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Abstract

The Padmakar-Ivan (PI) index of a graph G = (V, E) is defined
as PI(G) =

∑
e∈E(nu(e) + nv(e)), where e = uv, nu(e) is the number

of edges of G lying closer to u than to v and nv(e) is the number of
edges of G lying closer to v than to u. In this paper, a formula for
calculating the PI index of a torus Tp,q[C4, C8] is given.
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1 Introduction

Since the Wiener index was introduced by Wiener [1] in the study of paraf-
fin boiling points, many topological indices have been designed [2]. Such a
proliferation is still going on and is becoming counter productive. In 1990s,
Gutman [3] and coworkers [4] introduced a generalization of the Wiener index
(W) for cyclic graphs called Szeged index (Sz). The main advantage of the
Szeged index is that it is a modification of W; otherwise, it coincides with
the Wiener index. In [5,6] another topological index was introduced and it
was named Padmakar-Ivan index, abbreviated as PI. This new topological
index, PI, does not coincide with the Wiener index. Deng [9,10] gave the
formulas for calculating the PI indices of TUV C6[2p, q] and catacondensed
hexagonal systems and characterized the extremal catacondensed hexagonal
systems with the minimum or maximum PI index. Ashrafi and Loghman
[11] computed the PI index of zig-zag polyhex nanotubes.

The primary aim of this article is to introduce the method for calculation
of PI index for a torus covering by C4 and C8. Our notations are mainly
taken from [7,8]. Throughout this paper G = Tp,q[C4, C8] denotes a torus
covering by C4 and C8 with 2q rows and 2p columns in its cutting, see Figure
1.

2 The definition of PI index

Let G be a connected and undirected graph without multiple edges or loops.
By V (G) and E(G) we denote the vertex and edge sets, respectively, of G.

If G′ = (V ′, E ′) is a subgraph of G = (V, E) and contains all the edges of
G that join two vertices in V ′, i.e., E ′ is the set of edges between vertices of
V ′, then G′ is an induced subgraph of G by V ′ and is denoted by G[V ′].

Let e = xy be an edge of G, X is the subset of vertices which are closer
to x than y and Y is the subset of vertices which are closer to y than x in
V (G), i.e.,

X = {v|v ∈ V (G), dG(x, v) < dG(y, v)}
Y = {v|v ∈ V (G), dG(y, v) < dG(x, v)}

where dG(u, v) denotes the distance between vertices u and v of G. Let
G[X] = (X,E1) and G[Y ] = (Y, E2), n1(e) = |E1|, n2(e) = |E2|, here n1(e)
is the number of edges nearer to x than y and n2(e) is the number of edges
nearer to y than x.

Then the PI index of G is defined as

PI(G) =
∑

e∈E(G)

[n1(e) + n2(e)]
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Figure 1. (a) a cutting of G = T4,2[C4, C8];
(b) side view; (c) top view.

In all cases of cyclic graphs, there are edges equidistant to the both ends
of the edges. Such edges are not taken into account. Let [X,Y ] denote the
subset of edges between X and Y , n(e) = |[X,Y ]|. Then n(e) = |E(G)| −
(n1(e) + n2(e)) is the number of edges equidistant to the both ends of e for
a bipartite connected graph G (It includes the current edge e in n(e)). And

PI(G) = |E(G)|2 − ∑

e∈E(G)

n(e)

Therefore, for computing the PI index of a bipartite connected graph G, it
is enough to calculate n(e) for each e ∈ E(G).

For the horizontal and vertical edges, we can observe the following results
by the symmetry of the tori Tp,q[C4, C8]
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Lemma 1. Let e be any horizontal edge in G = Tp,q[C4, C8], then n(e) =
4q.

Proof. Let e be any horizontal edge between columns j and j+1 in
G = Tp,q[C4, C8], 1 ≤ j ≤ 2p, where 2p + 1 ≡ 1(mod2p). Then all the edges
equidistant to the both ends of e are the edges between columns j and j+1
or between columns p+j and p+j+1. So, n(e) = 4q.

Lemma 2. Let e be any vertical edge in G = Tp,q[C4, C8], then n(e) = 4p.
Proof. Let e be any vertical edge between rows i and i+1 in G =

Tp,q[C4, C8], 1 ≤ i ≤ 4q, where 4q + 1 ≡ 1(mod4q). Then all the edges
equidistant to the both ends of e are the edges between rows i and i+1 or
between rows 2q+i and 2q+i+1. So, n(e) = 4p.

To calculating n(e) for the oblique edges e, we need only calculate n(e)
for e = x11x21 by the symmetry of G = Tp,q[C4, C8].

