) = H \times \langle u \rangle$, where $H = \{id\}$, the surjectivity of the corresponding restriction homomorphism, as well as [2, Lemma 3.6, (i)], yield consecutively $Aut_0''(U_5^{(1)}) = H \times \langle v \rangle$, for $v = u(b_{(3,1^3)}, f_{(3,1^3)})(\bar{e}_{(3,1^3)}, \bar{k}_{(3,1^3)})$, and $Aut_0''(U_5^{(2)}) = H \times \langle w \rangle$, for $w = v(\bar{b}_{(3,1^3)}, \bar{f}_{(3,1^3)})(e_{(3,1^3)}, k_{(3,1^3)})$. Further, let us set $U_5^{(3)} = U_5^{(2)} \cup \{c_{(3,1^3)}, h_{(3,1^3)}, \bar{e}_{(3,1^3)}, \bar{h}_{(3,1^3)}\}$. We have

$$\begin{split} C_{>}(\bar{V};c_{(3,1^3)}) &= C_{>}(\bar{V};\bar{c}_{(3,1^3)}) = \{b_{(3,2,1)},e_{(3,2,1)}\}, \\ C_{>}(\bar{V};h_{(3,1^3)}) &= C_{>}(\bar{V};\bar{h}_{(3,1^3)}) = \{f_{(3,2,1)},k_{(3,2,1)}\}, \end{split}$$

and the automorphism w permutes these two cones. According to [2, Lemma 3.4, (ii)], we get $Aut_0''(U_5^{(3)}) = H \times \langle z \rangle \times \langle wx \rangle$, where $z = (c_{(3,1^3)}, \bar{c}_{(3,1^3)})(h_{(3,1^3)}, \bar{h}_{(3,1^3)})$, and $x = (c_{(3,1^3)}, h_{(3,1^3)})(\bar{c}_{(3,1^3)}, \bar{h}_{(3,1^3)})$. Finally, we add the G''-orbit consisting of four chiral pairs and get $T_{D_5;G} = U_5^{(3)} \cup \{a_{(3,1^3)}, \bar{a}_{(3,1^3)}, \ell_{(3,1^3)}, \bar{\ell}_{(3,1^3)}, m_{(3,1^3)}, p_{(3,1^3)}, \bar{m}_{(3,1^3)}, \bar{p}_{(3,1^3)}\}$. The corresponding cones are

$$\begin{split} P &= C_{>}(\bar{V}; a_{(3,1^3)}) = C_{>}(\bar{V}; \bar{a}_{(3,1^3)}) = \{a_{(3,2,1)}\}, \\ Q &= C_{>}(\bar{V}; \ell_{(3,1^3)}) = C_{>}(\bar{V}; \bar{\ell}_{(3,1^3)}) = \{\ell_{(3,2,1)}, m_{(3,2,1)}\}, \\ R &= C_{>}(\bar{V}; m_{(3,1^3)}) = C_{>}(\bar{V}; \bar{m}_{(3,1^3)}) = \{\ell_{(3,2,1)}, p_{(3,2,1)}\}, \\ R^1 &= C_{>}(\bar{V}; p_{(3,1^3)}) = C_{>}(\bar{V}; \bar{p}_{(3,1^3)}) = \{m_{(3,2,1)}, p_{(3,2,1)}\}. \end{split}$$

We have the decomposition $Aut_0''(U_5^{(3)}) = H \times \langle y \rangle$, where $H = \langle z \rangle$, y = wx. The group H consists of all automorphisms that leave the cones P, Q, R, R^1 , invariant, and y(P) = P, y(Q) = Q, $y(R) = R^1$. Thus the corresponding restriction homomorphism is surjective and Lemma 3.4 yields part (v).

(vi) In Section 2, Case 8, we describe the (2^3) -level. All inequalities between tabloids, that correspond to the inequality $(2^3) < (3,2,1)$, are presented there. Let $\bar{V} = T_{D_6';G}$, where $D_5' = \{((3,2,1),(2^3)\}$. The set \bar{V} is a barrier of $T_{(2^3);G}$ in $T_{D_6;G}$. Let us first add to the set $T_{D_5;G}$ the G''-orbit that contains four chiral pairs: $U_6^{(1)} = T_{D_5;G} \cup \{a_{(2^3)},\bar{a}_{(2^3)},c_{(2^3)},\bar{c}_{(2^3)},h_{(2^3)},\ell_{(2^3)},\bar{\ell}_{(2^3)}\}$. Their cones are

