MATCH

Communications in Mathematical and in Computer Chemistry

ISSN 0340 - 6253

PI indices of tori $T_{p,q}[C_4, C_8]$ covered by C_4 and C_8^1 LIXIN XU Department of Mathematics, Shaoyang College, Shaoyang, Hunan 422004, P.R.China HANYUAN DENG² College of Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan 410081, P. R. China

(Received March 2, 2006)

Abstract

The Padmakar-Ivan (PI) index of a graph G = (V, E) is defined as $PI(G) = \sum_{e \in E} (n_u(e) + n_v(e))$, where e = uv, $n_u(e)$ is the number of edges of G lying closer to u than to v and $n_v(e)$ is the number of edges of G lying closer to v than to u. In this paper, a formula for calculating the PI index of a torus $T_{p,q}[C_4, C_8]$ is given.

¹Project 10471037 supported by National Natural Science Foundation of China and A Project(05A037) Supported by Scientific Research Fund of Hunan Provincial Education Department.

²Corresponding author:hydeng@hunnu.edu.cn

1 Introduction

Since the Wiener index was introduced by Wiener [1] in the study of paraffin boiling points, many topological indices have been designed [2]. Such a proliferation is still going on and is becoming counter productive. In 1990s, Gutman [3] and coworkers [4] introduced a generalization of the Wiener index (W) for cyclic graphs called Szeged index (Sz). The main advantage of the Szeged index is that it is a modification of W; otherwise, it coincides with the Wiener index. In [5,6] another topological index was introduced and it was named Padmakar-Ivan index, abbreviated as PI. This new topological index, PI, does not coincide with the Wiener index. Deng [9,10] gave the formulas for calculating the PI indices of $TUVC_6[2p, q]$ and catacondensed hexagonal systems and characterized the extremal catacondensed hexagonal systems with the minimum or maximum PI index. Ashrafi and Loghman [11] computed the PI index of zig-zag polyhex nanotubes.

The primary aim of this article is to introduce the method for calculation of PI index for a torus covering by C_4 and C_8 . Our notations are mainly taken from [7,8]. Throughout this paper $G = T_{p,q}[C_4, C_8]$ denotes a torus covering by C_4 and C_8 with 2q rows and 2p columns in its cutting, see Figure 1.

2 The definition of PI index

Let G be a connected and undirected graph without multiple edges or loops. By V(G) and E(G) we denote the vertex and edge sets, respectively, of G.

If G' = (V', E') is a subgraph of G = (V, E) and contains all the edges of G that join two vertices in V', i.e., E' is the set of edges between vertices of V', then G' is an induced subgraph of G by V' and is denoted by G[V'].

Let e = xy be an edge of G, X is the subset of vertices which are closer to x than y and Y is the subset of vertices which are closer to y than x in V(G), i.e.,

$$X = \{v | v \in V(G), d_G(x, v) < d_G(y, v)\}$$
$$Y = \{v | v \in V(G), d_G(y, v) < d_G(x, v)\}$$

where $d_G(u, v)$ denotes the distance between vertices u and v of G. Let $G[X] = (X, E_1)$ and $G[Y] = (Y, E_2)$, $n_1(e) = |E_1|$, $n_2(e) = |E_2|$, here $n_1(e)$ is the number of edges nearer to x than y and $n_2(e)$ is the number of edges nearer to y than x.

Then the PI index of G is defined as

$$PI(G) = \sum_{e \in E(G)} [n_1(e) + n_2(e)]$$

Figure 1. (a) a cutting of $G = T_{4,2}[C_4, C_8]$; (b) side view; (c) top view.

In all cases of cyclic graphs, there are edges equidistant to the both ends of the edges. Such edges are not taken into account. Let [X, Y] denote the subset of edges between X and Y, n(e) = |[X, Y]|. Then $n(e) = |E(G)| - (n_1(e) + n_2(e))$ is the number of edges equidistant to the both ends of e for a bipartite connected graph G (It includes the current edge e in n(e)). And

$$PI(G) = |E(G)|^2 - \sum_{e \in E(G)} n(e)$$

Therefore, for computing the PI index of a bipartite connected graph G, it is enough to calculate n(e) for each $e \in E(G)$.

For the horizontal and vertical edges, we can observe the following results by the symmetry of the tori $T_{p,q}[C_4, C_8]$

Lemma 1. Let e be any horizontal edge in $G = T_{p,q}[C_4, C_8]$, then n(e) = 4q.

Proof. Let *e* be any horizontal edge between columns j and j+1 in $G = T_{p,q}[C_4, C_8]$, $1 \le j \le 2p$, where $2p + 1 \equiv 1(mod2p)$. Then all the edges equidistant to the both ends of *e* are the edges between columns j and j+1 or between columns p+j and p+j+1. So, n(e) = 4q.

Lemma 2. Let *e* be any vertical edge in $G = T_{p,q}[C_4, C_8]$, then n(e) = 4p. **Proof.** Let *e* be any vertical edge between rows i and i+1 in $G = T_{p,q}[C_4, C_8]$, $1 \le i \le 4q$, where $4q + 1 \equiv 1(mod4q)$. Then all the edges equidistant to the both ends of *e* are the edges between rows i and i+1 or between rows 2q+i and 2q+i+1. So, n(e) = 4p.

To calculating n(e) for the oblique edges e, we need only calculate n(e) for $e = x_{11}x_{21}$ by the symmetry of $G = T_{p,q}[C_4, C_8]$.

