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1. The groups of cyclopropane

In this paper we shall use freely the terminology and notation from [2]. In accord to
[4, V], or [1, Corollary 5.1.3], the group G ≤ S6 of univalent substitution isomerism of
cyclopropane C3H6 coincides up to conjugacy with the group

〈(123)(456), (14)(26)(35)〉,

which is isomorphic to the dihedral group of order 6. Since there are chiral pairs among
the derivatives of cyclopropane, the group G′ ≤ S6 of stereoisomerism of cyclopropane
contains G and has order 12, so it coincides up to conjugacy with the group

〈(123)(456), (14)(26)(35), (14)(25)(36)〉

that is isomorphic to the dihedral group of order 12 — see [4, V], or [1, Corollary 5.1.4].
The structural formula (graph) of cyclopropane
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yields that its group G′′ ≤ S6 of structural isomerism, up to conjugacy, coincides with
the group

〈(123)(456), (14)(26)(35), (14)〉
of order 48. Moreover, G ≤ G′ ≤ G′′.

2. The isomers of cyclopropane and their substitution reactions

Below, for any empirical formula λ ∈ P6, we list the corresponding products of cyclo-
propane as well as the genetic reactions among them.

Case 1. λ = (6).
We have

T(6);G = T(6);G′ = T(6);G′′ = {a(6)},
where a(6) is the only G- and at the same time G′- and G′′-orbit of the tabloid A(6) =
({1, 2, 3, 4, 5, 6}). The orbit a(6) represents the parent molecule of cyclopropane.

Case 2. λ = (5, 1).
The transitivity of the group G yields

T(5,1);G = T(5,1);G′ = T(5,1);G′′ = {a(5,1)},

where a(5,1) is the only G- and at the same time G′- and G′′-orbit of the tabloid A(5,1) =
({1, 2, 3, 4, 5}, {6}).
The only possible substitution reaction between the parent substance of cyclopropane
and its mono-substitution derivative is designated a(5,1) < a(6), because R1,6A

(5,1) =
A(6), and hence A(5,1) < A(6). We remind that the operation R1,6 applied on the tabloid
A(5,1) means “replace the ligand of type x2 in position 6 by a ligand of type x1”. The
converse operation “replace the ligand of type x1 in position 6 by a ligand of type x2”
represents the simple substitution reaction

A(6) −→ A(5,1).

Case 3. λ = (4, 2).
We have

T(4,2);G = {a(4,2), b(4,2), c(4,2), e(4,2)},
where:
a(4,2) is the G-orbit of the tabloid A(4,2) = ({1, 2, 3, 4}, {5, 6}),
b(4,2) is the G-orbit of the tabloid B(4,2) = ({1, 2, 4, 5}, {3, 6}),
c(4,2) is the G-orbit of the tabloid C(4,2) = ({1, 2, 4, 6}, {3, 5}),
e(4,2) is the G-orbit of the tabloid E(4,2) = ({1, 3, 4, 5}, {2, 6}).
Below are all inequalities between the structural formulae of di-substitution homoge-
neous derivatives and the structural formula of the mono-substitution derivative of cy-
clopropane. We have

A(4,2) < A(5,1), B(4,2) < A(5,1),
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(123)(456)C(4,2) < A(5,1), E(4,2) < A(5,1),

because

R1,5A
(4,2) = R1,3B

(4,2) = R1,1(123)(456)C(4,2) = R1,2E
(4,2) = A(5,1).

Thus, we obtain the following substitution reactions

A(5,1) −→ A(4,2), A(5,1) −→ B(4,2),

A(5,1) −→ (123)(456)C(4,2), A(5,1) −→ E(4,2),

which mean “replace the ligand of type x1 in position 5 of the tabloid A(5,1) by a ligand
of type x2”, “replace the ligand of type x1 in position 3 of the tabloid A(5,1) by a ligand
of type x2”, “replace the ligand of type x1 in position 1 of the tabloid A(5,1) by a ligand
of type x2”, and, “replace the ligand of type x1 in position 2 of the tabloid A(5,1) by a
ligand of type x2”, respectively.
These simple substitution reactions are also designated by the inequalities

a(4,2) < a(5,1), b(4,2) < a(5,1), c(4,2) < a(5,1), e(4,2) < a(5,1).

The set of G′-orbits in T(4,2) is

T(4,2);G′ = {a(4,2), b(4,2), c(4,2) ∪ e(4,2)},

so the (4, 2)-products that correspond to c(4,2) and e(4,2) are members of a chiral pair.
The set of G′′-orbits in T(4,2) is

T(4,2);G′′ = {b(4,2), a(4,2) ∪ (c(4,2) ∪ e(4,2))},

hence the products that correspond to a(4,2), c(4,2), and e(4,2) are structurally identical,
and any one of them is structurally isomeric with the product which corresponds to
b(4,2).

Case 4. λ = (4, 12).
In this case we have

T(4,12);G = {a(4,12), b(4,12), c(4,12), e(4,12), f(4,12)},

where:
a(4,12) is the G-orbit of the tabloid A(4,12) = ({1, 2, 3, 4}, {5}, {6}),
b(4,12) is the G-orbit of the tabloid B(4,12) = ({1, 2, 3, 4}, {6}, {5}),
c(4,12) is the G-orbit of the tabloid C(4,12) = ({1, 2, 4, 5}, {3}, {6}),
e(4,12) is the G-orbit of the tabloid E(4,12) = ({1, 2, 4, 6}, {3}, {5}),
f(4,12) is the G-orbit of the tabloid F (4,12) = ({1, 3, 4, 5}, {2}, {6}).
The following inequalities hold between the di-substitution homogeneous and the di-
substitution heterogeneous derivatives of cyclopropane:

A(4,12) < A(4,2), B(4,12) < A(4,2),
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C(4,12) < B(4,2), E(4,12) < C(4,2), F (4,12) < E(4,2).

Indeed,
R2,6A

(4,12) = R2,5B
(4,12) = A(4,2),

R2,6C
(4,12) = B(4,2), R2,5E

(4,12) = C(4,2), R2,6F
(4,12) = E(4,2).

In this way we obtain the following substitution reactions

A(4,2) −→ A(4,12), A(4,2) −→ B(4,12),

B(4,2) −→ C(4,12), C(4,2) −→ E(4,12), E(4,2) −→ F (4,12),

which mean “replace the ligand of type x2 in position 6 of the tabloid A(4,2) by a ligand
of type x3”, “replace the ligand of type x2 in position 5 of the tabloid A(4,2) by a ligand
of type x3”, “replace the ligand of type x2 in position 6 of the tabloid B(4,2) by a ligand
of type x3”, “replace the ligand of type x2 in position 5 of the tabloid C(4,2) by a ligand
of type x3”, and, “replace the ligand of type x2 in position 6 of the tabloid E(4,2) by a
ligand of type x3”,respectively. In terms of inequalities these substitution reactions can
be represented as follows:

a(4,12) < a(4,2), b(4,12) < a(4,2),

c(4,12) < b(4,2), e(4,12) < c(4,2), f(4,12) < e(4,2).

Further, we obtain

T(4,12);G′ = {a(4,12) ∪ b(4,12), c(4,12), e(4,12) ∪ f(4,12)},

and therefore the products that correspond to the members of any one of the sets
{a(4,12), b(4,12)}, and {e(4,12), f(4,12)} form a chiral pair, and the product that corresponds
to c(4,12) is a dimer. Moreover,

T(4,12);G′′ = {(a(4,12) ∪ b(4,12)) ∪ (e(4,12) ∪ f(4,12)), c(4,12)}.

Hence the four members of the above two chiral pairs are structurally identical, and
each one of them is structurally isomeric to the product that corresponds to the dimer
c(4,12).

Case 5. λ = (32).
Now we have

T(32);G = {a(32), b(32), c(32), e(32)},
where:
a(32) is the G-orbit of the tabloid A(32) = ({1, 2, 3}, {4, 5, 6}),
b(32) is the G-orbit of the tabloid B(32) = ({1, 2, 4}, {3, 5, 6}),
c(32) is the G-orbit of the tabloid C(32) = ({1, 2, 5}, {3, 4, 6}),
e(32) is the G-orbit of the tabloid E(32) = ({1, 2, 6}, {3, 4, 5}).
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We have the following inequalities between the tabloids of shape (32) and the tabloids
of shape (4, 2):

A(32) < A(4,2), B(32) < A(4,2), (132)(465)C(32) < A(4,2), (123)(456)E(32) < A(4,2),

B(32) < B(4,2), C(32) < B(4,2),

B(32) < C(4,2), E(32) < C(4,2),

(132)(465)C(32) < E(4,2), (132)(465)E(32) < E(4,2),

because

R1,4A
(32) = R1,3B

(32) = R1,2(132)(465)C(32) = R1,1(123)(456)E(32) = A(4,2),

R1,5B
(32) = R1,4C

(32) = B(4,2),

R1,6B
(32) = R1,4E

(32) = C(4,2),

R1,5(132)(465)C(32) = R1,4(132)(465)E(32) = E(4,2).

Thus, the substitution reactions among di-substitution homogeneous derivatives of cy-
clopropane and its tri-substitution homogeneous derivatives, can be represented as fol-
lows:

a(32) < a(4,2), b(32) < a(4,2), c(32) < a(4,2), e(32) < a(4,2),

b(32) < b(4,2), c(32) < b(4,2),

b(32) < c(4,2), e(32) < c(4,2),

c(32) < e(4,2), e(32) < e(4,2).

The set of all G′-orbits is

T(32);G′ = {a(32), b(32) ∪ c(32), e(32)},

so the products that correspond to the members of the set {b(32), c(32)} form a chiral
pair,and the products that correspond to a(32) and e(32) are dimers.
The set of all G′′-orbits is

T(32);G′′ = {a(32) ∪ e(32), (b(32) ∪ c(32))},

and this yields structural identity of the dimers which correspond to a(32) and e(32), and
each one of them is structurally isomeric to any member of the above chiral pair.