3 The distances in G = Tp,q[C4, C8]

For e = x11x21, we will give a formula for calculating the distances from x11

(or x21) in the following, and find the subset X of vertices of V (G) which are
closer to x11 than x21 and the subset Y of vertices which are closer to x21

than x11.
We first consider four graphs G1, G2, G3 and G4, where G1 is obtaining

from G = Tp,q[C4, C8] by deleting the horizontal edges between columns 1
and 2p and the vertical edges between rows 1 and 4q (see Figure 2), G2

is obtaining from G = Tp,q[C4, C8] by deleting the horizontal edges between
columns 1 and 2 and the vertical edges between rows 1 and 4q, G3 is obtaining
from G = Tp,q[C4, C8] by deleting the horizontal edges between columns 1
and 2p and the vertical edges between rows 3 and 4, G4 is obtaining from
G = Tp,q[C4, C8] by deleting the horizontal edges between columns 1 and 2
and the vertical edges between rows 3 and 4. And the distances from x11 (or
x21) in G is the minimum of the ones in G1, G2, G3 and G4.

- 488 -



t=1 2 3 4 5 6 7 8 9 10 11 12 13 14
r=1

2
3
4
5
6
7
8
9
10
11
12

0
1
2
3
4
5
6
7

1
2
3
4
5
6
7
8

4
3
4
5
6
7
8
9

5
6
7
6
7
8
9
10

8
7
8
9
10
9
10
11

9
10
11
10
11
12
13
12

12
11
12
13
14
13
14
15

13
14
15
16

2 1=t′34567891011121314

r′=1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

0
1
2
3
4
5
6
7

2
34

5
3
4
5
6
7
8

67
5
6
7
8
9

6
7

8
9
8
9
10

8
9
10
9
10
11
12
11

11
10
11
12
13
12
13
1415

12
13
14
13
14
15
16

0
1
2
3
4
5
6
7

1
2
3
4
5
6
7
8

4 5
5
4
5
6
7
8
9

6
7
8
7
8
9
10

8
9
8
9
10
11
10
11

9
10
11
12 13
11
12
13
14

12
13
12

14
15
14
15

0
1
2
3
4
5
6
7

3
4

4
5

3
4
5
6
7
8

6
7
6
7
8
9

7
8
7
8

8
9
10
11

9
11
10

9
10

10
12
13

11
12

12
13

11
12
13
14

14
15
14

13
14

15
16
17

Figure 2. Some distances from the vertex x11 in G1, G2, G3 and G4, where p=7 and q=4.

Table 1. The values of d1(x11, xrt)− t.
1 2 3 4 5 6 7 8 9 10 11 12

1 -1 -1 1 1 3 3 5 5 7 7 9 9
2 0 0 0 2 2 4 4 6 6 8 8 10
3 1 1 1 3 3 5 5 7 7 9 9 11
4 2 2 2 2 4 4 6 6 8 8 10 10
5 3 3 3 3 5 5 7 7 9 9 11 11
6 4 4 4 4 4 6 6 8 8 10 10 12
7 5 5 5 5 5 7 7 9 9 11 11 13
8 6 6 6 6 6 6 8 8 10 10 12 12
9 7 7 7 7 7 7 9 9 11 11 13 13

Now, we calculate the distances from x11 in G1 as showing in Figure
2. And Table 1 lists the values of d1(x11, xrt) − t, where d1(x11, xrt) is the
distance between x11 and xrt in G1.

From Table 1, we can see that

d1(x11, xrt)− t =





r − 2, 1 ≤ t ≤ [ r
2
] + 2;

2[2t+r+1
4

]− 3, t ≥ [ r
2
] + 3 and r is odd;

2[2t+r−2
4

]− 2, t ≥ [ r
2
] + 3 and r is even.
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where [x] denotes the maximum integer not larger than x over all the paper.
So, we have

Lemma 3. d1(x11, xrt) = t+





r − 2, 1 ≤ t ≤ [ r
2
] + 2;

2[2t+r+1
4

]− 3, t ≥ [ r
2
] + 3 and r is odd;

2[2t+r−2
4

]− 2, t ≥ [ r
2
] + 3 and r is even.

Lemma 3 can be easily proved by the inductive method on t, we omit here.