3 The distances in $G = T_{p,q}[C_4, C_8]$

For $e = x_{11}x_{21}$, we will give a formula for calculating the distances from x_{11} (or x_{21}) in the following, and find the subset X of vertices of V(G) which are closer to x_{11} than x_{21} and the subset Y of vertices which are closer to x_{21} than x_{11} .

We first consider four graphs G_1 , G_2 , G_3 and G_4 , where G_1 is obtaining from $G = T_{p,q}[C_4, C_8]$ by deleting the horizontal edges between columns 1 and 2p and the vertical edges between rows 1 and 4q (see Figure 2), G_2 is obtaining from $G = T_{p,q}[C_4, C_8]$ by deleting the horizontal edges between columns 1 and 2 and the vertical edges between rows 1 and 4q, G_3 is obtaining from $G = T_{p,q}[C_4, C_8]$ by deleting the horizontal edges between columns 1 and 2p and the vertical edges between rows 3 and 4, G_4 is obtaining from $G = T_{p,q}[C_4, C_8]$ by deleting the horizontal edges between columns 1 and 2 and the vertical edges between rows 3 and 4. And the distances from x_{11} (or x_{21}) in G is the minimum of the ones in G_1 , G_2 , G_3 and G_4 .

Figure 2. Some distances from the vertex x_{11} in G_1, G_2, G_3 and G_4 , where p=7 and q=4.

	Г	able	e 1.	The	e va	lues	s of	$d_1($	x_{11}, x_{11}	$c_{rt})$ –	- t.	
	1	2	3	4	5	6	7	8	9	10	11	12
1	-1	-1	1	1	3	3	5	5	7	7	9	9
2	0	0	0	2	2	4	4	6	6	8	8	10
3	1	1	1	3	3	5	5	7	7	9	9	11
4	2	2	2	2	4	4	6	6	8	8	10	10
5	3	3	3	3	5	5	7	7	9	9	11	11
6	4	4	4	4	4	6	6	8	8	10	10	12
7	5	5	5	5	5	7	7	9	9	11	11	13
8	6	6	6	6	6	6	8	8	10	10	12	12
9	7	7	7	7	7	7	9	9	11	11	13	13

Now, we calculate the distances from x_{11} in G_1 as showing in Figure 2. And Table 1 lists the values of $d_1(x_{11}, x_{rt}) - t$, where $d_1(x_{11}, x_{rt})$ is the distance between x_{11} and x_{rt} in G_1 .

From Table 1, we can see that

$$d_1(x_{11}, x_{rt}) - t = \begin{cases} r-2, & 1 \le t \le \left[\frac{r}{2}\right] + 2; \\ 2\left[\frac{2t+r+1}{4}\right] - 3, & t \ge \left[\frac{r}{2}\right] + 3 \text{ and } r \text{ is odd}; \\ 2\left[\frac{2t+r+2}{4}\right] - 2, & t \ge \left[\frac{r}{2}\right] + 3 \text{ and } r \text{ is even} \end{cases}$$

where [x] denotes the maximum integer not larger than x over all the paper. So, we have

Lemma 3.
$$d_1(x_{11}, x_{rt}) = t + \begin{cases} r-2, & 1 \le t \le \left[\frac{r}{2}\right] + 2; \\ 2\left[\frac{2t+r+1}{4}\right] - 3, & t \ge \left[\frac{r}{2}\right] + 3 \text{ and } r \text{ is odd}; \\ 2\left[\frac{2t+r-2}{4}\right] - 2, & t \ge \left[\frac{r}{2}\right] + 3 \text{ and } r \text{ is even.} \end{cases}$$

Lemma 3 can be easily proved by the inductive method on t, we omit here.

	T	abit	5 4.	T 11	e va	arue	5 01	$u_2(x$	$_{11}, x$	rt') —	ι.	
	1	2	3	4	5	6	7	8	9	10	11	12
1	-1	1	1	3	3	5	5	7	7	9	9	11
2	0	0	2	2	4	4	6	6	8	8	10	10
3	1	1	3	3	5	5	7	7	9	9	11	11
4	2	2	2	4	4	6	6	8	8	10	10	12
5	3	3	3	5	5	7	7	9	9	11	11	13
6	4	4	4	4	6	6	8	8	10	10	12	12
7	5	5	5	5	7	7	9	9	11	11	13	13
8	6	6	6	6	6	8	8	10	10	12	12	14
9	7	7	7	7	7	9	9	11	11	13	13	15

Table 2. The values of $d_2(x_{11}, x_{rt'}) - t'$.

Similarly, we calculate the distances from x_{11} in G_2 as showing in Figure 2. And Table 2 lists the values of $d_2(x_{11}, x_{rt'}) - t'$, where $d_2(x_{11}, x_{rt'})$ is the distance between x_{11} and $x_{rt'}$ in G_2 and

$$t' = \left\{ \begin{array}{ll} 1, & t=1\\ 2p+2-t, & t\geq 2 \end{array} \right.$$

From Table 2, we can see that

$$d_2(x_{11}, x_{rt'}) - t' = \begin{cases} r - 2, & 1 \le t' \le \left[\frac{r}{2}\right] + 1; \\ 2\left[\frac{2t' + r}{4}\right] - 1, & t' \ge \left[\frac{r}{2}\right] + 2 \text{ and } r \text{ is odd}; \\ 2\left[\frac{2t' + r}{4}\right] - 2, & t' \ge \left[\frac{r}{2}\right] + 2 \text{ and } r \text{ is even} \end{cases}$$

So, we have

Lemma 4.
$$d_2(x_{11}, x_{rt'}) = t' + \begin{cases} r-2, & 1 \le t' \le \lfloor \frac{r}{2} \rfloor + 1; \\ 2\lfloor \frac{2t'+r}{4} \rfloor - 1, & t' \ge \lfloor \frac{r}{2} \rfloor + 2 \text{ and } r \text{ is odd}; \\ 2\lfloor \frac{2t'+r}{4} \rfloor - 2, & t' \ge \lfloor \frac{r}{2} \rfloor + 2 \text{ and } r \text{ is even} \end{cases}$$

Table 3. The values of $d_3(x_{11}, x_{r't}) - t$.