$$\begin{split} C_{>}(\bar{V};a_{(2^3)}) &= \{a_{(3,2,1)},b_{(3,2,1)},c_{(3,2,1)},f_{(3,2,1)},\ell_{(3,2,1)}\}, \\ C_{>}(\bar{V};\bar{a}_{(2^3)}) &= \{a_{(3,2,1)},b_{(3,2,1)},f_{(3,2,1)},h_{(3,2,1)},m_{(3,2,1)}\}, \\ C_{>}(\bar{V};c_{(2^3)}) &= \{a_{(3,2,1)},c_{(3,2,1)},e_{(3,2,1)},k_{(3,2,1)},\ell_{(3,2,1)},p_{(3,2,1)}\}, \\ C_{>}(\bar{V};\bar{c}_{(2^3)}) &= \{a_{(3,2,1)},e_{(3,2,1)},h_{(3,2,1)},k_{(3,2,1)},m_{(3,2,1)},p_{(3,2,1)}\}, \\ C_{>}(\bar{V};h_{(2^3)}) &= C_{>}(\bar{V};k_{(2^3)}) &= \{f_{(3,2,1)},h_{(3,2,1)},e_{(3,2,1)},\ell_{(3,2,1)},\ell_{(3,2,1)},m_{(3,2,1)},p_{(3,2,1)}\}. \\ C_{>}(\bar{V};\ell_{(2^3)}) &= C_{>}(\bar{V};\bar{\ell}_{(2^3)}) &= \{b_{(3,2,1)},c_{(3,2,1)},e_{(3,2,1)},\ell_{(3,2,1)},m_{(3,2,1)},m_{(3,2,1)},p_{(3,2,1)}\}. \end{split}$$

The group $Aut_0''(T_{D_5;G})$ can be decomposed as $Aut_0''(T_{D_5;G}) = H \times \langle w \rangle$, where w is its last generator, as written in (v), and H is generated by all the rest. The automorphism

w permutes the cones of the members of each of the added four chiral pairs. Therefore, the corresponding restriction homomorphism is surjective, and now Lemma 3.5 implies

$$\begin{aligned} Aut_0''(U_6^{(1)}) &= \langle (c_{(3,1^3)}, \bar{c}_{(3,1^3)})(h_{(3,1^3)}, \bar{h}_{(3,1^3)}), (m_{(3,1^3)}, \bar{m}_{(3,1^3)})(p_{(3,1^3)}, \bar{p}_{(3,1^3)}), \\ & (a_{(3,1^3)}, \bar{a}_{(3,1^3)}), (\ell_{(3,1^3)}, \bar{\ell}_{(3,1^3)}), (h_{(2^3)}, k_{(2^3)})(\ell_{(2^3)}, \bar{\ell}_{(2^3)}), \\ & (c_{(4,2)}, e_{(4,2)})(a_{(4,1^2)}, b_{(4,1^2)})(e_{(4,1^2)}, f_{(4,1^2)})(b_{(3^2)}, c_{(3^2)})(c_{(3,2,1)}, h_{(3,2,1)}) \\ & (b_{(3,2,1)}, f_{(3,2,1)})(e_{(3,2,1)}, k_{(3,2,1)})(\ell_{(3,2,1)}, m_{(3,2,1)})(b_{(3,1^3)}, f_{(3,1^3)})(\bar{e}_{(3,1^3)}, \bar{k}_{(3,1^3)}) \\ & (\bar{b}_{(3,1^3)}, \bar{f}_{(3,1^3)})(e_{(3,1^3)}, k_{(3,1^3)})(c_{(3,1^3)}, h_{(3,1^3)})(\bar{c}_{(3,1^3)}, \bar{h}_{(3,1^3)})(m_{(3,1^3)}, p_{(3,1^3)}) \\ & (\bar{m}_{(3,1^3)}, \bar{p}_{(3,1^3)})(h_{(2^3)}, \ell_{(2^3)})(k_{(2^3)}, \bar{\ell}_{(2^3)}) \rangle. \end{aligned}$$