Table 2. The values of d2(x11, xrt′)− t′.
1 2 3 4 5 6 7 8 9 10 11 12

1 -1 1 1 3 3 5 5 7 7 9 9 11
2 0 0 2 2 4 4 6 6 8 8 10 10
3 1 1 3 3 5 5 7 7 9 9 11 11
4 2 2 2 4 4 6 6 8 8 10 10 12
5 3 3 3 5 5 7 7 9 9 11 11 13
6 4 4 4 4 6 6 8 8 10 10 12 12
7 5 5 5 5 7 7 9 9 11 11 13 13
8 6 6 6 6 6 8 8 10 10 12 12 14
9 7 7 7 7 7 9 9 11 11 13 13 15

Similarly, we calculate the distances from x11 in G2 as showing in Figure
2. And Table 2 lists the values of d2(x11, xrt′) − t′, where d2(x11, xrt′) is the
distance between x11 and xrt′ in G2 and

t′ =

{
1, t = 1
2p + 2− t, t ≥ 2

From Table 2, we can see that

d2(x11, xrt′)− t′ =





r − 2, 1 ≤ t′ ≤ [ r
2
] + 1;

2[2t′+r
4

]− 1, t′ ≥ [ r
2
] + 2 and r is odd;

2[2t′+r
4

]− 2, t′ ≥ [ r
2
] + 2 and r is even.

So, we have

Lemma 4. d2(x11, xrt′) = t′ +





r − 2, 1 ≤ t′ ≤ [ r
2
] + 1;

2[2t′+r
4

]− 1, t′ ≥ [ r
2
] + 2 and r is odd;

2[2t′+r
4

]− 2, t′ ≥ [ r
2
] + 2 and r is even

Table 3. The values of d3(x11, xr′t)− t.
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1 2 3 4 5 6 7 8 9 10 11 12
1 -1 -1 1 1 3 3 5 5 7 7 9 9
2 0 0 2 2 4 4 6 6 8 8 10 10
3 1 1 1 3 3 5 5 7 7 9 9 11
4 2 2 2 4 4 6 6 8 8 10 10 12
5 3 3 3 3 5 5 7 7 9 9 11 11
6 4 4 4 4 6 6 8 8 10 10 12 12
7 5 5 5 5 5 7 7 9 9 11 11 13
8 6 6 6 6 6 8 8 10 10 12 12 14
9 7 7 7 7 7 7 9 9 11 11 13 13

From Table 3, we can see the values of d3(x11, xr′t)− t

d3(x11, xr′t)− t =





r′ − 2, 1 ≤ t ≤ [ r′−1
2

] + 2;

2[2t+r′+1
4

]− 3, t ≥ [ r′−1
2

] + 3 and r′ is odd;

2[2t+r′
4

]− 2, t ≥ [ r′−1
2

] + 3 and r′ is even.

where d3(x11, xr′t) is the distance between x11 and xr′t in G3, and

r′ =

{
1, r = 1
4q + 2− r, r ≥ 2

.
So, we have

Lemma 5. d3(x11, xr′t) = t+





r′ − 2, 1 ≤ t ≤ [ r′−1
2

] + 2;

2[2t+r′+1
4

]− 3, t ≥ [ r′−1
2

] + 3 and r′ is odd;

2[2t+r′
4

]− 2, t ≥ [ r′−1
2

] + 3 and r′ is even.

Table 4. The values of d4(x11, xr′t′)− t′.
1 2 3 4 5 6 7 8 9 10 11 12

1 -1 1 1 3 3 5 5 7 7 9 9 11
2 0 2 2 4 4 6 6 8 8 10 10 12
3 1 1 3 3 5 5 7 7 9 9 11 11
4 2 2 4 4 6 6 8 8 10 10 12 12
5 3 3 3 5 5 7 7 9 9 11 11 13
6 4 4 4 6 6 8 8 10 10 12 12 14
7 5 5 5 5 7 7 9 9 11 11 13 13
8 6 6 6 6 8 8 10 10 12 12 14 14
9 7 7 7 7 7 9 9 11 11 13 13 15

From Table 4, we can see the values of d4(x11, xr′t′)− t′
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d4(x11, xr′t′)− t′ =





r′ − 2, 1 ≤ t′ ≤ [ r′−1
2

] + 1;

2[2t′+r′
4

]− 1, t′ ≥ [ r′−1
2

] + 2 and r′ is odd;

2[2t′+r′−2
4

], t′ ≥ [ r′−1
2

] + 2 and r′ is even.

where d4(x11, xr′t′) is the distance between x11 and xr′t′ in G4.
So, we have

Lemma 6. d4(x11, xr′t′) = t′+





r′ − 2, 1 ≤ t′ ≤ [ r′−1
2

] + 1;

2[2t′+r′
4

]− 1, t′ ≥ [ r′−1
2

] + 2 and r′ is odd;

2[2t′+r′−2
4

], t′ ≥ [ r′−1
2

] + 2 and r′ is even.