_												
	1	2	3	4	5	6	7	8	9	10	11	12
1	-1	-1	1	1	3	3	5	5	7	7	9	9
2	0	0	2	2	4	4	6	6	8	8	10	10
3	1	1	1	3	3	5	5	7	7	9	9	11
4	2	2	2	4	4	6	6	8	8	10	10	12
5	3	3	3	3	5	5	7	7	9	9	11	11
6	4	4	4	4	6	6	8	8	10	10	12	12
7	5	5	5	5	5	7	7	9	9	11	11	13
8	6	6	6	6	6	8	8	10	10	12	12	14
9	7	7	7	7	7	7	9	9	11	11	13	13

From Table 3, we can see the values of $d_3(x_{11}, x_{r't}) - t$

$$d_3(x_{11}, x_{r't}) - t = \begin{cases} r' - 2, & 1 \le t \le \left[\frac{r' - 1}{2}\right] + 2; \\ 2\left[\frac{2t + r' + 1}{4}\right] - 3, & t \ge \left[\frac{r' - 1}{2}\right] + 3 \text{ and } r' \text{ is odd}; \\ 2\left[\frac{2t + r'}{4}\right] - 2, & t \ge \left[\frac{r' - 1}{2}\right] + 3 \text{ and } r' \text{ is even} \end{cases}$$

where $d_3(x_{11}, x_{r't})$ is the distance between x_{11} and $x_{r't}$ in G_3 , and

$$r' = \begin{cases} 1, & r = 1\\ 4q + 2 - r, & r \ge 2 \end{cases}$$

So, we have

Lemma 5. $d_3(x_{11}, x_{r't}) = t + \begin{cases} r'-2, & 1 \le t \le \left[\frac{r'-1}{2}\right]+2; \\ 2\left[\frac{2t+r'+1}{4}\right]-3, & t \ge \left[\frac{r'-1}{2}\right]+3 \text{ and } r' \text{ is odd}; \\ 2\left[\frac{2t+r'}{4}\right]-2, & t \ge \left[\frac{r'-1}{2}\right]+3 \text{ and } r' \text{ is even.} \end{cases}$

	1	abr	e 4.	11	ie v	arue	\$ 01	$u_4(x_{11}, x_{r't'}) - \iota$.					
	1	2	3	4	5	6	7	8	9	10	11	12	
1	-1	1	1	3	3	5	5	7	7	9	9	11	
2	0	2	2	4	4	6	6	8	8	10	10	12	
3	1	1	3	3	5	5	7	7	9	9	11	11	
4	2	2	4	4	6	6	8	8	10	10	12	12	
5	3	3	3	5	5	7	7	9	9	11	11	13	
6	4	4	4	6	6	8	8	10	10	12	12	14	
7	5	5	5	5	7	7	9	9	11	11	13	13	
8	6	6	6	6	8	8	10	10	12	12	14	14	
9	7	7	7	7	7	9	9	11	11	13	13	15	

Table 4 The values of $d_4(r_{11}, r_{-tt}) - t'$

From Table 4, we can see the values of $d_4(x_{11}, x_{r't'}) - t'$

$$d_4(x_{11}, x_{r't'}) - t' = \begin{cases} r' - 2, & 1 \le t' \le \left[\frac{r' - 1}{2}\right] + 1; \\ 2\left[\frac{2t' + r'}{4}\right] - 1, & t' \ge \left[\frac{r' - 1}{2}\right] + 2 \text{ and } r' \text{ is odd}; \\ 2\left[\frac{2t' + r' - 2}{4}\right], & t' \ge \left[\frac{r' - 1}{2}\right] + 2 \text{ and } r' \text{ is even} \end{cases}$$

where $d_4(x_{11}, x_{r't'})$ is the distance between x_{11} and $x_{r't'}$ in G_4 . So, we have

Lemma 6.
$$d_4(x_{11}, x_{r't'}) = t' + \begin{cases} r'-2, & 1 \le t' \le \left[\frac{r'-1}{2}\right] + 1; \\ 2\left[\frac{2t'+r'}{4}\right] - 1, & t' \ge \left[\frac{r'-1}{2}\right] + 2 \text{ and } r' \text{ is odd}; \\ 2\left[\frac{2t'+r'-2}{4}\right], & t' \ge \left[\frac{r'-1}{2}\right] + 2 \text{ and } r' \text{ is even.} \end{cases}$$

Since the vertices x_{rt} in G_1 , $x_{rt'}$ in G_2 , $x_{r't}$ in G_3 and $x_{r't'}$ in G_4 are identical, we have