Case 6. λ = (3, 2, 1).
We have

T(3,2,1);G =

{a(3,2,1), b(3,2,1), c(3,2,1), e(3,2,1), f(3,2,1), h(3,2,1), k(3,2,1), �(3,2,1),m(3,2,1), p(3,2,1)}
where:
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a(3,2,1) is the G-orbit of the tabloid A(3,2,1) = ({1, 2, 3}, {4, 5}, {6}),
b(3,2,1) is the G-orbit of the tabloid B(3,2,1) = ({1, 2, 4}, {3, 5}, {6}),
c(3,2,1) is the G-orbit of the tabloid C(3,2,1) = ({1, 2, 4}, {3, 6}, {5}),
e(3,2,1) is the G-orbit of the tabloid E(3,2,1) = ({1, 2, 4}, {5, 6}, {3}),
f(3,2,1) is the G-orbit of the tabloid F (3,2,1) = ({1, 2, 5}, {3, 4}, {6}),
h(3,2,1) is the G-orbit of the tabloid H(3,2,1) = ({1, 2, 5}, {3, 6}, {4}),
k(3,2,1) is the G-orbit of the tabloid K(3,2,1) = ({1, 2, 5}, {4, 6}, {3}),
�(3,2,1) is the G-orbit of the tabloid L(3,2,1) = ({1, 2, 6}, {3, 4}, {5}),
m(3,2,1) is the G-orbit of the tabloid M (3,2,1) = ({1, 2, 6}, {3, 5}, {4}),
p(3,2,1) is the G-orbit of the tabloid P (3,2,1) = ({1, 2, 6}, {4, 5}, {3}).
The inequalities between the tabloids of shape (3, 2, 1) and the tabloids of shape (4, 12)
and (32), respectively, are as follows:

A(3,2,1) < A(4,12), B(3,2,1) < A(4,12),

(132)(465)H(3,2,1) < A(4,12), (123)(456)L(3,2,1) < A(4,12),

(132)(465)A(3,2,1) < B(4,12), C(3,2,1) < B(4,12),

(132)(465)F (3,2,1) < B(4,12), (123)(456)M (3,2,1) < B(4,12),

B(3,2,1) < C(4,12), (15)(24)(36)E(3,2,1) < C(4,12),

F (3,2,1) < C(4,12), (15)(24)(36)K(3,2,1) < C(4,12),

C(3,2,1) < E(4,12), (14)(26)(35)E(3,2,1) < E(4,12),

L(3,2,1) < E(4,12), (14)(26)(35)P (3,2,1) < E(4,12),

(132)(465)H(3,2,1) < F (4,12), (15)(24)(36)K(3,2,1) < F (4,12),

(132)(465)M (3,2,1) < F (4,12), (15)(24)(36)P (3,2,1) < F (4,12),

and
A(3,2,1) < A(32),

B(3,2,1) < B(32), C(3,2,1) < B(32), E(3,2,1) < B(32),

F (3,2,1) < C(32), H(3,2,1) < C(32), K(3,2,1) < C(32),

L(3,2,1) < E(32), M (3,2,1) < E(32), P (3,2,1) < E(32),

because

R1,4A
(3,2,1) = R1,3B

(3,2,1) = R1,2(132)(465)H(3,2,1) = R1,1(123)(456)L(3,2,1) = A(4,12),

R1,4(132)(465)A(3,2,1) = R1,3C
(3,2,1) = R1,2(132)(465)F (3,2,1) =

R1,1(123)(456)(36)M (3,2,1) = B(4,12),

R1,5B
(3,2,1) = R1,1(15)(24)(36)E(3,2,1) = R1,4F

(3,2,1) =
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R1,2(15)(24)(36)K(3,2,1) = C(4,12),

R1,6C
(3,2,1) = R1,2(14)(26)(35)E(3,2,1) = R1,4L

(3,2,1) =

R1,1(14)(26)(35)P (3,2,1) = E(4,12),

R1,5(132)(465)H(3,2,1) = R1,3(15)(24)(36)K(3,2,1) = R1,4(132)(465)M (3,2,1) =

R1,1(15)(24)(36)P (3,2,1) = F (4,12),

and
R2,6A

(3,2,1) = A(32),

R2,6B
(3,2,1) = R2,5C

(3,2,1) = R2,3E
(3,2,1) = B(32),

R2,6F
(3,2,1) = R2,4H

(3,2,1) = R2,3K
(3,2,1) = C(32),

R2,5L
(3,2,1) = R2,4M

(3,2,1) = R2,3P
(3,2,1) = E(32).

Therefore all simple substitution reactions between (3, 2, 1)-derivatives of cyclopropane
and its (4, 12)-derivatives and (32)-derivatives, respectively, are:

a(3,2,1) < a(4,12), b(3,2,1) < a(4,12),

h(3,2,1) < a(4,12), �(3,2,1) < a(4,12),

a(3,2,1) < b(4,12), c(3,2,1) < b(4,12),

f(3,2,1) < b(4,12), m(3,2,1) < b(4,12),

b(3,2,1) < c(4,12), e(3,2,1) < c(4,12),

f(3,2,1) < c(4,12), k(3,2,1) < c(4,12),

c(3,2,1) < e(4,12), e(3,2,1) < e(4,12),

�(3,2,1) < e(4,12), p(3,2,1) < e(4,12),

h(3,2,1) < f(4,12), k(3,2,1) < f(4,12),

m(3,2,1) < f(4,12), p(3,2,1) < f(4,12),

and
a(3,2,1) < a(32),

b(3,2,1) < b(32), c(3,2,1) < b(32), e(3,2,1) < b(32),

f(3,2,1) < c(32), h(3,2,1) < c(32), k(3,2,1) < c(32),

�(3,2,1) < e(32), m(3,2,1) < e(32), p(3,2,1) < e(32).

The set of G′-orbits in T(3,2,1) is
T(3,2,1);G′ =

{a(3,2,1), b(3,2,1) ∪ f(3,2,1), c(3,2,1) ∪ h(3,2,1), e(3,2,1) ∪ k(3,2,1), �(3,2,1) ∪ m(3,2,1), p(3,2,1)}.
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In particular, the products that correspond to the members of the two-element sets

{b(3,2,1), f(3,2,1)}, {c(3,2,1), h(3,2,1)}, {e(3,2,1), k(3,2,1)}, {�(3,2,1),m(3,2,1)},

form chiral pairs and the products that correspond to a(3,2,1) and p(3,2,1) are dimers.
Further, the set of G′′-orbits in T(3,2,1) is

T(3,2,1);G′′ = {a(3,2,1) ∪ (�(3,2,1) ∪ m(3,2,1)) ∪ p(3,2,1),

(b(3,2,1) ∪ f(3,2,1)) ∪ (e(3,2,1) ∪ k(3,2,1)), (c(3,2,1) ∪ h(3,2,1))}.
Hence the members of different sets below are structural isomers:

{a(3,2,1), �(3,2,1),m(3,2,1), p(3,2,1)}, {b(3,2,1), f(3,2,1), e(3,2,1), k(3,2,1)}, {c(3,2,1), h(3,2,1)}.

Case 7. λ = (3, 13).
Now, we have

T(3,13);G = {a(3,13), ā(3,13), b(3,13), b̄(3,13), c(3,13), c̄(3,13), e(3,13), ē(3,13), f(3,13), f̄(3,13),

h(3,13), h̄(3,13), k(3,13), k̄(3,13), �(3,13), �̄(3,13),m(3,13), m̄(3,13), p(3,13), p̄(3,13)},
where:
a(3,13) is the G-orbit of the tabloid A(3,13) = ({1, 2, 3}, {4}, {5}, {6}),
ā(3,13) is the G-orbit of the tabloid Ā(3,13) = ({1, 2, 3}, {4}, {6}, {5}),
b(3,13) is the G-orbit of the tabloid B(3,13) = ({1, 2, 4}, {3}, {5}, {6}),
b̄(3,13) is the G-orbit of the tabloid B̄(3,13) = ({1, 2, 4}, {3}, {6}, {5}),
c(3,13) is the G-orbit of the tabloid C(3,13) = ({1, 2, 4}, {5}, {3}, {6}),
c̄(3,13) is the G-orbit of the tabloid C̄(3,13) = ({1, 2, 4}, {5}, {6}, {3}),
e(3,13) is the G-orbit of the tabloid E(3,13) = ({1, 2, 4}, {6}, {3}, {5}),
ē(3,13) is the G-orbit of the tabloid Ē(3,13) = ({1, 2, 4}, {6}, {5}, {3}),
f(3,13) is the G-orbit of the tabloid F (3,13) = ({1, 2, 5}, {3}, {4}, {6}),
f̄(3,13) is the G-orbit of the tabloid F̄ (3,13) = ({1, 2, 5}, {3}, {6}, {4}),
h(3,13) is the G-orbit of the tabloid H(3,13) = ({1, 2, 5}, {4}, {3}, {6}),
h̄(3,13) is the G-orbit of the tabloid H̄(3,13) = ({1, 2, 5}, {4}, {6}, {3}),
k(3,13) is the G-orbit of the tabloid K(3,13) = ({1, 2, 5}, {6}, {3}, {4}),
k̄(3,13) is the G-orbit of the tabloid K̄(3,13) = ({1, 2, 5}, {6}, {4}, {3}),
�(3,13) is the G-orbit of the tabloid L(3,13) = ({1, 2, 6}, {3}, {4}, {5}),
�̄(3,13) is the G-orbit of the tabloid L̄(3,13) = ({1, 2, 6}, {3}, {5}, {4}),
m(3,13) is the G-orbit of the tabloid M(3,13) = ({1, 2, 6}, {4}, {3}, {5}),
m̄(3,13) is the G-orbit of the tabloid M̄(3,13) = ({1, 2, 6}, {4}, {5}, {3}),
p(3,13) is the G-orbit of the tabloid P (3,13) = ({1, 2, 6}, {5}, {3}, {4}),
p̄(3,13) is the G-orbit of the tabloid P̄ (3,13) = ({1, 2, 6}, {5}, {4}, {3}).
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The inequalities between the tabloids of shape (3, 13) and the tabloids of shape (3, 2, 1)
are as follows:

A(3,13) < A(3,2,1), Ā(3,13) < A(3,2,1),

B(3,13) < B(3,2,1), B̄(3,13) < B(3,2,1), C(3,13) < B(3,2,1), C̄(3,13) < B(3,2,1),

B(3,13) < C(3,2,1), B̄(3,13) < C(3,2,1), E(3,13) < C(3,2,1), Ē(3,13) < C(3,2,1),

C(3,13) < E(3,2,1), C̄(3,13) < E(3,2,1), E(3,13) < E(3,2,1), Ē(3,13) < E(3,2,1),

F (3,13) < F (3,2,1), F̄ (3,13) < F (3,2,1), H(3,13) < F (3,2,1), H̄(3,13) < F (3,2,1),

F (3,13) < H(3,2,1), F̄ (3,13) < H(3,2,1), K(3,13) < H(3,2,1), K̄(3,13) < H(3,2,1),

H(3,13) < K(3,2,1), H̄(3,13) < K(3,2,1), K(3,13) < K(3,2,1), K̄(3,13) < K(3,2,1),

L(3,13) < L(3,2,1), L̄(3,13) < L(3,2,1), M(3,13) < L(3,2,1), M̄(3,13) < L(3,2,1),

L(3,13) < M (3,2,1), L̄(3,13) < M (3,2,1), P (3,13) < M (3,2,1), P̄ (3,13) < M (3,2,1),

M(3,13) < P (3,2,1), M̄(3,13) < P (3,2,1), P (3,13) < P (3,2,1), P̄ (3,13) < P (3,2,1),

because
R2,5R3,6A

(3,13) = R2,5Ā
(3,13) = A(3,2,1),

R2,5R3,6B
(3,13) = R2,5B̄

(3,13) = R2,3R3,6C
(3,13) = R2,3C̄

(3,13) = B(3,2,1),

R2,6B
(3,13) = R2,6R3,5B̄

(3,13) = R2,3R3,5E
(3,13) = R2,3Ē

(3,13) = C(3,2,1),

R2,6C
(3,13) = R2,6R3,3C̄

(3,13) = R2,5E
(3,13) = R2,5R3,3Ē

(3,13) = E(3,2,1),

R2,4R3,6F
(3,13) = R2,4F̄

(3,13) = R2,3R3,6H
(3,13) = R2,3H̄

(3,13) = F (3,2,1),

R2,6F
(3,13) = R2,6R3,4F̄

(3,13) = R2,3R3,4K
(3,13) = R2,3K̄

(3,13) = H(3,2,1),

R2,6H
(3,13) = R2,6R3,3H̄

(3,13) = R2,4K
(3,13) = R2,4R3,3K̄

(3,13) = K(3,2,1),

R2,4R3,5L
(3,13) = R2,4L̄

(3,13) = R2,3R3,5M
(3,13) = R2,3M̄

(3,13) = L(3,2,1),

R2,5L
(3,13) = R2,5R3,4L̄

(3,13) = R2,3R3,4P
(3,13) = R2,3P̄

(3,13) = M (3,2,1),

R2,5M
(3,13) = R2,5R3,3M̄

(3,13) = R2,4P
(3,13) = R2,4R3,3P̄

(3,13) = P (3,2,1).

Thus, all substitution reactions among (3, 13)-derivatives and (3, 2, 1)-derivatives of cy-
clopropane are designated by the following inequalities:

a(3,13) < a(3,2,1), ā(3,13) < a(3,2,1),

b(3,13) < b(3,2,1), b̄(3,13) < b(3,2,1), c(3,13) < b(3,2,1), c̄(3,13) < b(3,2,1),

b(3,13) < c(3,2,1), b̄(3,13) < c(3,2,1), e(3,13) < c(3,2,1), ē(3,13) < c(3,2,1),

c(3,13) < e(3,2,1), c̄(3,13) < c(3,2,1), e(3,13) < e(3,2,1), ē(3,13) < e(3,2,1),
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f(3,13) < f(3,2,1), f̄(3,13) < f(3,2,1), h(3,13) < f(3,2,1), h̄(3,13) < f(3,2,1),

f(3,13) < h(3,2,1), f̄(3,13) < h(3,2,1), k(3,13) < h(3,2,1), k̄(3,13) < h(3,2,1),

h(3,13) < k(3,2,1), h̄(3,13) < k(3,2,1), k(3,13) < k(3,2,1), k̄(3,13) < k(3,2,1),

�(3,13) < �(3,2,1), �̄(3,13) < �(3,2,1), m(3,13) < �(3,2,1), m̄(3,13) < �(3,2,1),

�(3,13) < m(3,2,1), �̄(3,13) < m(3,2,1), p(3,13) < m(3,2,1), p̄(3,13) < m(3,2,1),

m(3,13) < p(3,2,1), m̄(3,13) < p(3,2,1), p(3,13) < p(3,2,1), p̄(3,13) < p(3,2,1).

We have
T(3,13);G′ =

{a(3,13) ∪ ā(3,13), b(3,13) ∪ f(3,13), b̄(3,13) ∪ f̄(3,13), c(3,13) ∪ h(3,13), c̄(3,13) ∪ h̄(3,13),

e(3,13) ∪ k(3,13), ē(3,13) ∪ k̄(3,13), �(3,13) ∪ �̄(3,13),m(3,13) ∪ p(3,13), m̄(3,13) ∪ p̄(3,13)}.
Therefore the members of any one of the following two-element sets are chiral pairs:

{a(3,13), ā(3,13)}, {b(3,13), f(3,13)}, {b̄(3,13), f̄(3,13)}, {ē(3,13), k̄(3,13)}, {c(3,13), h(3,13)},

{c̄(3,13), h̄(3,13)}, {e(3,13), k(3,13)}, {ē(3,13), k̄(3,13)}, {�(3,13), �̄(3,13)},
{m(3,13), p(3,13)}, {m̄(3,13), p̄(3,13)}.

Further,
T(3,13);G′′ =

{(a(3,13) ∪ ā(3,13)) ∪ (�(3,13) ∪ �̄(3,13)) ∪ (m(3,13) ∪ p(3,13)) ∪ (m̄(3,13) ∪ p̄(3,13)),

(b(3,13) ∪ f(3,13)) ∪ (ē(3,13) ∪ k̄(3,13)), (b̄(3,13) ∪ f̄(3,13)) ∪ (e(3,13) ∪ k(3,13)),

(c(3,13) ∪ h(3,13)) ∪ (c̄(3,13) ∪ h̄(3,13))}.
Thus, the members of any one set from the list below are structurally identical as long
as the members of different sets are structural isomers:

{a(3,13), ā(3,13), �(3,13), �̄(3,13),m(3,13), p(3,13), m̄(3,13), p̄(3,13)},

{b(3,13), f(3,13), ē(3,13), k̄(3,13)}, {b̄(3,13), f̄(3,13), e(3,13), k(3,13)},
{c(3,13), h(3,13), c̄(3,13), h̄(3,13)}.

Case 8. λ = (23).
We have

T(23);G = {a(23), ā(23), b(23), b̄(23), c(23), c̄(23), e(23), ē(23), f(23), f̄(23),

h(23), h̄(23), k(23), k̄(23), �(23), �̄(23), m(23), m̄(23)},
where:
a(23) is the G-orbit of the tabloid A(23) = ({1, 2}, {3, 4}, {5, 6}),
ā(23) is the G-orbit of the tabloid Ā(23) = ({1, 2}, {3, 5}, {4, 6}),
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b(23) is the G-orbit of the tabloid B(23) = ({1, 2}, {3, 6}, {4, 5}),
b̄(23) is the G-orbit of the tabloid B̄(23) = ({1, 2}, {4, 5}, {3, 6}),
c(23) is the G-orbit of the tabloid C(23) = ({1, 2}, {4, 6}, {3, 5}),
c̄(23) is the G-orbit of the tabloid C̄(23) = ({1, 2}, {5, 6}, {3, 4}),
e(23) is the G-orbit of the tabloid E(23) = ({1, 4}, {2, 3}, {5, 6}),
ē(23) is the G-orbit of the tabloid Ē(23) = ({1, 4}, {2, 5}, {3, 6}),
f(23) is the G-orbit of the tabloid F (23) = ({1, 4}, {2, 3}, {5, 6}),
f̄(23) is the G-orbit of the tabloid F̄ (23) = ({1, 4}, {3, 5}, {2, 6});,
h(23) is the G-orbit of the tabloid H(23) = ({1, 5}, {2, 3}, {4, 6}),
h̄(23) is the G-orbit of the tabloid H̄(23) = ({1, 5}, {2, 4}, {3, 6}),
k(23) is the G-orbit of the tabloid K(23) = ({1, 5}, {2, 6}, {3, 4}),
k̄(23) is the G-orbit of the tabloid K̄(23) = ({1, 5}, {3, 6}, {2, 4}),
�(23) is the G-orbit of the tabloid L(23) = ({1, 6}, {2, 3}, {4, 5}),
�̄(23) is the G-orbit of the tabloid L̄(23) = ({1, 6}, {2, 4}, {3, 5}),
m(23) is the G-orbit of the tabloid M(23) = ({1, 6}, {2, 5}, {3, 4}),
m̄(23) is the G-orbit of the tabloid M̄(23) = ({1, 6}, {3, 4}, {2, 5}).
All inequalities between the tabloids of shape (23) and those of shape (3, 2, 1) are as
follows:

A(23) < A(3,2,1), Ā(23) < A(3,2,1), (123)(456)B(23) < A(3,2,1),

B̄(23) < A(3,2,1), (123)(456)C(23) < A(3,2,1), (132)(465)C̄(23) < A(3,2,1),

A(23) < B(3,2,1), Ā(23) < B(3,2,1), B̄(23) < B(3,2,1),

E(23) < B(3,2,1), Ē(23) < B(3,2,1), F̄ (23) < B(3,2,1),

(123)(456)L(23) < B(3,2,1), (123)(456)L̄(23) < B(3,2,1), (123)(456)M̄(23) < B(3,2,1),

A(23) < C(3,2,1), B(23) < C(3,2,1), C(23) < C(3,2,1),

E(23) < C(3,2,1), (14)(26)(35)Ē(23) < C(3,2,1), F (23) < C(3,2,1),

(123)(456)L(23) < C(3,2,1), (14)(26)(35)L̄(23) < C(3,2,1), (123)(456)M(23) < C(3,2,1),

B̄(23) < E(3,2,1), C(23) < E(3,2,1), C̄(23) < E(3,2,1),

(14)(26)(35)E(23) < E(3,2,1), Ē(23) < E(3,2,1), F (23) < E(3,2,1),

(14)(26)(35)L(23) < E(3,2,1), (14)(26)(35)L̄(23) < E(3,2,1), (123)(456)M̄(23) < E(3,2,1),

A(23) < F (3,2,1), Ā(23) < F (3,2,1), B̄(23) < F (3,2,1),

(123)(456)E(23) < F (3,2,1), (15)(24)(36)Ē(23) < F (3,2,1), (123)(456)F (23) < F (3,2,1),

H(23) < F (3,2,1), H̄(23) < F (3,2,1), (15)(24)(36)K(23) < F (3,2,1),

Ā(23) < H(3,2,1), B(23) < H(3,2,1), C̄(23) < H(3,2,1), (123)(456)E(23) < H(3,2,1),
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(123)(456)Ē(23) < H(3,2,1), (123)(456)F̄ (23) < H(3,2,1),

H(23) < H(3,2,1), K(23) < H(3,2,1), K̄(23) < H(3,2,1),

B̄(23) < K(3,2,1), C(23) < K(3,2,1), C̄(23) < K(3,2,1), (15)(24)(36)E(23) < K(3,2,1),

(15)(24)(36)Ē(23) < K(3,2,1), (123)(456)F̄ (23) < K(3,2,1),

(15)(24)(36)H(23) < K(3,2,1), H̄(23) < K(3,2,1), K(23) < K(3,2,1),

A(23) < L(3,2,1), B(23) < L(3,2,1), C(23) < L(3,2,1), (123)(456)H(23) < L(3,2,1),

(123)(456)K(23) < L(3,2,1), (123)(456)K̄(23) < L(3,2,1),

L(23) < L(3,2,1), L̄(23) < L(3,2,1), M̄(23) < L(3,2,1),

Ā(23) < M (3,2,1), B(23) < M (3,2,1), C̄(23) < M (3,2,1), (123)(456)H(23) < M (3,2,1),

(123)(456)H̄(23) < M (3,2,1), (16)(25)(34)K(23) < M (3,2,1),

L(23) < M (3,2,1), (16)(25)(34)L̄(23) < M (3,2,1), M(23) < M (3,2,1),

B̄(23) < P (3,2,1), C(23) < P (3,2,1), C̄(23) < P (3,2,1), (16)(25)(34)H(23) < P (3,2,1),

(16)(25)(34)K(23) < P (3,2,1), (123)(456)K̄(23) < P (3,2,1),

(16)(25)(34)L(23) < P (3,2,1), L̄(23) < P (3,2,1), M(23) < P (3,2,1),

because
R1,3R2,5A

(23) = R1,3R2,4Ā
(23) = R1,1R2,5(123)(456)B(23) =

R1,3B̄
(23) = R1,1(123)(456)C(23) = R1,2(132)(465)C̄(23) = A(3,2,1),

R1,4R2,5A
(23) = R1,4Ā

(23) = R1,4R2,3B̄
(23) =

R1,2R2,5E
(23) = R1,2R2,3Ē

(23) = R1,2F̄
(23) =

R1,1R2,5(123)(456)L(23) = R1,1(123)(456)L̄(23) = R1,1R2,3(123)(456)M̄(23) = B(3,2,1),

R1,4R2,6A
(23) = R1,4B

(23) = R1,4R2,3C
(23) =

R1,2R2,6E
(23) = R1,2(14)(26)(35)Ē(23) = R1,2R2,3F

(23) =

R1,1R2,6(123)(456)L(23) = R1,1R2,3(14)(26)(35)L̄(23) =

R1,1(123)(456)M(23) = C(3,2,1),

R1,4R2,6B̄
(23) = R1,4R2,5C

(23) = R1,4C̄
(23) =

R1,2(14)(26)(35)E(23) = R1,2R2,6Ē
(23) = R1,2R2,5F

(23) =

R1,1(14)(26)(35)L(23) = R1,1R2,5(14)(26)(35)L̄(23) =

R1,1R2,6(123)(456)M̄(23) = E(3,2,1),
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R1,5A
(23) = R1,5R2,4Ā

(23) = R1,5R2,3B̄
(23) =

R1,1R2,4(123)(456)E(23) = R1,1R2,3(15)(24)(36)Ē(23) = R1,1(123)(456)F (23) =

R1,2R2,4H
(23) = R1,2R2,3H̄

(23) = R1,2(15)(24)(36)K(23) = F (3,2,1),

R1,5R2,6Ā
(23) = R1,5B

(23) = R1,5R2,3C̄
(23) =

R1,1R2,6(123)(456)E(23) = R1,1(123)(456)Ē(23) = R1,1R2,3(123)(456)F̄ (23) =

R1,2R2,6H
(23) = R1,2R2,3K

(23) = R1,2K̄
(23) = H(3,2,1),

R1,5R2,6B̄
(23) = R1,5C

(23) = R1,5R2,4C̄
(23) =

R1,1(15)(24)(36)E(23) = R1,1R2,6(15)(24)(36)Ē(23) = R1,1R2,4(123)(456)F̄ (23) =

R1,2(15)(24)(36)H(23) = R1,2R2,6H̄
(23) = R1,2R2,4K

(23) = K(3,2,1),

R1,6A
(23) = R1,6R2,4B

(23) = R1,6R2,3C
(23) =

R1,1R2,4(123)(456)H(23) = R1,1(123)(456)K(23) = R1,1R2,3(123)(456)K̄(23) =

R1,2R2,4L
(23) = R1,2R2,3L̄

(23) = R1,2M̄
(23) = L(3,2,1),

R1,6Ā
(23) = R1,6R2,5B

(23) = R1,6R2,3C̄
(23) =

R1,1R2,5(123)(456)H(23) = R1,1(123)(456)H̄(23) = R1,1R2,3(16)(25)(34)K(23) =

R1,2R2,5L
(23) = R1,2(16)(25)(34)L̄(23) = R1,2R2,3M

(23) = M (3,2,1),

R1,6B̄
(23) = R1,6R2,5C

(23) = R1,6R2,4C̄
(23) =

R1,1(16)(25)(34)H(23) = R1,1R2,4(16)(25)(34)K(23) = R1,1R2,5(123)(456)K̄(23) =

R1,2(16)(25)(34)L(23) = R1,2R2,5L̄
(23) = R1,2R2,4M

(23) = P (3,2,1).

Therefore the substitution reactions among (23)-products and (3, 2, 1)-products of cy-
clopropane are as follows:

a(23) < a(3,2,1), ā(23) < a(3,2,1), b(23) < a(3,2,1),

b̄(23) < a(3,2,1), c(23) < a(3,2,1), c̄(23) < a(3,2,1),

a(23) < b(3,2,1), ā(23) < b(3,2,1), b̄(23) < b(3,2,1),

e(23) < b(3,2,1), ē(23) < b(3,2,1), f̄(23) < b(3,2,1),

�(23) < b(3,2,1), �̄(23) < b(3,2,1), m̄(23) < b(3,2,1),

a(23) < c(3,2,1), b(23) < c(3,2,1), c(23) < c(3,2,1),

e(23) < c(3,2,1), ē(23) < c(3,2,1), f(23) < c(3,2,1),

�(23) < c(3,2,1), �̄(23) < c(3,2,1), m(23) < c(3,2,1),
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b̄(23) < e(3,2,1), c(23) < e(3,2,1), c̄(23) < e(3,2,1),

e(23) < e(3,2,1), ē(23) < e(3,2,1), f(23) < e(3,2,1),

�(23) < e(3,2,1), �̄(23) < e(3,2,1), m̄(23) < e(3,2,1),

a(23) < f(3,2,1), ā(23) < f(3,2,1), b̄(23) < f(3,2,1),

e(23) < f(3,2,1), ē(23) < f(3,2,1), f(23) < f(3,2,1),

h(23) < f(3,2,1), h̄(23) < f(3,2,1), k(23) < f(3,2,1),

ā(23) < h(3,2,1), b(23) < h(3,2,1), c̄(23) < h(3,2,1),

e(23) < h(3,2,1), ē(23) < h(3,2,1), f̄(23) < h(3,2,1),

h(23) < h(3,2,1), k(23) < h(3,2,1), k̄(23) < h(3,2,1),

b̄(23) < k(3,2,1), c(23) < k(3,2,1), c̄(23) < k(3,2,1),

e(23) < k(3,2,1), ē(23) < k(3,2,1), f̄(23) < k(3,2,1),

h(23) < k(3,2,1), h̄(23) < k(3,2,1), k(23) < k(3,2,1),

a(23) < �(3,2,1), b(23) < �(3,2,1), c(23) < �(3,2,1),

h(23) < �(3,2,1), k(23) < �(3,2,1), k̄(23) < �(3,2,1),

�(23) < �(3,2,1), �̄(23) < �(3,2,1), m̄(23) < �(3,2,1),

ā(23) < m(3,2,1), b(23) < m(3,2,1), c̄(23) < m(3,2,1),

h(23) < m(3,2,1), h̄(23) < m(3,2,1), k(23) < m(3,2,1),

�(23) < m(3,2,1), �̄(23) < m(3,2,1), m(23) < m(3,2,1),

b̄(23) < p(3,2,1), c(23) < p(3,2,1), c̄(23) < p(3,2,1),

h(23) < p(3,2,1), k(23) < p(3,2,1), k̄(23) < p(3,2,1),

�(23) < p(3,2,1), �̄(23) < p(3,2,1), m(23) < p(3,2,1).