Since the vertices xrt in G1, xrt′ in G2, xr′t in G3 and xr′t′ in G4 are
identical, we have

Lemma 7. (i)If t = 1, then d1(x11, xrt) = d2(x11, xrt′) and d3(x11, xr′t) =
d4(x11, xr′t′);

(ii) If 2 ≤ t ≤ p + 1, then d1(x11, xrt) ≤ d2(x11, xrt′) and d3(x11, xr′t) ≤
d4(x11, xr′t′);

(iii) If p + 2 ≤ t ≤ 2p, then d1(x11, xrt) ≥ d2(x11, xrt′) and d3(x11, xr′t) ≥
d4(x11, xr′t′);

(iv)If r = 1, then d1(x11, xrt) = d3(x11, xr′t) and d2(x11, xrt′) = d4(x11, xr′t′);
(v) If 2 ≤ r ≤ 2q + 1, then d1(x11, xrt) ≤ d3(x11, xr′t) and d2(x11, xrt′) ≤

d4(x11, xr′t′);
(vi) If 2q +2 ≤ r ≤ 4q, then d1(x11, xrt) ≥ d3(x11, xr′t) and d2(x11, xrt′) ≥

d4(x11, xr′t′).
Proof. (i) It is immediate from Lemmas 3 ∼ 6.
(ii) 2 ≤ t ≤ p + 1.
Case 1. t ≥ [ r

2
] + 3. Then [ r

2
] + 3 ≤ t ≤ p + 1 and [ r

2
] ≤ p− 2,

t′ = 2p + 2− t ≥ p + 1 ≥ [ r
2
] + 2.

(a) If r is even, then by Lemmas 3 and 4
d2(x11, xrt′)− d1(x11, xrt) = (t′ + 2[2t′+r

4
]− 2)− (t + 2[2t+r−2

4
]− 2)

= 4p + 4− 2t + 2([−2t+r
4

]− [2t+r−2
4

])
≥ 4p + 4− 4t (since [−2t+r

4
]− [2t+r−2

4
] ≥ −t)

≥ 0.
(b) If r is odd, then by Lemmas 3 and 4
d2(x11, xrt′)− d1(x11, xrt) = (t′ + 2[2t′+r

4
]− 1)− (t + 2[2t+r+1

4
]− 3)

= 4p + 6− 2t + 2([−2t+r
4

]− [2t+r+1
4

])
≥ 4p + 6− 4t > 0.

Case 2. 2 ≤ t ≤ [ r
2
] + 2.

(a) If t′ ≤ [ r
2
] + 1, then by Lemmas 3 and 4

d2(x11, xrt′)− d1(x11, xrt) = (r + t′ − 2)− (r + t− 2)
= t′ − t = 2p + 2− 2t ≥ 0.
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(b) If t′ ≥ [ r
2
] + 2, i.e., 2p + 2− t ≥ [ r

2
] + 2, then t + [ r

2
] ≤ 2p.

When r is odd, [ r
2
] = r−1

2
. And 2t+r ≤ 4p+1, r−2t ≥ r−2[ r

2
]−4 = −3.

By Lemmas 2 and 3, we have
d2(x11, xrt′)− d1(x11, xrt) = (t′ + 2[2t′+r

4
]− 1)− (r + t− 2)

= 4p + 5 + 2[ r−2t
4

]− (2t + r)
≥ 4p + 5 + 2(−1)− (4p + 1) > 0.

When r is even, [ r
2
] = r

2
. And 2t + r ≤ 4p, r − 2t ≥ r − 2[ r

2
]− 4 = −4.

By Lemmas 2 and 3, we have
d2(x11, xrt′)− d1(x11, xrt) = (t′ + 2[2t′+r

4
]− 2)− (r + t− 2)

= 4p + 4 + 2[ r−2t
4

]− (2t + r)
≥ 4p + 5 + 2(−1)− 4p > 0.

Instead of r above by r′, we can obtain the proof of d3(x11, xr′t) ≤
d4(x11, xr′t′).

(iii) p + 2 ≤ t ≤ 2p. Then 2 ≤ t′ = 2p + 2− t ≤ p.
Case 1. t′ ≥ [ r

2
] + 2.

(a) If r is even, then by Lemmas 3 and 4
d1(x11, xrt)− d2(x11, xrt′) = (t− 2 + 2[2t+r−2

4
])− (t′ − 2 + 2[2t′+r

4
])

= (2p− t′ + 2([4p+2−2t′+r
4

])− (t′ − 2 + 2[2t′+r
4

])

= 4p + 2− 2t′ + 2([ r−2t′+2
4

]− [2t′+r
4

])

≥ 4p + 2− 2t′ + 2( r−2t′−1
4

− 2t′+r
4

)
> 4p + 2− 2t′ + 2(t′ − 1) ≥ 0.