Lemma 7. (i) If t = 1, then $d_1(x_{11}, x_{rt}) = d_2(x_{11}, x_{rt'})$ and $d_3(x_{11}, x_{r't}) =$ $d_4(x_{11}, x_{r't'});$ (ii) If $2 \le t \le p+1$, then $d_1(x_{11}, x_{rt}) \le d_2(x_{11}, x_{rt'})$ and $d_3(x_{11}, x_{r't}) \le d_2(x_{11}, x_{rt'})$ $d_4(x_{11}, x_{r't'});$ (iii) If $p + 2 \le t \le 2p$, then $d_1(x_{11}, x_{rt}) \ge d_2(x_{11}, x_{rt'})$ and $d_3(x_{11}, x_{r't}) \ge d_2(x_{11}, x_{rt'})$ $d_4(x_{11}, x_{r't'});$ (iv) If r = 1, then $d_1(x_{11}, x_{rt}) = d_3(x_{11}, x_{r't})$ and $d_2(x_{11}, x_{rt'}) = d_4(x_{11}, x_{r't'})$; (v) If $2 \leq r \leq 2q+1$, then $d_1(x_{11}, x_{rt}) \leq d_3(x_{11}, x_{r't})$ and $d_2(x_{11}, x_{rt'}) \leq d_3(x_{11}, x_{rt'})$ $d_4(x_{11}, x_{r't'});$ (vi) If $2q + 2 \le r \le 4q$, then $d_1(x_{11}, x_{rt}) \ge d_3(x_{11}, x_{r't})$ and $d_2(x_{11}, x_{rt'}) \ge d_3(x_{11}, x_{rt'})$ $d_4(x_{11}, x_{r't'}).$ **Proof.** (i) It is immediate from Lemmas $3 \sim 6$. (ii) $2 \le t \le p+1$. **Case 1.** $t \ge \left[\frac{r}{2}\right] + 3$. Then $\left[\frac{r}{2}\right] + 3 \le t \le p + 1$ and $\left[\frac{r}{2}\right] \le p - 2$, $t' = 2p + 2 - t \ge p + 1 \ge \left[\frac{r}{2}\right] + 2.$ (a) If r is even, then by Lemmas 3 and 4 $\begin{array}{l} (1) & (1) & (1) & (1) & (1) & (1) & (1) \\ d_2(x_{11}, x_{rt}) & -d_1(x_{11}, x_{rt}) \end{array} = (t' + 2[\frac{2t'+r}{4}] - 2) \\ & = 4p + 4 - 2t + 2([\frac{-2t+r}{4}] - [\frac{2t+r-2}{4}]) \\ & \geq 4p + 4 - 4t \quad (\text{since } [\frac{-2t+r}{4}] - [\frac{2t+r-2}{4}] \geq -t) \end{array}$ > 0.(b) If r is odd, then by Lemmas 3 and 4 $\geq 4p + 6 - 4t > 0.$ **Case 2.** $2 \le t \le \left[\frac{r}{2}\right] + 2$. (a) If $t' < \left[\frac{r}{2}\right] + 1$, then by Lemmas 3 and 4

$$\begin{aligned} d_2(x_{11}, x_{rt'}) - d_1(x_{11}, x_{rt}) &= (r + t' - 2) - (r + t - 2) \\ &= t' - t = 2p + 2 - 2t \ge 0. \end{aligned}$$

 $\begin{array}{l} \text{(b) If } t' \geq [\frac{r}{2}] + 2, \text{ i.e., } 2p + 2 - t \geq [\frac{r}{2}] + 2, \text{ then } t + [\frac{r}{2}] \leq 2p. \\ \text{When } r \text{ is odd, } [\frac{r}{2}] = \frac{r-1}{2}. \text{ And } 2t + r \leq 4p + 1, r - 2t \geq r - 2[\frac{r}{2}] - 4 = -3. \\ \text{By Lemmas } 2 \text{ and } 3, \text{ we have} \\ d_2(x_{11}, x_{rt'}) - d_1(x_{11}, x_{rt}) &= (t' + 2[\frac{2t'+r}{4}] - 1) - (r + t - 2) \\ &= 4p + 5 + 2[\frac{r-2t}{4}] - (2t + r) \\ &\geq 4p + 5 + 2(-1) - (4p + 1) > 0. \\ \text{When } r \text{ is even, } [\frac{r}{2}] = \frac{r}{2}. \text{ And } 2t + r \leq 4p, r - 2t \geq r - 2[\frac{r}{2}] - 4 = -4. \\ \text{By Lemmas } 2 \text{ and } 3, \text{ we have} \\ d_2(x_{11}, x_{rt'}) - d_1(x_{11}, x_{rt}) &= (t' + 2[\frac{2t'+r}{4}] - 2) - (r + t - 2) \\ &= 4p + 4 + 2[\frac{r-2t}{4}] - (2t + r) \\ &\geq 4p + 5 + 2(-1) - 4p > 0. \end{array}$

Instead of r above by r', we can obtain the proof of $d_3(x_{11}, x_{r't}) \leq d_4(x_{11}, x_{r't'})$.