The set of all G′-orbits is
T(23);G′ =

{a(23) ∪ ā(23), b(23), b̄(23), c(23) ∪ c̄(23), e(23), ē(23), f(23) ∪ f̄(23),

h(23) ∪ �(23), h̄(23) ∪ m̄(23), k(23) ∪ �̄(23), k̄(23) ∪ m(23)}.
Hence, the members of any one of the two-element sets

{a(23), ā(23)}, {c(23), c̄(23)}, {f(23), f̄(23)},

{h(23), �(23)}, {h̄(23), m̄(23)}, {k(23), �̄(23)}, {k̄(23),m(23)}
form a chiral pair and b(23), b̄(23), e(23), ē(23), represent dimers.
Moreover, the set of all G′′-orbits is

T(23);G′′ =
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{(a(23) ∪ ā(23)) ∪ (c(23) ∪ c̄(23)) ∪ (h(23) ∪ �(23)) ∪ (k(23) ∪ �̄(23)),

b(23) ∪ (k̄(23) ∪ m(23)), b̄(23) ∪ (h̄(23) ∪ m̄(23)), e(23) ∪ (f(23) ∪ f̄(23)), ē(23)}.
Thus, any one from the sets below gathers all formulae that represent structurally
identical derivatives, so members of different sets represent structural isomers.

{a(23), ā(23), c(23), c̄(23), h(23), �(23), k(23), �̄(23)}

{b(23), k̄(23),m(23)}, {b̄(23), h̄(23), m̄(23)}, {e(23), f(23), f̄(23)}, {ē(23)}.

3. Identification of the derivatives

Now, we will describe the Lunn-Senior’s automorphism groups Aut′′0(TD;G) for D = Dk,
k = 1, . . . , 6, where

D1 = {(6), (5, 1), (4, 2)}, D2 = D1 ∪ {(4, 12)},

D3 = D2 ∪ {(32)}, D4 = D3 ∪ {(3, 2, 1)},
D5 = D4 ∪ {(3, 13)}, D6 = D5 ∪ {(23)}.

The elements of the Aut′′0(TD;G)-orbits in the set TD;G will represent the products
of cyclopropane that can not be distinguished via substitution reactions among the
elements of TD;G.
We remind that we will use without referring all terminology and notation from [2],
especially those from the beginning of section 3. For convenience of the reader, we
state explicitly once again the conditions of the main [2, Lemma 3.1], as well as the
assumptions and notation introduced before [2, Lemmas 3.3 - 3.7]. We note that the
correct version of [2, Corollary 3.2] can be found in [3].
Let U, V, V̄ ⊂ Td;G be unions of G′′-orbits, such that U ⊂ V , V \U ⊂ V̄ , and the
difference V̄ \U consists of minimal elements of the partially ordered set V ∪ V̄ . Assume
that V̄ is a barrier of V \U in V , and the automorphism group Aut′′0(U) is a commutative
2-group. Set H = {β ∈ Aut′′0(U) | β(C>(V̄ ; a)) = C>(V̄ ; a), a ∈ V \U}. Moreover, for
any pair X, V ⊂ Td;G of sets that are unions of G′′-orbits with X ⊂ V we denote by
IV,X the image of the restriction homomorphism

�V,X : Aut′′0(V ) → Aut′′0(X).

Lemma 3.1. Let the difference V \U be a G′′-orbit that consists of several chiral pairs
{A,A1}, {B, B1}, . . ., and eventually, of several dimers. Suppose that: C>(V̄ ; A) =
C>(V̄ ;A1) = P , C>(V̄ ; B) = C>(V̄ ;B1) = Q, . . ., the cones P , Q, . . . are pairwise
different, the cones of the dimers are pairwise different, and that

IV,U = H.

Then there exists a decomposition

Aut′′0(V ) = H × 〈s〉 × 〈t〉 × · · · ,
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where s = (A,A1), t = (B, B1), . . ., the restriction homomorphism �V,U has kernel
〈s〉 × 〈t〉 × · · ·, and Aut′′0(V ) is a commutative 2-group.

Proof: [3, Corollary 3.2, (i)] yields H∪Hs∪Ht∪. . . ⊂ Aut′′0(V ). Now, let α ∈ Aut′′0(V ).
Then �V,U (α) ∈ H, and according to [2, Lemma 3.1, (iv)], and to the fact that α
maps any chiral pair onto a chiral pair, we have α({A,A1}) = {A,A1}, α({B, B1}) =
{B,B1}, . . ., and conclude that α leaves all dimers invariant. Therefore α ∈ H ∪ Hs ∪
Ht ∪ . . . ∪ Hst ∪ . . .. Now, we note that every pair among the automorphisms s, t, . . .
commute, s2 = id, t2 = id, . . ., and each one of them commutes with the elements of H.
Hence the subgroup 〈H, s, t, . . .〉 of Aut′′0(V ) is a commutative 2-group. In particular,
〈H, s, t, . . .〉 = H ∪ Hs ∪ Ht ∪ . . . ∪ Hst ∪ . . ., and the proof is finished.

Lemma 3.2. Let the difference V \U be a G′′-orbit that consists of two chiral pairs
{A,A1}, {B,B1}. Suppose that C>(V̄ ; A) = C>(V̄ ; A1) = P , there exists a decompo-
sition

IV,U = H × 〈w〉,
where w(P ) = P and w(Q) = Q1, for Q = C>(V̄ ; B), Q1 = C>(V̄ ;B1). Then there
exists a decomposition

Aut′′0(V ) = H × 〈s〉 × 〈wt〉,
where s = (A,A1), t = (B,B1), the restriction homomorphism �V,U has kernel 〈s〉, and
Aut′′0(V ) is a commutative 2-group.

Proof: Since w /∈ H, we obtain that the cones Q, Q1, P , are pairwise different,
and then [3, Corollary 3.2, (i)] yields H ∪ Hs ∪ Hwt ∪ Hwst ⊂ Aut′′0(V ). Now, let
α ∈ Aut′′0(V ) with �V,U (α) ∈ H (respectively, �V,U (α) ∈ Hw). Then in accordance
with [2, Lemma 3.1, (iv)], α({A,A1}) = {A,A1}, α(B) = B, α(B1) = B1 (respectively,
α({A,A1}) = {A,A1}, α(B) = B1, α(B1) = B), hence �V,V \U (α) = id, or �V,V \U (α) =
s (respectively, �V,V \U (α) = t, or �V,V \U (α) = st). Thus, we have α ∈ H ∪ Hs
(respectively, α ∈ Hwst∪Hwt). Since the automorphisms s and wt commute, s2 = id,
(wt)2 = id, and each one of them commutes with the elements of H, then the subgroup
〈H, s, wt〉 of Aut′′0(V ) is a commutative 2-group. In particular, 〈H, s, wt〉 = H ∪ Hs ∪
Hwt ∪ Hwst, and the proof is done.

Lemma 3.3. Let the difference V \U be a G′′-orbit that consists of a chiral pair {A,A1}
and of several dimers. Suppose that the cones of the dimers are pairwise different,
Aut′′0(U)-invariant, and that there exists a decomposition

IV,U = H × 〈w〉

with w(P ) = P 1, where P = C>(V̄ ;A), P 1 = C>(V̄ ; A1). Then there exists a decom-
position

Aut′′0(V ) = H × 〈ws〉,
where s = (A, A1), the restriction homomorphism �V,U is injective, and Aut′′0(V ) is a
commutative 2-group.

Proof: Straightforward generalization of [2, Lemma 3.7].

- 540 -



Lemma 3.4. Let the difference V \U be a G′′-orbit that consists of two types of chiral
pairs: several chiral pairs {A,A1}, {B, B1}, . . ., with C>(V̄ ;A) = C>(V̄ ; A1) = P ,
C>(V̄ ;B) = C>(V̄ ; B1) = Q, . . ., two chiral pairs {C, C1}, {E, E1}, with C>(V̄ ;C) =
C>(V̄ ;E) = R, C>(V̄ ;C1) = C>(V̄ ; E1) = R1, and of several dimers. Let us suppose
that the cones P , Q, . . ., are pairwise different, and the cones P̃ , Q̃, . . ., of the dimers
are pairwise different. If

IV,U = H × 〈w〉,
where w(P ) = P , w(Q) = Q, . . ., w(P̃ ) = P̃ , w(Q̃) = Q̃, . . ., and w(R) = R1, then there
exists a decomposition

Aut′′0(V ) = H × 〈z〉 × 〈s〉 × 〈t〉 × · · · × 〈wx〉,

where s = (A,A1), t = (B, B1), . . ., z = (C, E)(C1, E1), x = (C, C1)(E,E1), the restric-
tion homomorphism �V,U has kernel 〈z〉× 〈s〉× 〈t〉× · · ·, and Aut′′0(V ) is a commutative
2-group.