(b) If r is odd, then by Lemmas 3 and 4
d1(x11, xrt)− d2(x11, xrt′) = (t− 3 + 2[2t+r+1

4
])− (t′ − 1 + 2[2t′+r

4
])

= 4p + 2− 2t′ + 2([ r−2t′−1
4

]− [2t′+r
4

])
≥ 4p− 4t′ + 2 > 0.

Case 2. 2 ≤ t′ ≤ [ r
2
] + 1.

(a) If t ≤ [ r
2
] + 2, then by Lemmas 3 and 4

d1(x11, xrt)− d2(x11, xrt′) = (r + t− 2)− (r + t′ − 2)
= t− t′ = 2p + 2− 2t′ > 0.

(b) If t ≥ [ r
2
] + 3, then by Lemmas 3 and 4

d1(x11, xrt)− d2(x11, xrt′) = (t− 2 + 2[2t+r−2
4

])− (r + t′ − 2)
≥ (t− 2 + 2[2r+4

4
])− (r + t′ − 2)

= (t + r)− (r + t′ − 2) = 2p + 4− 2t′ > 0
when r is even; and

d1(x11, xrt)− d2(x11, xrt′) = (t− 3 + 2[2t+r+1
4

])− (r + t′ − 2)
≥ (t− 3 + 2[2r+6

4
])− (r + t′ − 2)

≥ (t− 3 + 2(2r+3
4

))− (r + t′ − 2)
> t− t′ = 2p + 2− 2t′ > 0

when r is odd.
Instead of r above by r′, we can obtain the proof of d3(x11, xr′t) ≥

d4(x11, xr′t′).
Using the same methods as (i),(ii) and (iii), we can prove (iv),(v) and
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(vi). We omit these here.

Now by Lemma 7, we can directly give a formula of calculating the dis-
tances from x11 in G = Tp,q[C4, C8].

Theorem 1. (i) d(x11, xrt) = d1(x11, xrt) if 1 ≤ t ≤ p + 1 and 1 ≤ r ≤
2q + 1;

(ii) d(x11, xrt) = d2(x11, xrt) if p + 2 ≤ t ≤ 2p and 1 ≤ r ≤ 2q + 1;
(iii) d(x11, xrt) = d3(x11, xrt) if 1 ≤ t ≤ p + 1 and 2q + 2 ≤ r ≤ 4q;
(iv) d(x11, xrt) = d4(x11, xrt) if p + 2 ≤ t ≤ 2p and 2q + 2 ≤ r ≤ 4q.

Next, we consider the distances from x21. Using the same methods as
above, we can calculate the distances from x21 in G1, G2, G3 and G4 (see
Figure 3).
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Figure 3. Some distances from the vertex x21 in G1, G2, G3 and G4.

Table 5. The values of d1(x21, xrt)− t.
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1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 2 2 4 4 6 6 8 8 10 10
2 -1 1 1 3 3 5 5 7 7 9 9 11
3 0 2 2 4 4 6 6 8 8 10 10 12
4 1 1 3 3 5 5 7 7 9 9 11 11
5 2 2 4 4 6 6 8 8 10 10 12 12
6 3 3 3 5 5 7 7 9 9 11 11 13
7 4 4 4 6 6 8 8 10 10 12 12 14
8 5 5 5 5 7 7 9 9 11 11 13 13
9 6 6 6 6 8 8 10 10 12 12 14 14

We can see from Table 5 that

d1(x21, xrt)− t =





r − 3, 1 ≤ t ≤ [ r
2
];

2[2t+r−2
4

]− 1, t ≥ [ r
2
] + 1 and r is even;

2[2t+r−3
4

], t ≥ [ r
2
] + 1 and r is odd.

So, we have

Lemma 8. d1(x21, xrt) = t+





r − 3, 1 ≤ t ≤ [ r
2
];

2[2t+r−2
4

]− 1, t ≥ [ r
2
] + 1 and r is even;

2[2t+r−3
4

], t ≥ [ r
2
] + 1 and r is odd.

Table 6. The values of d2(x21, xrt′)− t′.
1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 2 2 4 4 6 6 8 8 10
2 -1 -1 1 1 3 3 5 5 7 7 9 9
3 0 0 2 2 4 4 6 6 8 8 10 10
4 1 1 1 3 3 5 5 7 7 9 9 11
5 2 2 2 4 4 6 6 8 8 10 10 12
6 3 3 3 3 5 5 7 7 9 9 11 11
7 4 4 4 4 6 6 8 8 10 10 12 12
8 5 5 5 5 5 7 7 9 9 11 11 13
9 6 6 6 6 6 8 8 10 10 12 12 14

We can see from Table 6 that(r ≥ 2)

d2(x21, xrt′)− t′ =





r − 3, 1 ≤ t′ ≤ [ r
2
] + 1;

2[2t′+r
4

]− 3, t′ ≥ [ r
2
] + 2 and r is even;

2[2t′+r−1
4

]− 2, t′ ≥ [ r
2
] + 2 and r is odd.