(iii) $p + 2 \le t \le 2p$. Then $2 \le t' = 2p + 2 - t \le p$. **Case 1.** $t' \ge [\frac{r}{2}] + 2$. (a) If r is even, then by Lemmas 3 and 4 $d_1(x_{11}, x_{rt}) - d_2(x_{11}, x_{rt'}) = (t - 2 + 2[\frac{2t + r - 2}{4}]) - (t' - 2 + 2[\frac{2t' + r}{4}])$ $= (2p - t' + 2([\frac{4p + 2 - 2t' + r}{4}]) - (t' - 2 + 2[\frac{2t' + r}{4}]))$ $= 4p + 2 - 2t' + 2([\frac{r - 2t' + 2}{4}] - [\frac{2t' + r}{4}])$ $\ge 4p + 2 - 2t' + 2(t' - 1) \ge 0$. (b) If r is odd, then by Lemmas 3 and 4 $d_1(x_{11}, x_{rt}) - d_2(x_{11}, x_{rt'}) = (t - 3 + 2[\frac{2t + r + 1}{4}]) - (t' - 1 + 2[\frac{2t' + r}{4}])$ $\ge 4p - 2t' + 2(t' - 1) \ge 0$. (b) If r is odd, then by Lemmas 3 and 4 $d_1(x_{11}, x_{rt}) - d_2(x_{11}, x_{rt'}) = (r + t - 2) - (r + t' - 2)$ $\ge 4p - 4t' + 2 > 0$. **Case 2.** $2 \le t' \le [\frac{r}{2}] + 1$. (a) If $t \le [\frac{r}{2}] + 2$, then by Lemmas 3 and 4 $d_1(x_{11}, x_{rt}) - d_2(x_{11}, x_{rt'}) = (r + t - 2) - (r + t' - 2)$ = t - t' = 2p + 2 - 2t' > 0. (b) If $t \ge [\frac{r}{2}] + 3$, then by Lemmas 3 and 4 $d_1(x_{11}, x_{rt}) - d_2(x_{11}, x_{rt'}) = (t - 2 + 2[\frac{2t + r - 2}{4}]) - (r + t' - 2)$ $\ge (t - 2 + 2[\frac{2t + 4}{4}]) - (r + t' - 2)$ = (t + r) - (r + t' - 2) = 2p + 4 - 2t' > 0when r is even; and $d_1(x_{11}, x_{rt}) - d_2(x_{11}, x_{rt'}) = (t - 3 + 2[\frac{2t + r + 1}{4}]) - (r + t' - 2)$ $\ge (t - 2 + 2[\frac{2t + r + 1}{4}]) - (r + t' - 2)$

$$\geq (t - 3 + 2[\frac{2r+6}{4}]) - (r + t' - 2) \\ \geq (t - 3 + 2(\frac{2r+3}{4})) - (r + t' - 2) \\ > t - t' = 2p + 2 - 2t' > 0$$

when r is odd.

Instead of r above by r', we can obtain the proof of $d_3(x_{11}, x_{r't}) \ge d_4(x_{11}, x_{r't'})$.

Using the same methods as (i),(ii) and (iii), we can prove (iv),(v) and

(vi). We omit these here.

Now by Lemma 7, we can directly give a formula of calculating the distances from x_{11} in $G = T_{p,q}[C_4, C_8]$.

Theorem 1. (i) $d(x_{11}, x_{rt}) = d_1(x_{11}, x_{rt})$ if $1 \le t \le p+1$ and $1 \le r \le 2q+1$; (ii) $d(x_{11}, x_{rt}) = d_2(x_{11}, x_{rt})$ if $p+2 \le t \le 2p$ and $1 \le r \le 2q+1$; (iii) $d(x_{11}, x_{rt}) = d_3(x_{11}, x_{rt})$ if $1 \le t \le p+1$ and $2q+2 \le r \le 4q$; (iv) $d(x_{11}, x_{rt}) = d_4(x_{11}, x_{rt})$ if $p+2 \le t \le 2p$ and $2q+2 \le r \le 4q$.

Next, we consider the distances from x_{21} . Using the same methods as above, we can calculate the distances from x_{21} in G_1, G_2, G_3 and G_4 (see Figure 3).

Figure 3. Some distances from the vertex x_{21} in G_1, G_2, G_3 and G_4 . Table 5. The values of $d_1(x_{21}, x_{rt}) - t$.

	1	2	3	4	5	6	7	8	9	10	11	12
1	0	0	2	2	4	4	6	6	8	8	10	10
2	-1	1	1	3	3	5	5	7	7	9	9	11
3	0	2	2	4	4	6	6	8	8	10	10	12
4	1	1	3	3	5	5	7	7	9	9	11	11
5	2	2	4	4	6	6	8	8	10	10	12	12
6	3	3	3	5	5	7	7	9	9	11	11	13
7	4	4	4	6	6	8	8	10	10	12	12	14
8	5	5	5	5	7	7	9	9	11	11	13	13
9	6	6	6	6	8	8	10	10	12	12	14	14
TT 7			C	-	n 1 1	۲	11 1					

We can see from Table 5 that

$$d_1(x_{21}, x_{rt}) - t = \begin{cases} r - 3, & 1 \le t \le \left[\frac{r}{2}\right];\\ 2\left[\frac{2t + r - 2}{4}\right] - 1, & t \ge \left[\frac{r}{2}\right] + 1 \text{ and } r \text{ is even};\\ 2\left[\frac{2t + r - 3}{4}\right], & t \ge \left[\frac{r}{2}\right] + 1 \text{ and } r \text{ is odd.} \end{cases}$$

So, we have

Lemma 8.
$$d_1(x_{21}, x_{rt}) = t + \begin{cases} r-3, & 1 \le t \le \left[\frac{r}{2}\right];\\ 2\left[\frac{2t+r-2}{4}\right] - 1, & t \ge \left[\frac{r}{2}\right] + 1 \text{ and } r \text{ is even};\\ 2\left[\frac{2t+r-3}{4}\right], & t \ge \left[\frac{r}{2}\right] + 1 \text{ and } r \text{ is odd.} \end{cases}$$

Table 6. The values of $d_2(x_{21}, x_{rt'}) - t'$.