Now, we add to $U_6^{(1)}$ consecutively the three G''-orbits consisting of one chiral pair and one dimer: $U_6^{(2)} = U_6^{(1)} \cup \{\bar{k}_{(2^3)}, m_{(2^3)}, b_{(2^3)}\}, \ U_6^{(3)} = U_6^{(2)} \cup \{\bar{h}_{(2^3)}, \bar{m}_{(2^3)}, \bar{b}_{(2^3)}\}, \ U_6^{(4)} = U_6^{(3)} \cup \{f_{(2^3)}, \bar{f}_{(2^3)}, e_{(2^3)}\}.$ Here are the corresponding cones:

$$\begin{split} C_{>}(\bar{V};\bar{k}_{(2^3)}) &= \{h_{(3,2,1)},\ell_{(3,2,1)},p_{(3,2,1)}\},\\ C_{>}(\bar{V};m_{(2^3)}) &= \{c_{(3,2,1)},m_{(3,2,1)},p_{(3,2,1)}\},\\ C_{>}(\bar{V};b_{(2^3)}) &= \{a_{(3,2,1)},c_{(3,2,1)},h_{(3,2,1)},\ell_{(3,2,1)},m_{(3,2,1)}\},\\ C_{>}(\bar{V};\bar{h}_{(2^3)}) &= \{f_{(3,2,1)},k_{(3,2,1)},m_{(3,2,1)}\},\\ C_{>}(\bar{V};\bar{m}_{(2^3)}) &= \{b_{(3,2,1)},e_{(3,2,1)},\ell_{(3,2,1)}\},\\ C_{>}(\bar{V};\bar{b}_{(2^3)}) &= \{a_{(3,2,1)},b_{(3,2,1)},e_{(3,2,1)},f_{(3,2,1)},k_{(3,2,1)},p_{(3,2,1)}\},\\ C_{>}(\bar{V};f_{(2^3)}) &= \{c_{(3,2,1)},e_{(3,2,1)},f_{(3,2,1)},f_{(3,2,1)}\},\\ C_{>}(\bar{V};\bar{f}_{(2^3)}) &= \{b_{(3,2,1)},h_{(3,2,1)},k_{(3,2,1)},k_{(3,2,1)}\},\\ C_{>}(\bar{V};e_{(2^3)}) &= \{b_{(3,2,1)},e_{(3,2,1)},f_{(3,2,1)},h_{(3,2,1)},k_{(3,2,1)}\}.\\ \end{split}$$

For any one of these G''-orbits, the last generator of the group $Aut''_0(U_6^{(1)})$, or its extension, permutes the cones of the members of the chiral pair and leaves the cone of the dimer invariant. Applying Lemma 3.3 three times, we obtain

$$\begin{split} Aut_0''(U_6^{(4)}) &= \langle (c_{(3,1^3)}, \bar{c}_{(3,1^3)})(h_{(3,1^3)}, \bar{h}_{(3,1^3)}), (m_{(3,1^3)}, \bar{m}_{(3,1^3)})(p_{(3,1^3)}, \bar{p}_{(3,1^3)}), \\ & (a_{(3,1^3)}, \bar{a}_{(3,1^3)}), (\ell_{(3,1^3)}, \bar{\ell}_{(3,1^3)}), (h_{(2^3)}, k_{(2^3)})(\ell_{(2^3)}, \bar{\ell}_{(2^3)}), \\ & (c_{(4,2)}, e_{(4,2)})(a_{(4,1^2)}, b_{(4,1^2)})(e_{(4,1^2)}, f_{(4,1^2)})(b_{(3^2)}, c_{(3^2)})(c_{(3,2,1)}, h_{(3,2,1)}) \\ & (b_{(3,2,1)}, f_{(3,2,1)})(e_{(3,2,1)}, k_{(3,2,1)})(\ell_{(3,2,1)}, m_{(3,2,1)})(b_{(3,1^3)}, f_{(3,1^3)})(\bar{e}_{(3,1^3)}, \bar{k}_{(3,1^3)}) \\ & (\bar{b}_{(3,1^3)}, \bar{f}_{(3,1^3)})(e_{(3,1^3)}, k_{(3,1^3)})(c_{(3,1^3)}, h_{(3,1^3)})(\bar{c}_{(3,1^3)}, \bar{h}_{(3,1^3)})(m_{(3,1^3)}, p_{(3,1^3)}) \\ & (\bar{m}_{(3,1^3)}, \bar{p}_{(3,1^3)})(h_{(2^3)}, \ell_{(2^3)})(k_{(2^3)}, \bar{\ell}_{(2^3)})(\bar{k}_{(2^3)}, m_{(2^3)})(\bar{h}_{(2^3)}, \bar{m}_{(2^3)})(f_{(2^3)}, \bar{f}_{(2^3)}) \rangle. \end{split}$$

We have $C_>(\bar{V}; \bar{e}_{(2^3)}) = C_>(\bar{V}; e_{(2^3)})$, so the cone of the dimer $\bar{e}_{(2^3)}$ is $Aut_0''(U_6^{(4)})$ -invariant, and, in compliance with [2, Lemma 3.3], we get part (vi).