Proof: The relation w /∈ H implies R 	= R1, and then each of the cones R and R1 is
different from any of the cones P , Q, . . ., P̃ , Q̃, . . .. [3, Corollary 3.2, (i)] yields that
H, Hs, Ht, . . ., Hz, Hwx are subsets of Aut′′0(V ). Now, let α ∈ Aut′′0(V ), and let
β = �V,U (α), α0 = �V,V \U (α). Suppose that β ∈ H. In accordance with [3, Corollary
3.2, (i)] we obtain C>(V̄ ; a) = C>(V̄ ; α0(a)) for all a ∈ V \U . Hence α0({A,A1}) =
{A,A1}, α0({B, B1}) = {B, B1}, . . ., α0({C, E}) = {C,E}, α0({C1, E1}) = {C1, E1},
and α0 leaves the dimers invariant. Moreover, α0 maps any chiral pair onto a chiral
pair, therefore α0 on the set {C, E, C1, E1} is either id, or z. Thus, α ∈ K ∪Kz, where
K = H ×〈s〉×〈t〉×· · ·. Now, suppose that β ∈ Hw. Then β(R) = R1, and β leaves the
cones P , Q, . . ., and the cones P̃ , Q̃, . . ., invariant. According to [3, Corollary 3.2, (i)],
we have α0({A,A1}) = {A,A1}, α0({B,B1}) = {B, B1}, . . ., α0({C, E}) = {C1, E1},
α0({C1, E1}) = {C, E}, and α0 leaves the dimers invariant. Since α0 maps any chiral
pair onto a chiral pair, we obtain that α0 on the set {C,E, C1, E1} is either x, or y = zx.
Now, we have α ∈ Kwx∪Kwy. Since x, y, z, commute among themselves, and each of
them commutes with K, the proof is completed.

Lemma 3.5. Let the difference V \U be a G′′-orbit that consists of several chiral pairs
{A,A1}, {B,B1}, . . ., {C, C1}, {E,E1}, with C>(V̄ ;C) = C>(V̄ ;E) = R, C>(V̄ ; C1) =
C>(V̄ ;E1) = R1, and of several dimers. Suppose that the cones of the members of the
chiral pairs {A,A1}, {B,B1}, . . ., the cones R, R1, and the cones of the dimers, are all
pairwise different, and suppose that

IV,U = H × 〈w〉,

where w permutes the cones of the members of each chiral pair and leaves the cones of
the dimers invariant. Then there exists a decomposition

Aut′′0(V ) = H × 〈z〉 × 〈wx〉,

where z = (C,E)(C1, E1), x = (A,A1)(B, B1) . . . (C,C1)(E, E1), the restriction homo-
morphism �V,U has kernel 〈z〉, and Aut′′0(V ) is a commutative 2-group.

Proof: [3, Corollary 3.2, (i)] yields that H, Hz, Hwx, Hwy, where y = zx, are
subsets of Aut′′0(V ). Now, let α ∈ Aut′′0(V ), and let β = �V,U (α), α0 = �V,V \U (α).
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Suppose that β ∈ H. In accordance with [3, Corollary 3.2, (i)], the bijection α0 leaves
the members of the chiral pairs {A,A1}, {B,B1}, . . ., as well as the dimers invariant,
and α0({C, E}) = {C, E}, α0({C1, E1}) = {C1, E1}. Moreover, α0 maps any chiral
pair onto a chiral pair, therefore α0 on the set {C, E,C1, E1} is either id, or z. Thus,
α ∈ H ∪Hz. Now, suppose that β ∈ Hw. Again, according to [3, Corollary 3.2, (i)], we
have α0(A) = A1, α0(A1) = A, α0(B) = B1, α0(B1) = B, . . ., α0({C, E}) = {C1, E1},
α0({C1, E1}) = {C, E}, and α0 leaves the dimers invariant. Since α0 maps any chiral
pair onto a chiral pair, we obtain that α0 on the set {C,E, C1, E1} is either wx, or wy.
Now, we have α ∈ Hx∪Hy. Since x, y, z, commute, and since each of them commutes
with H, the proof is done.

Theorem 3.6. One has:

(i) Aut′′0(TD1;G) = 〈(c(4,2), e(4,2))〉 
 C2;

(ii) Aut′′0(TD2;G) = 〈(a(4,12), b(4,12)), (c(4,2), e(4,2))(e(4,12), f(4,12))〉 
 C2 × C2;

(iii) Aut′′0(TD3;G) = 〈(a(4,12), b(4,12)), (c(4,2), e(4,2))(e(4,12), f(4,12))(b(32), c(32))〉

 C2 × C2;

(iv) Aut′′0(TD4;G) = 〈(c(4,2), e(4,2))(a(4,12), b(4,12))(e(4,12), f(4,12))(b(32), c(32))

(c(3,2,1), h(3,2,1))(b(3,2,1), f(3,2,1))(e(3,2,1), k(3,2,1))(�(3,2,1),m(3,2,1))〉 
 C2;

(v) Aut′′0(TD5;G) = 〈(c(3,13), c̄(3,13))(h(3,13), h̄(3,13)), (m(3,13), m̄(3,13))(p(3,13), p̄(3,13)),

(a(3,13), ā(3,13)), (�(3,13), �̄(3,13)), (c(4,2), e(4,2))(a(4,12), b(4,12))(e(4,12), f(4,12))

(b(32), c(32))(c(3,2,1), h(3,2,1))(b(3,2,1), f(3,2,1))(e(3,2,1), k(3,2,1))(�(3,2,1),m(3,2,1))

(b(3,13), f(3,13))(ē(3,13), k̄(3,13))(b̄(3,13), f̄(3,13))(e(3,13), k(3,13))(c(3,13), h(3,13))

(c̄(3,13), h̄(3,13))(m(3,13), p(3,13))(m̄(3,13), p̄(3,13))〉 
 C2 × C2 × C2 × C2 × C2;

(vi) Aut′′0(TD6;G) = 〈(c(3,13), c̄(3,13))(h(3,13), h̄(3,13)), (m(3,13), m̄(3,13))(p(3,13), p̄(3,13)),

(a(3,13), ā(3,13)), (�(3,13), �̄(3,13)), (h(23), k(23))(�(23), �̄(23)),

(c(4,2), e(4,2))(a(4,12), b(4,12))(e(4,12), f(4,12))(b(32), c(32))(c(3,2,1), h(3,2,1))

(b(3,2,1), f(3,2,1))(e(3,2,1), k(3,2,1))(�(3,2,1), m(3,2,1))(b(3,13), f(3,13))(ē(3,13), k̄(3,13))

(b̄(3,13), f̄(3,13))(e(3,13), k(3,13))(c(3,13), h(3,13))(c̄(3,13), h̄(3,13))(m(3,13), p(3,13))

(m̄(3,13), p̄(3,13))(h(23), �(23))(k(23), �̄(23))(k̄(23),m(23))(h̄(23), m̄(23))(f(23), f̄(23))〉

 C2 × C2 × C2 × C2 × C2 × C2.

Proof: (i) Let us set D′
0 = {(6), (5, 1)}. Section 2, Cases 2, 3, yield that Aut′′0(TD0;G)

is the trivial group. The structure of the (4, 2)-level as well as the inequalities among
tabloids that correspond to the dominance order inequality (4, 2) < (5, 1) are presented
in Section 2, Case 3. We set U = TD0;G, U

(1)
1 = TD0;G∪{c(4,2), e(4,2), a(4,2)}, V̄ = TD′

1;G
,

where D′
1 = {((5, 1), (4, 2)}, and note that V̄ is a barrier of T(4,2);G in TD1;G. We have

C>(V̄ ; c(4,2)) = C>(V̄ ; e(4,2)) = C>(V̄ ; a(4,2)) = C>(V̄ ; b(4,2)) = {a(5,1)}.
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Since the conditions of Lemma 3.1 are satisfied for V = U
(1)
1 , we obtain Aut′′0(U (1)

1 ) =
〈(c(4,2), e(4,2))〉. By adding the dimer b(4,2) to the set U

(1)
1 , we get TD1;G, and [2, Lemma

3.3] implies (i).
(ii) We can find in Section 2, Case 4, the structure of (4, 12)-level, as well as the inequali-
ties among tabloids that correspond to the inequality (4, 12) < (4, 2). We set U = TD1;G,
U

(1)
2 = U ∪ {a(4,12), b(4,12), e(4,12), f(4,12)}, and V̄ = TD′

2;G
, where D′

2 = {((4, 2), (4, 12)}.
The set V̄ is a barrier of T(4,12);G in TD2;G. We have

P = C>(V̄ ; a(4,12)) = C>(V̄ ; b(4,12)) = {a(4,2)},

Q = C>(V̄ ; e(4,12)) = {c(4,2)}, Q1 = C>(V̄ ; f(4,12)) = {e(4,2)}.
There exists a decomposition Aut′′0(U) = H × 〈w〉, where H is the trivial subgroup,
w = (c(4,2), e(4,2)), and, moreover, w(P ) = P , w(Q) = Q1. Now, in accord with [3,
Corollary 3.2, (i)], we have H ∪ Hwt ⊂ Aut′′0(U (1)

2 ), where t = (e(4,12), f(4,12)), so, in
particular, the restriction homomorphism �

U
(1)
2 ,U

is surjective. Therefore Lemma 3.2
for s = (a(4,12), b(4,12)) yields

Aut′′0(U (1)
2 ) = 〈(a(4,12), b(4,12)), (c(4,2), e(4,2))(e(4,12), f(4,12))〉.

The cone C>(V̄ ; c(4,12)) of the dimer c(4,12) is Aut′′0(U (1)
2 )-invariant, and by adding this

dimer to the set U
(1)
2 we get TD2;G. Now, [2, Lemma 3.3] finishes the proof of (ii).

(iii) The inequalities among tabloids, which correspond the dominance order inequality
(32) < (4, 2), as well as the description of the (32)-level are presented in Section 2, Case
5. We set V̄ = TD′

3;G
, where D′

3 = {((4, 2), (4, 12), (32)} and note that V̄ is a barrier

of T(32);G in TD3;G. First, we add the two dimers to TD2;G and get U
(1)
3 = TD2;G ∪

{a(32), e(32)}. The cones C>(V̄ ; a(32)) = {a(4,2)}, C>(V̄ ; e(32)) = {a(4,2), c(4,2), e(4,2)} of
the dimers are Aut′′0(TD2;G)-invariant, therefore [2, Lemma 3.3] yields

Aut′′0(U (1)
3 ) = 〈(a(4,12), b(4,12)), (c(4,2), e(4,2))(e(4,12), f(4,12))〉.