So, we have

Lemma 9. If r = 1, then d2(x21, xrt′) =

{
0, t′ = 1;

t′ + 2[ t′
2
]− 2, t′ ≥ 2.
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If r ≥ 2, then d2(x21, xrt′) = t′+





r − 3, 1 ≤ t′ ≤ [ r
2
] + 1;

2[2t′+r
4

]− 3, t′ ≥ [ r
2
] + 2 and r is even;

2[2t′+r−1
4

]− 2, t′ ≥ [ r
2
] + 2 and r is odd.

Table 7. The values of d3(x21, xr′t)− t.
1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 2 2 4 4 6 6 8 8 10 10
2 1 1 3 3 5 5 7 7 9 9 11 11
3 2 2 2 4 4 6 6 8 8 10 10 12
4 3 3 3 5 5 7 7 9 9 11 11 13
5 4 4 4 4 6 6 8 8 10 10 12 12
6 5 5 5 5 7 7 9 9 11 11 13 13
7 6 6 6 6 6 8 8 10 10 12 12 14
8 7 7 7 7 7 9 9 11 11 13 13 15
9 8 8 8 8 8 8 10 10 12 12 14 14

We can see that from Table 7

d3(x21, xr′t)− t =





r′ − 1, 1 ≤ t ≤ [ r′−1
2

] + 2;

2[2t+r′+1
4

]− 2, t ≥ [ r′−1
2

] + 3 and r′ is odd;

2[2t+r′
4

]− 1, t ≥ [ r′−1
2

] + 3 and r′ is even.

So, we have

Lemma 10. d3(x21, xr′t) = t+





r′ − 1, 1 ≤ t ≤ [ r′−1
2

] + 2;

2[2t+r′+1
4

]− 2, t ≥ [ r′−1
2

] + 3 and r′ is odd;

2[2t+r′
4

]− 1, t ≥ [ r′−1
2

] + 3 and r′ is even.

Table 8. The values of d4(x21, xr′t′)− t′.
1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 2 2 4 4 6 6 8 8 10
2 1 1 1 3 3 5 5 7 7 9 9 11
3 2 2 2 2 4 4 6 6 8 8 10 10
4 3 3 3 3 5 5 7 7 9 9 11 11
5 4 4 4 4 4 6 6 8 8 10 10 12
6 5 5 5 5 5 7 7 9 9 11 11 13
7 6 6 6 6 6 6 8 8 10 10 12 12
8 7 7 7 7 7 7 9 9 11 11 13 13
9 8 8 8 8 8 8 8 10 10 12 12 14

We can see that from Table 8 (r′ ≥ 2)

d4(x21, xr′t′)− t′ =





r′ − 1, 1 ≤ t′ ≤ [ r′−1
2

] + 3;

2[2t′+r′−1
4

]− 2, t′ ≥ [ r′−1
2

] + 4 and r′ is odd;

2[2t′+r′−2
4

]− 1, t′ ≥ [ r′−1
2

] + 4 and r′ is even.
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So, we have

Lemma 11. If r′ = 1, then d4(x21, xrt′) =

{
0, t′ = 1;

t′ + 2[ t′
2
]− 2, t′ ≥ 2.

If r′ ≥ 2, then d4(x21, xr′t′) = t′+





r′ − 1, 1 ≤ t′ ≤ [ r′−1
2

] + 3;

2[2t′+r′−1
4

]− 2, t′ ≥ [ r′−1
2

] + 4 and r′ is odd;

2[2t′+r′−2
4

]− 1, t′ ≥ [ r′−1
2

] + 4 and r′ is even.

As in Lemma 7, we can prove the following result by using Lemmas 8 ∼ 11

Lemma 12. (i)If t = 1, then d1(x21, xrt) = d2(x21, xrt′) and d3(x21, xr′t) =
d4(x21, xr′t′);

(ii) If 2 ≤ t ≤ p, then d1(x21, xrt) ≤ d2(x21, xrt′) and d3(x21, xr′t) ≤
d4(x21, xr′t′);

(iii) If p + 1 ≤ t ≤ 2p, then d1(x21, xrt) ≥ d2(x21, xrt′) and d3(x21, xr′t) ≥
d4(x21, xr′t′);

(iv)If r = 1, then d1(x21, xrt) = d3(x21, xr′t) and d2(x21, xrt′) = d4(x21, xr′t′);
(v) If 3 ≤ r ≤ 2q + 1, then d1(x21, xrt) ≤ d3(x21, xr′t) and d2(x21, xrt′) ≤

d4(x21, xr′t′);
(vi) If 2q +2 ≤ r ≤ 4q, then d1(x21, xrt) ≥ d3(x21, xr′t) and d2(x21, xrt′) ≥

d4(x21, xr′t′).