COROLLARY 3.7. The chiral pairs $\{a_{(4,1^2)}, b_{(4,1^2)}\}$, $\{e_{(4,1^2)}, f_{(4,1^2)}\}$ can be distinguished via substitution reactions among the elements of $T_{D_2;G}$.

PROOF: Lunn-Senior's group $Aut''_0(T_{D_2;G})$ does not contain automorphism that maps the members of one of the chiral pairs onto the members of the other.

REMARK 3.8. The members of the chiral pair $\{a_{(4,1^2)}, b_{(4,1^2)}\}$ can be obtained via substitution reactions by one and the same dimer $a_{(4,2)}$, whereas each of the members of the chiral pair $\{c_{(4,2)}, e_{(4,2)}\}$ produces via substitution reaction exactly one member of the chiral pair $\{e_{(4,1^2)}, f_{(4,1^2)}\}$, and the two members of the latter can be obtained in this way.

COROLLARY 3.9. The two dimers $a_{(3^2)}$ and $e_{(3^2)}$, can be distinguished via substitution reactions among the elements of $T_{D_3:G}$.

PROOF: The group $Aut''_0(T_{D_3;G})$ does not contain automorphism that maps one of the dimers onto the other.

REMARK 3.10. The dimer $a_{(3^2)}$ can be produced via substitution reactions by exactly one (4, 2)-product whereas the dimer $e_{(3^2)}$ can be produced by three (4, 2)-products.

Since the group $Aut_0''(T_{D_4;G})$ contains only the identity and the chiral automorphism, we obtain the following two corollaries:

COROLLARY 3.11. The two dimers $a_{(3,2,1)}$ and $p_{(3,2,1)}$, can be distinguished via substitution reactions among the elements of $T_{D_4;G}$.

REMARK 3.12. The dimer $a_{(3,2,1)}$ can be produced via substitution reactions by the dimer $a_{(3^2)}$ which has the property that it can produce exactly one (3,2,1)-product. On the other hand, the dimer $p_{(3,2,1)}$ can be produced by the dimer $e_{(3^2)}$ which has the property that it can produce three (3,2,1)-products.

COROLLARY 3.13. Any two chiral pairs from

$$\{b_{(3,2,1)}, f_{(3,2,1)}\}, \{c_{(3,2,1)}, h_{(3,2,1)}\}, \{e_{(3,2,1)}, k_{(3,2,1)}\},$$

can be distinguished via substitution reactions among the elements of $T_{D_4;G}$.

REMARK 3.14. Any member of the chiral pair $\{b_{(3,2,1)}, f_{(3,2,1)}\}$ can be produced via substitution reactions by one member of the chiral pair $\{a_{(4,1^2)}, b_{(4,1^2)}\}$, any member of the chiral pair $\{c_{(3,2,1)}, h_{(3,2,1)}\}$ can be produced via substitution reactions by one member of each chiral pair $\{a_{(4,1^2)}, b_{(4,1^2)}\}$, $\{e_{(4,1^2)}, f_{(4,1^2)}\}$, and any member of the chiral pair $\{e_{(3,2,1)}, k_{(3,2,1)}\}$ can be produced via substitution reactions by one member of the chiral pair $\{e_{(3,2,1)}, k_{(3,2,1)}\}$. In the end, it is enough to note that Corollary 3.7 holds.

COROLLARY 3.15. The chiral pairs $\{c_{(3,1^3)}, h_{(3,1^3)}\}, \{\bar{c}_{(3,1^3)}, \bar{h}_{(3,1^3)}\}$ can not be distinguished via substitution reactions among the elements of $T_{D_6;G}$.

COROLLARY 3.16. The chiral pairs $\{m_{(3,1^3)}, p_{(3,1^3)}\}$, $\{\bar{m}_{(3,1^3)}, \bar{p}_{(3,1^3)}\}$ can not be distinguished via substitution reactions among the elements of $T_{D_6;G}$.

PROOFS: It is enough to note that Lunn-Senior's group $Aut_0''(T_{D_6;G})$ contains the automorphisms $(c_{(3,1^3)}, \bar{c}_{(3,1^3)})(h_{(3,1^3)}, \bar{h}_{(3,1^3)})$, and $(m_{(3,1^3)}, \bar{m}_{(3,1^3)})(p_{(3,1^3)}, \bar{p}_{(3,1^3)})$, respectively.