						-	(2 1	, ,,	,			
	1	2	3	4	5	6	7	8	9	10	11	12
1	0	0	0	2	2	4	4	6	6	8	8	10
2	-1	-1	1	1	3	3	5	5	7	7	9	9
3	0	0	2	2	4	4	6	6	8	8	10	10
4	1	1	1	3	3	5	5	7	7	9	9	11
5	2	2	2	4	4	6	6	8	8	10	10	12
6	3	3	3	3	5	5	7	7	9	9	11	11
7	4	4	4	4	6	6	8	8	10	10	12	12
8	5	5	5	5	5	7	7	9	9	11	11	13
9	6	6	6	6	6	8	8	10	10	12	12	14
337			C	m	11	C	1 /	$\langle \rangle$	0)			

We can see from Table 6 that $(r \ge 2)$

$$d_2(x_{21}, x_{rt'}) - t' = \begin{cases} r - 3, & 1 \le t' \le \left[\frac{r}{2}\right] + 1; \\ 2\left[\frac{2t' + r}{4}\right] - 3, & t' \ge \left[\frac{r}{2}\right] + 2 \text{ and } r \text{ is even}; \\ 2\left[\frac{2t' + r - 1}{4}\right] - 2, & t' \ge \left[\frac{r}{2}\right] + 2 \text{ and } r \text{ is odd.} \end{cases}$$

So, we have

Lemma 9. If
$$r = 1$$
, then $d_2(x_{21}, x_{rt'}) = \begin{cases} 0, & t' = 1; \\ t' + 2[\frac{t'}{2}] - 2, & t' \ge 2. \end{cases}$

If
$$r \ge 2$$
, then $d_2(x_{21}, x_{rt'}) = t' + \begin{cases} r-3, & 1 \le t' \le \left[\frac{r}{2}\right] + 1; \\ 2\left[\frac{2t'+r}{4}\right] - 3, & t' \ge \left[\frac{r}{2}\right] + 2 \text{ and } r \text{ is even}; \\ 2\left[\frac{2t'+r-1}{4}\right] - 2, & t' \ge \left[\frac{r}{2}\right] + 2 \text{ and } r \text{ is odd.} \end{cases}$

Tat	ole 7	7. 'I	'he	valu	es	of d	$_{3}(x_{21})$	$, x_{r't}$) - t			
	1	2	3	4	5	6	7	8	9	10	11	12
1	0	0	2	2	4	4	6	6	8	8	10	10
2	1	1	3	3	5	5	7	7	9	9	11	11
3	2	2	2	4	4	6	6	8	8	10	10	12
4	3	3	3	5	5	7	7	9	9	11	11	13
5	4	4	4	4	6	6	8	8	10	10	12	12
6	5	5	5	5	7	7	9	9	11	11	13	13
7	6	6	6	6	6	8	8	10	10	12	12	14
8	7	7	7	7	7	9	9	11	11	13	13	15
9	8	8	8	8	8	8	10	10	12	12	14	14
X X 7			11	1 0		^m	11 7	7				

We can see that from Table 7

$$d_3(x_{21}, x_{r't}) - t = \begin{cases} r' - 1, & 1 \le t \le \left[\frac{r' - 1}{2}\right] + 2; \\ 2\left[\frac{2t + r' + 1}{4}\right] - 2, & t \ge \left[\frac{r' - 1}{2}\right] + 3 \text{ and } r' \text{ is odd}; \\ 2\left[\frac{2t + r'}{4}\right] - 1, & t \ge \left[\frac{r' - 1}{2}\right] + 3 \text{ and } r' \text{ is even.} \end{cases}$$

So, we have

Lemma 10.
$$d_3(x_{21}, x_{r't}) = t + \begin{cases} r' - 1, & 1 \le t \le \left[\frac{r'-1}{2}\right] + 2; \\ 2\left[\frac{2t+r'+1}{4}\right] - 2, & t \ge \left[\frac{r'-1}{2}\right] + 3 \text{ and } r' \text{ is odd}; \\ 2\left[\frac{2t+r'}{4}\right] - 1, & t \ge \left[\frac{r'-1}{2}\right] + 3 \text{ and } r' \text{ is even.} \end{cases}$$

Tat	ble 8	5. 1	ne	van	1 es	or a	$_{4}(x_{2})$	x_{21}, x_r	$_{t'}) -$	ť.		
	1	2	3	4	5	6	7	8	9	10	11	12
1	0	0	0	2	2	4	4	6	6	8	8	10
2	1	1	1	3	3	5	5	7	7	9	9	11
3	2	2	2	2	4	4	6	6	8	8	10	10
4	3	3	3	3	5	5	7	7	9	9	11	11
5	4	4	4	4	4	6	6	8	8	10	10	12
6	5	5	5	5	5	7	7	9	9	11	11	13
7	6	6	6	6	6	6	8	8	10	10	12	12
8	7	7	7	7	7	7	9	9	11	11	13	13
9	8	8	8	8	8	8	8	10	10	12	12	14
Wo	00.0		$a \pm b$	ot f	non	T _c	hlo	0 (m	r > 0)		

Table 8. The values of $d_4(x_{21}, x_{r't'}) - t'$.