Next, we supplement the set U
(1)
3 with the chiral pair {b(32), c(32)} and obtain TD3;G. We

have P = C>(V̄ ; b(32)) = {a(4,2), b(4,2), c(4,2)}, P 1 = C>(V̄ ; c(32)) = {a(4,2), b(4,2), e(4,2)},
and the group Aut′′0(U (1)

3 ) can be decomposed as Aut′′0(U (1)
3 ) = H ×〈w〉, where as usual

H = 〈(a(4,12), b(4,12))〉 is the group of automorphisms that leave the cones P and P 1

invariant, and the automorphism w = (c(4,2), e(4,2))(e(4,12), f(4,12)) permutes P and P 1.
Now, [2, Lemma 3.4, (i)] implies (iii).
(iv) In Section 2, Case 6, we have a description of the (3, 2, 1)-level, and the inequalities
among tabloids that correspond to the inequalities (3, 2, 1) < (4, 12) and (3, 2, 1) < (32)
in the dominance order. We set V̄ = TD′

4;G
, where D′

4 = {(4, 12), (32), (3, 2, 1)} and
note that V̄ is a barrier of T(3,2,1);G in TD4;G. Let us first add the chiral pair that taken
alone is a G′′-orbit: U

(1)
4 = TD3;G ∪ {c(3,2,1), h(3,2,1)}. We have P = C>(V̄ ; c(3,2,1)) =

{b(4,12), e(4,12), b(32)}, P 1 = C>(V̄ ; h(3,2,1)) = {a(4,12), f(4,12), c(32)}. Among the four el-
ements of the automorphism group Aut′′0(TD3;G) only two induce a permutation of the
cones P and P 1: id and w = (a(4,12), b(4,12))(c(4,2), e(4,2))(e(4,12), f(4,12))(b(32), c(32)).
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Then [3, Corollary 3.2, (i), (ii)] yields H ≤ Aut′′0(U (1)
4 ), and Hwr ≤ Aut′′0(U (1)

4 ),
where H = 〈id〉, and r = (c(3,2,1), h(3,2,1)). Thus, I

U
(1)
4 ,TD3;G

= H × 〈w〉. Now,

[2, Lemma 3.4, (i)] implies Aut′′0(U (1)
4 ) = H × 〈wr〉. Next we set U

(2)
4 = U

(1)
4 ∪

{b(3,2,1), f(3,2,1), e(3,2,1), k(3,2,1)}. We denote for short the corresponding cones as fol-
lows:

Q = C>(V̄ ; b(3,2,1)) = {a(4,12), c(4,12), b(32)},
Q1 = C>(V̄ ; f(3,2,1)) = {b(4,12), c(4,12), c(32)},
R = C>(V̄ ; e(3,2,1)) = {c(4,12), e(4,12), b(32)},
R1 = C>(V̄ ; k(3,2,1)) = {c(4,12), f(4,12), c(32)}.

We have u(Q) = Q1, u(R) = R1, for u = wr. Again, [3, Corollary 3.2, (i), (ii)] implies
H ≤ Aut′′0(U (2)

4 ), and Hus ≤ Aut′′0(U (2)
4 ), where s = (b(3,2,1), f(3,2,1))(e(3,2,1), k(3,2,1)), so

the restriction homomorphism �
U

(2)
4 ,U

(1)
4

is surjective, and in accordance with [2, Lemma

3.6, (i)] we obtain Aut′′0(U (2)
4 ) = H × 〈us〉. Further, we supplement U

(2)
4 with the last

G′′-orbit consisting of a chiral pair and two dimers:

TD4;G = U
(2)
4 ∪ {�(3,2,1),m(3,2,1), a(3,2,1), p(3,2,1)}.

The corresponding cones are

X = C>(V̄ ; �(3,2,1)) = {a(4,12), e(4,12), e(32)},

X1 = C>(V̄ ; m(3,2,1)) = {b(4,12), f(4,12), e(32)},
P̃ = C>(V̄ ; a(3,2,1)) = {a(4,12), b(4,12), a(32)},
Q̃ = C>(V̄ ; p(3,2,1)) = {e(4,12), f(4,12), e(32)}.

We have Aut′′0(U (2)
4 ) = H × 〈v〉, where v = us, and v(X) = X1, v(P̃ ) = P̃ , v(Q̃) = Q̃.

Moreover, if t = (�(3,2,1),m(3,2,1)), then H ≤ Aut′′0(TD4;G), and Hvt ⊂ Aut′′0(TD4;G),
because of [3, Corollary 3.2, (i), (ii)]. Therefore the corresponding restriction homomor-
phism is surjective, and Lemma 3.3 yields part (iv).
(v) The (3, 13)-level is described in Section 2, Case 7, where all inequalities between
tabloids, that correspond to the inequality (3, 13) < (3, 2, 1), are presented. Let V̄ =
TD′

5;G
, where D′

5 = {((3, 2, 1), (3, 13)}. The set V̄ is a barrier of T(3,13);G in TD5;G.
First, we supplement consecutively the set TD4;G with two G′′-orbits that consist of
two chiral pairs each: U

(1)
5 = TD4;G ∪ {b(3,13), f(3,13), ē(3,13), k̄(3,13)}, and U

(2)
5 = U

(1)
5 ∪

{b̄(3,13), f̄(3,13), e(3,13), k(3,13)}. The chiral involution u from Aut′′0(TD4;G) permutes the
cones

C>(V̄ ; b(3,13)) = C>(V̄ ; b̄(3,13)) = {b(3,2,1), c(3,2,1)},
C>(V̄ ; f(3,13)) = C>(V̄ ; f̄(3,13)) = {f(3,2,1), h(3,2,1)},

and the cones

C>(V̄ ; e(3,13)) = C>(V̄ ; ē(3,13)) = {c(3,2,1), e(3,2,1)},
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C>(V̄ ; k(3,13)) = C>(V̄ ; k̄(3,13)) = {h(3,2,1), k(3,2,1)}.
Now, the decomposition Aut′′0(TD4;G) = H × 〈u〉, where H = {id}, the surjectiv-
ity of the corresponding restriction homomorphism, as well as [2, Lemma 3.6, (i)],
yield consecutively Aut′′0(U (1)

5 ) = H × 〈v〉, for v = u(b(3,13), f(3,13))(ē(3,13), k̄(3,13)), and
Aut′′0(U (2)

5 ) = H × 〈w〉, for w = v(b̄(3,13), f̄(3,13))(e(3,13), k(3,13)). Further, let us set
U

(3)
5 = U

(2)
5 ∪ {c(3,13), h(3,13), c̄(3,13), h̄(3,13)}. We have

C>(V̄ ; c(3,13)) = C>(V̄ ; c̄(3,13)) = {b(3,2,1), e(3,2,1)},

C>(V̄ ; h(3,13)) = C>(V̄ ; h̄(3,13)) = {f(3,2,1), k(3,2,1)},
and the automorphism w permutes these two cones. According to [2, Lemma 3.4,
(ii)], we get Aut′′0(U (3)

5 ) = H×〈z〉×〈wx〉, where z = (c(3,13), c̄(3,13))(h(3,13), h̄(3,13)), and
x = (c(3,13), h(3,13))(c̄(3,13), h̄(3,13)). Finally, we add the G′′-orbit consisting of four chiral
pairs and get TD5;G = U

(3)
5 ∪{a(3,13), ā(3,13), �(3,13), �̄(3,13),m(3,13), p(3,13), m̄(3,13), p̄(3,13)}.

The corresponding cones are

P = C>(V̄ ; a(3,13)) = C>(V̄ ; ā(3,13)) = {a(3,2,1)},

Q = C>(V̄ ; �(3,13)) = C>(V̄ ; �̄(3,13)) = {�(3,2,1), m(3,2,1)},
R = C>(V̄ ;m(3,13)) = C>(V̄ ; m̄(3,13)) = {�(3,2,1), p(3,2,1)},
R1 = C>(V̄ ; p(3,13)) = C>(V̄ ; p̄(3,13)) = {m(3,2,1), p(3,2,1)}.

We have the decomposition Aut′′0(U (3)
5 ) = H × 〈y〉, where H = 〈z〉, y = wx. The

group H consists of all automorphisms that leave the cones P , Q, R, R1, invariant, and
y(P ) = P , y(Q) = Q, y(R) = R1. Thus the corresponding restriction homomorphism
is surjective and Lemma 3.4 yields part (v).
(vi) In Section 2, Case 8, we describe the (23)-level. All inequalities between tabloids,
that correspond to the inequality (23) < (3, 2, 1), are presented there. Let V̄ = TD′

6;G
,

where D′
5 = {((3, 2, 1), (23)}. The set V̄ is a barrier of T(23);G in TD6;G. Let us first

add to the set TD5;G the G′′-orbit that contains four chiral pairs: U
(1)
6 = TD5;G) ∪

{a(23), ā(23), c(23), c̄(23), h(23), �(23), k(23), �̄(23)}. Their cones are

C>(V̄ ; a(23)) = {a(3,2,1), b(3,2,1), c(3,2,1), f(3,2,1), �(3,2,1)},

C>(V̄ ; ā(23)) = {a(3,2,1), b(3,2,1), f(3,2,1), h(3,2,1), m(3,2,1)},
C>(V̄ ; c(23)) = {a(3,2,1), c(3,2,1), e(3,2,1), k(3,2,1), �(3,2,1), p(3,2,1)},
C>(V̄ ; c̄(23)) = {a(3,2,1), e(3,2,1), h(3,2,1), k(3,2,1),m(3,2,1), p(3,2,1)},

C>(V̄ ; h(23)) = C>(V̄ ; k(23)) = {f(3,2,1), h(3,2,1), k(3,2,1), �(3,2,1),m(3,2,1), p(3,2,1)},
C>(V̄ ; �(23)) = C>(V̄ ; �̄(23)) = {b(3,2,1), c(3,2,1), e(3,2,1), �(3,2,1),m(3,2,1), p(3,2,1)}.