And now, we can give a formula of calculating the distances from x21 in
G = Tp,q[C4, C8] by Lemma 12.

Theorem 2. (i) d(x21, xrt) = d1(x21, xrt) if 1 ≤ t ≤ p and 1 ≤ r ≤ 2q+1;
(ii) d(x21, xrt) = d2(x21, xrt) if p + 1 ≤ t ≤ 2p and 1 ≤ r ≤ 2q + 1;
(iii) d(x21, xrt) = d3(x21, xrt) if 1 ≤ t ≤ p and 2q + 2 ≤ r ≤ 4q;
(iv) d(x21, xrt) = d4(x21, xrt) if p + 1 ≤ t ≤ 2p and 2q + 2 ≤ r ≤ 4q.

The methods of calculating d(x11, xrt) and d(x21, xrt) in Theorems 1 and
2 can be showed in Figure 4.
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1
1

d1(x11, xrt)

2q+1
2q+2

4q

p+1 p2p

d2(x11, xrt)

d3(x11, xrt) d4(x11, xrt)

d1(x21, xrt) d2(x21, xrt)

d3(x21, xrt) d4(x21, xrt)

Figure 4.

4 A formula for calculating PI index of G =

Tp,q[C4, C8]

In this section, we first find the subset X of vertices of V (G) which are closer
to x11 than x21 and the subset Y of vertices which are closer to x21 than x11

in G, and give the formula of calculating n(e) for all oblique edges e. And
then we calculate the PI index of G = Tp,q[C4, C8].

Let D = d(x11, xrt)− d(x21, xrt). Then xrt ∈ X if and only if D < 0.
Case I. 1 ≤ t ≤ p and 1 ≤ r ≤ 2q + 1.
By Theorems 1 and 2, we have D = d1(x11, xrt)− d1(x21, xrt), and
(i) D < 0 for 1 ≤ r ≤ 2t− 1;
(ii) D > 0 for 2t ≤ r ≤ 2q + 1.
Case II. 1 ≤ t ≤ p and 2q + 2 ≤ r ≤ 4q.
By Theorems 1 and 2, we have D = d3(x11, xr′t)− d3(x21, xr′t) < 0.
Case III. p + 2 ≤ t ≤ 2p and 1 ≤ r ≤ 2q + 1.
By Theorems 1 and 2, we have D = d2(x11, xrt′)− d2(x21, xrt′) > 0.
Case IV. p + 2 ≤ t ≤ 2p and 2q + 2 ≤ r ≤ 4q.
By Theorems 1 and 2, we have D = d4(x11, xr′t′)− d4(x21, xr′t′), and
(i) D < 0 for 2t′ − 1 ≤ r′ ≤ 2q;
(ii) D > 0 for 2 ≤ r′ ≤ 2t′ − 2.
Case V. t = p + 1 (t′ = p + 1).
(i) 1 ≤ r ≤ 2q + 1.
By Theorems 1 and 2, we have D = d1(x11, xrt)− d2(x21, xrt′).
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When 1 ≤ r ≤ 2p− 3,





D > 0, 2p + r ≡ 1(mod4) and r is odd;
D < 0, 2p + r ≡ 3(mod4) and r is odd;
D > 0, 2p + r ≡ 0(mod4) and r is even;
D < 0, 2p + r ≡ 2(mod4) and r is even.

When r = 2p− 2, 2p− 1, D < 0.
When r ≥ 2p, D > 0.
(ii) 2q + 2 ≤ r ≤ 4q.
By Theorems 1 and 2, we have D = d3(x11, xr′t)− d4(x21, xr′t′).
When 2 ≤ r′ ≤ 2p− 4 (i.e., 4q − 2p + 6 ≤ r ≤ 4q),



D > 0, 2p + r′ ≡ 1(mod4) and r′ is odd;
D < 0, 2p + r′ ≡ 3(mod4) and r′ is odd;
D > 0, 2p + r′ ≡ 2(mod4) and r′ is even;
D < 0, 2p + r′ ≡ 0(mod4) and r′ is even.

When r′ = 2p− 3, 2p− 2 (i.e., r = 4q − 2p + 5, 4q − 2p + 4), D > 0.
When 2p− 1 ≤ r′ ≤ 2q (i.e., 2q + 2 ≤ r ≤ 4q − 2p + 3), D < 0.