We can see that from Table 8 $(r' \ge 2)$

$$d_4(x_{21}, x_{r't'}) - t' = \begin{cases} r' - 1, & 1 \le t' \le \left[\frac{r' - 1}{2}\right] + 3; \\ 2\left[\frac{2t' + r' - 1}{4}\right] - 2, & t' \ge \left[\frac{r' - 1}{2}\right] + 4 \text{ and } r' \text{ is odd}; \\ 2\left[\frac{2t' + r' - 2}{4}\right] - 1, & t' \ge \left[\frac{r' - 1}{2}\right] + 4 \text{ and } r' \text{ is even.} \end{cases}$$

So, we have

Lemma 11. If
$$r' = 1$$
, then $d_4(x_{21}, x_{rt'}) = \begin{cases} 0, & t' = 1; \\ t' + 2[\frac{t'}{2}] - 2, & t' \ge 2. \end{cases}$
If $r' \ge 2$, then $d_4(x_{21}, x_{r't'}) = t' + \begin{cases} r' - 1, & 1 \le t' \le [\frac{r'-1}{2}] + 3; \\ 2[\frac{2t'+r'-1}{4}] - 2, & t' \ge [\frac{r'-1}{2}] + 4 \text{ and } r' \text{ is odd}; \\ 2[\frac{2t'+r'-2}{4}] - 1, & t' \ge [\frac{r'-1}{2}] + 4 \text{ and } r' \text{ is even} \end{cases}$

As in Lemma 7, we can prove the following result by using Lemmas 8 \sim 11

 $\begin{array}{l} \text{Lemma 12. (i)} \text{If } t = 1, \text{ then } d_1(x_{21}, x_{rt}) = d_2(x_{21}, x_{rt'}) \text{ and } d_3(x_{21}, x_{r't}) = \\ d_4(x_{21}, x_{r't'}); \\ (\text{ii) } \text{If } 2 \leq t \leq p, \text{ then } d_1(x_{21}, x_{rt}) \leq d_2(x_{21}, x_{rt'}) \text{ and } d_3(x_{21}, x_{r't}) \leq \\ d_4(x_{21}, x_{r't'}); \\ (\text{iii) } \text{If } p + 1 \leq t \leq 2p, \text{ then } d_1(x_{21}, x_{rt}) \geq d_2(x_{21}, x_{rt'}) \text{ and } d_3(x_{21}, x_{r't}) \geq \\ d_4(x_{21}, x_{r't'}); \\ (\text{iv)} \text{If } r = 1, \text{ then } d_1(x_{21}, x_{rt}) = d_3(x_{21}, x_{r't}) \text{ and } d_2(x_{21}, x_{rt'}) = d_4(x_{21}, x_{r't'}); \\ (\text{v) If } 3 \leq r \leq 2q + 1, \text{ then } d_1(x_{21}, x_{rt}) \leq d_3(x_{21}, x_{r't}) \text{ and } d_2(x_{21}, x_{rt'}) \leq \\ d_4(x_{21}, x_{r't'}); \\ (\text{vi) If } 2q + 2 \leq r \leq 4q, \text{ then } d_1(x_{21}, x_{rt}) \geq d_3(x_{21}, x_{r't}) \text{ and } d_2(x_{21}, x_{rt'}) \geq \\ d_4(x_{21}, x_{r't'}). \end{array}$

And now, we can give a formula of calculating the distances from x_{21} in $G = T_{p,q}[C_4, C_8]$ by Lemma 12.

Theorem 2. (i) $d(x_{21}, x_{rt}) = d_1(x_{21}, x_{rt})$ if $1 \le t \le p$ and $1 \le r \le 2q+1$; (ii) $d(x_{21}, x_{rt}) = d_2(x_{21}, x_{rt})$ if $p+1 \le t \le 2p$ and $1 \le r \le 2q+1$; (iii) $d(x_{21}, x_{rt}) = d_3(x_{21}, x_{rt})$ if $1 \le t \le p$ and $2q+2 \le r \le 4q$; (iv) $d(x_{21}, x_{rt}) = d_4(x_{21}, x_{rt})$ if $p+1 \le t \le 2p$ and $2q+2 \le r \le 4q$.

The methods of calculating $d(x_{11}, x_{rt})$ and $d(x_{21}, x_{rt})$ in Theorems 1 and 2 can be showed in Figure 4.

Figure 4.

4 A formula for calculating PI index of $G = T_{p,q}[C_4, C_8]$

In this section, we first find the subset X of vertices of V(G) which are closer to x_{11} than x_{21} and the subset Y of vertices which are closer to x_{21} than x_{11} in G, and give the formula of calculating n(e) for all oblique edges e. And then we calculate the PI index of $G = T_{p,q}[C_4, C_8]$.

Let $D = d(x_{11}, x_{rt}) - d(x_{21}, x_{rt})$. Then $x_{rt} \in X$ if and only if D < 0. Case I. $1 \le t \le p$ and $1 \le r \le 2q + 1$. By Theorems 1 and 2, we have $D = d_1(x_{11}, x_{rt}) - d_1(x_{21}, x_{rt})$, and (i) D < 0 for $1 \le r \le 2t - 1$; (ii) D > 0 for $2t \le r \le 2q + 1$. Case II. $1 \le t \le p$ and $2q + 2 \le r \le 4q$. By Theorems 1 and 2, we have $D = d_3(x_{11}, x_{r't}) - d_3(x_{21}, x_{r't}) < 0$. Case III. $p + 2 \le t \le 2p$ and $1 \le r \le 2q + 1$. By Theorems 1 and 2, we have $D = d_2(x_{11}, x_{rt'}) - d_2(x_{21}, x_{rt'}) > 0$. Case IV. $p + 2 \le t \le 2p$ and $2q + 2 \le r \le 4q$. By Theorems 1 and 2, we have $D = d_4(x_{11}, x_{r't'}) - d_4(x_{21}, x_{r't'})$, and (i) D < 0 for $2t' - 1 \le r' \le 2q$; (ii) D > 0 for $2 \le r' \le 2t' - 2$. Case V. t = p + 1 (t' = p + 1). (i) $1 \le r \le 2q + 1$. By Theorems 1 and 2, we have $D = d_1(x_{11}, x_{rt}) - d_2(x_{21}, x_{rt'})$.