The group Aut′′0(TD5;G) can be decomposed as Aut′′0(TD5;G) = H × 〈w〉, where w is its
last generator, as written in (v), and H is generated by all the rest. The automorphism
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w permutes the cones of the members of each of the added four chiral pairs. Therefore,
the corresponding restriction homomorphism is surjective, and now Lemma 3.5 implies

Aut′′0(U (1)
6 ) = 〈(c(3,13), c̄(3,13))(h(3,13), h̄(3,13)), (m(3,13), m̄(3,13))(p(3,13), p̄(3,13)),

(a(3,13), ā(3,13)), (�(3,13), �̄(3,13)), (h(23), k(23))(�(23), �̄(23)),

(c(4,2), e(4,2))(a(4,12), b(4,12))(e(4,12), f(4,12))(b(32), c(32))(c(3,2,1), h(3,2,1))

(b(3,2,1), f(3,2,1))(e(3,2,1), k(3,2,1))(�(3,2,1), m(3,2,1))(b(3,13), f(3,13))(ē(3,13), k̄(3,13))

(b̄(3,13), f̄(3,13))(e(3,13), k(3,13))(c(3,13), h(3,13))(c̄(3,13), h̄(3,13))(m(3,13), p(3,13))

(m̄(3,13), p̄(3,13))(h(23), �(23))(k(23), �̄(23))〉.
Now, we add to U

(1)
6 consecutively the three G′′-orbits consisting of one chiral pair

and one dimer: U
(2)
6 = U

(1)
6 ∪ {k̄(23),m(23), b(23)}, U

(3)
6 = U

(2)
6 ∪ {h̄(23), m̄(23), b̄(23)},

U
(4)
6 = U

(3)
6 ∪ {f(23), f̄(23), e(23)}. Here are the corresponding cones:

C>(V̄ ; k̄(23)) = {h(3,2,1), �(3,2,1), p(3,2,1)},
C>(V̄ ;m(23)) = {c(3,2,1), m(3,2,1), p(3,2,1)},

C>(V̄ ; b(23)) = {a(3,2,1), c(3,2,1), h(3,2,1), �(3,2,1), m(3,2,1)},
C>(V̄ ; h̄(23)) = {f(3,2,1), k(3,2,1), m(3,2,1)},
C>(V̄ ; m̄(23)) = {b(3,2,1), e(3,2,1), �(3,2,1)},

C>(V̄ ; b̄(23)) = {a(3,2,1), b(3,2,1), e(3,2,1), f(3,2,1), k(3,2,1), p(3,2,1)},
C>(V̄ ; f(23)) = {c(3,2,1), e(3,2,1), f(3,2,1)},
C>(V̄ ; f̄(23)) = {b(3,2,1), h(3,2,1), k(3,2,1)},

C>(V̄ ; e(23)) = {b(3,2,1), c(3,2,1), e(3,2,1), f(3,2,1), h(3,2,1), k(3,2,1)}.
For any one of these G′′-orbits, the last generator of the group Aut′′0(U (1)

6 ), or its exten-
sion, permutes the cones of the members of the chiral pair and leaves the cone of the
dimer invariant. Applying Lemma 3.3 three times, we obtain

Aut′′0(U (4)
6 ) = 〈(c(3,13), c̄(3,13))(h(3,13), h̄(3,13)), (m(3,13), m̄(3,13))(p(3,13), p̄(3,13)),

(a(3,13), ā(3,13)), (�(3,13), �̄(3,13)), (h(23), k(23))(�(23), �̄(23)),

(c(4,2), e(4,2))(a(4,12), b(4,12))(e(4,12), f(4,12))(b(32), c(32))(c(3,2,1), h(3,2,1))

(b(3,2,1), f(3,2,1))(e(3,2,1), k(3,2,1))(�(3,2,1), m(3,2,1))(b(3,13), f(3,13))(ē(3,13), k̄(3,13))

(b̄(3,13), f̄(3,13))(e(3,13), k(3,13))(c(3,13), h(3,13))(c̄(3,13), h̄(3,13))(m(3,13), p(3,13))

(m̄(3,13), p̄(3,13))(h(23), �(23))(k(23), �̄(23))(k̄(23),m(23))(h̄(23), m̄(23))(f(23), f̄(23))〉.
We have C>(V̄ ; ē(23)) = C>(V̄ ; e(23)), so the cone of the dimer ē(23) is Aut′′0(U (4)

6 )-
invariant, and, in compliance with [2, Lemma 3.3], we get part (vi).

Corollary 3.7. The chiral pairs {a(4,12), b(4,12)}, {e(4,12), f(4,12)} can be distinguished
via substitution reactions among the elements of TD2;G.

Proof: Lunn-Senior’s group Aut′′0(TD2;G) does not contain automorphism that maps
the members of one of the chiral pairs onto the members of the other.
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Remark 3.8. The members of the chiral pair {a(4,12), b(4,12)} can be obtained via
substitution reactions by one and the same dimer a(4,2), whereas each of the members
of the chiral pair {c(4,2), e(4,2)} produces via substitution reaction exactly one member
of the chiral pair {e(4,12), f(4,12)}, and the two members of the latter can be obtained in
this way.

Corollary 3.9. The two dimers a(32) and e(32), can be distinguished via substitution
reactions among the elements of TD3;G.

Proof: The group Aut′′0(TD3;G) does not contain automorphism that maps one of the
dimers onto the other.

Remark 3.10. The dimer a(32) can be produced via substitution reactions by exactly
one (4, 2)-product whereas the dimer e(32) can be produced by three (4, 2)-products.

Since the group Aut′′0(TD4;G) contains only the identity and the chiral automorphism,
we obtain the following two corollaries:

Corollary 3.11. The two dimers a(3,2,1) and p(3,2.1), can be distinguished via substi-
tution reactions among the elements of TD4;G.

Remark 3.12. The dimer a(3,2,1) can be produced via substitution reactions by the
dimer a(32) which has the property that it can produce exactly one (3, 2, 1)-product.
On the other hand, the dimer p(3,2.1) can be produced by the dimer e(32) which has the
property that it can produce three (3, 2, 1)-products.

Corollary 3.13. Any two chiral pairs from

{b(3,2,1), f(3,2,1)}, {c(3,2,1), h(3,2,1)}, {e(3,2,1), k(3,2,1)},

can be distinguished via substitution reactions among the elements of TD4;G.

Remark 3.14. Any member of the chiral pair {b(3,2,1), f(3,2,1)} can be produced via
substitution reactions by one member of the chiral pair {a(4,12), b(4,12)}, any member
of the chiral pair {c(3,2,1), h(3,2,1)} can be produced via substitution reactions by one
member of each chiral pair {a(4,12), b(4,12)}, {e(4,12), f(4,12)}, and any member of the
chiral pair {e(3,2,1), k(3,2,1)} can be produced via substitution reactions by one member
of the chiral pair {e(4,12), f(4,12)}. In the end, it is enough to note that Corollary 3.7
holds.

Corollary 3.15. The chiral pairs {c(3,13), h(3,13)}, {c̄(3,13), h̄(3,13)} can not be distin-
guished via substitution reactions among the elements of TD6;G.

Corollary 3.16. The chiral pairs {m(3,13), p(3,13)}, {m̄(3,13), p̄(3,13)} can not be dis-
tinguished via substitution reactions among the elements of TD6;G.

Proofs: It is enough to note that Lunn-Senior’s group Aut′′0(TD6;G) contains the auto-
morphisms (c(3,13), c̄(3,13))(h(3,13), h̄(3,13)), and (m(3,13), m̄(3,13))(p(3,13), p̄(3,13)), respec-
tively.

Corollary 3.17. (i) The chiral pairs

{a(3,13), ā(3,13)}, {�(3,13), �̄(3,13)}, (3.18)

can be distinguished via substitution reactions among the elements of TD5;G;
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(ii) any chiral pair from (3.18) and any one from the chiral pairs

{m(3,13), p(3,13)}, {m̄(3,13), p̄(3,13)},

can be distinguished via substitution reactions among the elements of TD5;G.

Proof: In both parts (i) and (ii) Lunn-Senior’s group Aut′′0(TD5;G) does not contain
an automorphism that works.

Remark 3.19. The members of the chiral pair {a(3,13), ā(3,13)} can be produced via
substitution reactions by exactly one (3, 2, 1)-product – the dimer a(3,2,1), any mem-
ber of the chiral pair {�(3,13), �̄(3,13)} can be produced via substitution reactions only
by both members of the chiral pair {�(3,2,1), m(3,2,1)}, and any member of the chiral
pair {m(3,13), p(3,13)} (respectively, {m̄(3,13), p̄(3,13)}) can be produced via substitution
reactions by one member of the chiral pair {�(3,2,1),m(3,2,1)}, and by the dimer p(3,2,1).

The two corollaries below can be proved in the same way.

Corollary 3.20. The two chiral pairs {b(3,13), f(3,13)}, {ē(3,13), k̄(3,13)} can be distin-
guished via substitution reactions among the elements of TD5;G.

Corollary 3.21. The two chiral pairs {b̄(3,13), f̄(3,13)}, {e(3,13), k(3,13)} can be distin-
guished via substitution reactions among the elements of TD5;G.

Remark 3.22. The members of the chiral pair {b(3,2,1), f(3,2,1)} (respectively, the chi-
ral pair {e(3,2,1), k(3,2,1)}) produce the members of the chiral pair {b(3,13), f(3,13)} as
well as the members of the chiral pair {b̄(3,13), f̄(3,13)} (respectively, {ē(3,13), k̄(3,13)} as
well as {e(3,13), k(3,13)}). Moreover, the members of {b(3,2,1), f(3,2,1)} do not produce
neither the members of {ē(3,13), k̄(3,13)} nor the members of {e(3,13), k(3,13)}, and simi-
larly for {e(3,2,1), k(3,2,1)}. In the end we note that in accord to Corollary 3.13 the two
chiral pairs {b(3,2,1), f(3,2,1)} and {e(3,2,1), k(3,2,1)} are distinguishable via substitution
reactions among the elements of TD4;G, and hence among the elements of TD5;G.
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