COROLLARY 3.17. (i) The chiral pairs

$$\{a_{(3,1^3)}, \bar{a}_{(3,1^3)}\}, \{\ell_{(3,1^3)}, \bar{\ell}_{(3,1^3)}\},$$
 (3.18)

can be distinguished via substitution reactions among the elements of $T_{D_5;G}$;

(ii) any chiral pair from (3.18) and any one from the chiral pairs

$$\{m_{(3,1^3)}, p_{(3,1^3)}\}, \{\bar{m}_{(3,1^3)}, \bar{p}_{(3,1^3)}\},$$

can be distinguished via substitution reactions among the elements of $T_{D_{5},G}$.

PROOF: In both parts (i) and (ii) Lunn-Senior's group $Aut_0''(T_{D_5;G})$ does not contain an automorphism that works.

REMARK 3.19. The members of the chiral pair $\{a_{(3,1^3)}, \bar{a}_{(3,1^3)}\}$ can be produced via substitution reactions by exactly one (3,2,1)-product – the dimer $a_{(3,2,1)}$, any member of the chiral pair $\{\ell_{(3,1^3)}, \bar{\ell}_{(3,1^3)}\}$ can be produced via substitution reactions only by both members of the chiral pair $\{\ell_{(3,2,1)}, m_{(3,2,1)}\}$, and any member of the chiral pair $\{m_{(3,1^3)}, p_{(3,1^3)}\}$ (respectively, $\{\bar{m}_{(3,1^3)}, \bar{p}_{(3,1^3)}\}$) can be produced via substitution reactions by one member of the chiral pair $\{\ell_{(3,2,1)}, m_{(3,2,1)}\}$, and by the dimer $p_{(3,2,1)}$.

The two corollaries below can be proved in the same way.

COROLLARY 3.20. The two chiral pairs $\{b_{(3,1^3)}, f_{(3,1^3)}\}$, $\{\bar{e}_{(3,1^3)}, \bar{k}_{(3,1^3)}\}$ can be distinguished via substitution reactions among the elements of $T_{D_5;G}$.

COROLLARY 3.21. The two chiral pairs $\{\bar{b}_{(3,1^3)}, \bar{f}_{(3,1^3)}\}$, $\{e_{(3,1^3)}, k_{(3,1^3)}\}$ can be distinguished via substitution reactions among the elements of $T_{D_5;G}$.

REMARK 3.22. The members of the chiral pair $\{b_{(3,2,1)}, f_{(3,2,1)}\}$ (respectively, the chiral pair $\{e_{(3,2,1)}, k_{(3,2,1)}\}$) produce the members of the chiral pair $\{b_{(3,1^3)}, f_{(3,1^3)}\}$ as well as the members of the chiral pair $\{\bar{b}_{(3,1^3)}, \bar{f}_{(3,1^3)}\}$ (respectively, $\{\bar{e}_{(3,1^3)}, \bar{k}_{(3,1^3)}\}$ as well as $\{e_{(3,1^3)}, k_{(3,1^3)}\}$). Moreover, the members of $\{b_{(3,2,1)}, f_{(3,2,1)}\}$ do not produce neither the members of $\{\bar{e}_{(3,1^3)}, \bar{k}_{(3,1^3)}\}$ nor the members of $\{e_{(3,1^3)}, k_{(3,1^3)}\}$, and similarly for $\{e_{(3,2,1)}, k_{(3,2,1)}\}$. In the end we note that in accord to Corollary 3.13 the two chiral pairs $\{b_{(3,2,1)}, f_{(3,2,1)}\}$ and $\{e_{(3,2,1)}, k_{(3,2,1)}\}$ are distinguishable via substitution reactions among the elements of $T_{D_5;G}$.

Acknowledgement

This work is partially supported by Grant MI-1503/2005 of the Bulgarian Foundation of Scientific Research.

References

- [1] V. V. Iliev, On the Inverse Problem of Isomer Enumeration: Part II, Case of Cyclopropane, MATCH Commun. Math. Comput. Chem. 43 (2001), 79 84.
- [2] V. V. Iliev, The genetic reactions of ethane, MATCH Commun. Math. Comput. Chem. 56 (2006), 21 95.
- [3] V. V. Iliev, Erratum, 517 517.
- [4] A. C. Lunn, J. K. Senior, Isomerism and Configuration, J. Phys. Chem. 33 (1929), 1027 – 1079.