A example for p = 7 and q = 4 is showed in Figure 5, where X is the set
of large dots.

t=1 2 3 4 5 6 7 8 9 10 11 12 13 14
r=1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Figure 5.

Now, we calculate n(e) = |[X,Y ]| for the oblique edge e = x11x21.

Lemma 13. Let e be an oblique edge, then n(e) =

{
6q − 2, if q ≤ p;
6p− 2, if q > p.
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Proof. We need only calculate n(e) for e = x11x21 by the symmetry of
G.

(1) If q ≤ p, then there is no edge in [X,Y ] for t ∈ {q + 1, q + 2, · · · , 2p−
q + 1} and t 6= p + 1, and there are two edges in [X,Y ] for t ∈ {1, 2, · · · , q}∪
{2p− q + 2, 2p− q + 3, · · · , 2p} from Cases I-IV above.

For t = p + 1, if p is even, then D < 0 if and only if r ≡ 2, 3(mod4); and
if p is odd, then D < 0 if and only if r ≡ 1, 0(mod4), from Case V above.

So, n(e) = 2(q + (q − 1)) + 2q = 6q − 2.
(2) If q > p, then there are two edges in [X,Y ] for t ∈ {1, 2, · · · , p}∪{p+

2, p + 3, · · · , 2p} from Cases I-IV above.
For t = p + 1, by Case V above, we have
(i) p is even.
D < 0 for r ≡ 2, 3(mod4) and r ∈ {1, 2, · · · , 2p−3}∪{4q−2p+6, · · · , 4q};
D < 0 for r = 2p− 2, 2p− 1;
D > 0 for r = 2p, 2p + 1, · · · , 2q + 1;
D < 0 for r = 2q + 2, 2q + 3, · · · , 4q − 2p + 3;
D > 0 for r = 4q − 2p + 4, 4q − 2p + 5.
Then, there are p edges in [X,Y ] when r goes from 1 to 2p, no edge in

[X,Y ] when r goes from 2p to 2q + 1, one edge in [X,Y ] when r goes from
2q + 1 to 2q + 2, no edge in [X,Y ] when r goes from 2q + 2 to 4q − 2p + 3,
one edge in [X,Y ] when r goes from 4q− 2p+3 to 4q− 2p+4, p− 2 edges in
[X,Y ] when r goes from 4q − 2p + 4 to 4p; i.e., there are 2p edges in [X,Y ]
when t = p + 1.

So, n(e) = 2(p + (p− 1)) + 2p = 6p− 2.
(ii) p is odd.
D < 0 for r ≡ 1, 0(mod4) and r ∈ {1, 2, · · · , 2p−3}∪{4q−2p+6, · · · , 4q};
D < 0 for r = 2p− 2, 2p− 1;
D > 0 for r = 2p, 2p + 1, · · · , 2q + 1;
D < 0 for r = 2q + 2, 2q + 3, · · · , 4q − 2p + 3;
D > 0 for r = 4q − 2p + 4, 4q − 2p + 5.
Then, there are p edges in [X,Y ] when r goes from 1 to 2p, no edge in

[X,Y ] when r goes from 2p to 2q + 1, one edge in [X,Y ] when r goes from
2q + 1 to 2q + 2, no edge in [X,Y ] when r goes from 2q + 2 to 4q − 2p + 3,
p − 1 edges in [X,Y ] when r goes from 4q − 2p + 3 to 4p; i.e., there are 2p
edges in [X,Y ] when t = p + 1.

So, n(e) = 2(p + (p− 1)) + 2p = 6p− 2.

Using Lemmas 1,2 and 13, we can give a formula for calculating PI index
of G = Tp,q[C4, C8].

Theorem 3. The PI index of G = Tp,q[C4, C8] is

PI(G) =

{
144p2q2 − 16p2q − 40pq2 + 8pq, if q ≤ p;
144p2q2 − 40p2q − 16pq2 + 8pq, if q ≥ p + 1.
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Proof. Let E1, E2 and E3 be the sets of horizontal edges, vertical edges
and oblique edges, respectively. Then we have |E(G)| = 12pq, and |E1(G)| =
|E2(G)| = E3(G)| = 4pq. By Lemmas 1,2 and 13, we have that

PI(G) = |E(G)|2 − ∑
e∈E(G)

n(e)

= 144p2q2 − ∑
e∈E1

n(e)− ∑
e∈E2

n(e)− ∑
e∈E3

n(e)

=

{
144p2q2 − 16p2q − 40pq2 + 8pq, if q ≤ p;
144p2q2 − 40p2q − 16pq2 + 8pq, if q ≥ p + 1.
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