When
$$1 \le r \le 2p - 3$$
,

$$\begin{cases}
D > 0, & 2p + r \equiv 1(mod4) \text{ and } r \text{ is odd;} \\
D < 0, & 2p + r \equiv 3(mod4) \text{ and } r \text{ is odd;} \\
D > 0, & 2p + r \equiv 0(mod4) \text{ and } r \text{ is even} \\
D < 0, & 2p + r \equiv 2(mod4) \text{ and } r \text{ is even}
\end{cases}$$

 $\begin{array}{l} \text{When } r = 2p-2, 2p-1, \ D < 0. \\ \text{When } r \geq 2p, \ D > 0. \\ \text{(ii) } 2q+2 \leq r \leq 4q. \\ \text{By Theorems 1 and 2, we have } D = d_3(x_{11}, x_{r't}) - d_4(x_{21}, x_{r't'}). \\ \text{When } 2 \leq r' \leq 2p-4 \ (\text{i.e.}, \ 4q-2p+6 \leq r \leq 4q), \\ \begin{cases} D > 0, \ 2p+r' \equiv 1(mod4) \ \text{and } r' \ \text{is odd;} \\ D < 0, \ 2p+r' \equiv 3(mod4) \ \text{and } r' \ \text{is odd;} \\ D > 0, \ 2p+r' \equiv 2(mod4) \ \text{and } r' \ \text{is even;} \\ D < 0, \ 2p+r' \equiv 0(mod4) \ \text{and } r' \ \text{is even;} \\ D < 0, \ 2p+r' \equiv 0(mod4) \ \text{and } r' \ \text{is even;} \\ When \ r' = 2p-3, 2p-2 \ (\text{i.e.}, \ r = 4q-2p+5, 4q-2p+4), \ D > 0. \\ \text{When } 2p-1 \leq r' \leq 2q \ (\text{i.e.}, \ 2q+2 \leq r \leq 4q-2p+3), \ D < 0. \end{array}$

A example for p = 7 and q = 4 is showed in Figure 5, where X is the set of large dots.

Figure 5. Now, we calculate n(e) = |[X, Y]| for the oblique edge $e = x_{11}x_{21}$.

Lemma 13. Let e be an oblique edge, then $n(e) = \begin{cases} 6q - 2, & \text{if } q \le p; \\ 6p - 2, & \text{if } q > p. \end{cases}$

Proof. We need only calculate n(e) for $e = x_{11}x_{21}$ by the symmetry of G.

(1) If $q \leq p$, then there is no edge in [X, Y] for $t \in \{q + 1, q + 2, \dots, 2p - q + 1\}$ and $t \neq p + 1$, and there are two edges in [X, Y] for $t \in \{1, 2, \dots, q\} \cup \{2p - q + 2, 2p - q + 3, \dots, 2p\}$ from Cases I-IV above.

For t = p + 1, if p is even, then D < 0 if and only if $r \equiv 2, 3(mod4)$; and if p is odd, then D < 0 if and only if $r \equiv 1, 0(mod4)$, from Case V above.

So, n(e) = 2(q + (q - 1)) + 2q = 6q - 2.

(2) If q > p, then there are two edges in [X, Y] for $t \in \{1, 2, \dots, p\} \cup \{p + 2, p + 3, \dots, 2p\}$ from Cases I-IV above.

For t = p + 1, by Case V above, we have (i) p is even.

D < 0 for $r \equiv 2, 3 \pmod{4}$ and $r \in \{1, 2, \cdots, 2p-3\} \cup \{4q-2p+6, \cdots, 4q\};$ D < 0 for r = 2p-2, 2p-1;

D > 0 for $r = 2p, 2p + 1, \cdots, 2q + 1;$

D < 0 for $r = 2q + 2, 2q + 3, \cdots, 4q - 2p + 3;$

D > 0 for r = 4q - 2p + 4, 4q - 2p + 5.

Then, there are p edges in [X, Y] when r goes from 1 to 2p, no edge in [X, Y] when r goes from 2p to 2q + 1, one edge in [X, Y] when r goes from 2q + 1 to 2q + 2, no edge in [X, Y] when r goes from 2q + 2 to 4q - 2p + 3, one edge in [X, Y] when r goes from 4q - 2p + 3 to 4q - 2p + 4, p - 2 edges in [X, Y] when r goes from 4q - 2p + 4 to 4p; i.e., there are 2p edges in [X, Y] when t = p + 1.

So, n(e) = 2(p + (p - 1)) + 2p = 6p - 2. (ii) p is odd. D < 0 for $r \equiv 1, 0 \pmod{4}$ and $r \in \{1, 2, \dots, 2p - 3\} \cup \{4q - 2p + 6, \dots, 4q\};$ D < 0 for r = 2p - 2, 2p - 1; D > 0 for $r = 2p, 2p + 1, \dots, 2q + 1;$ D < 0 for $r = 2q + 2, 2q + 3, \dots, 4q - 2p + 3;$ D > 0 for r = 4q - 2p + 4, 4q - 2p + 5.

Then, there are p edges in [X, Y] when r goes from 1 to 2p, no edge in [X, Y] when r goes from 2p to 2q + 1, one edge in [X, Y] when r goes from 2q + 1 to 2q + 2, no edge in [X, Y] when r goes from 2q + 2 to 4q - 2p + 3, p - 1 edges in [X, Y] when r goes from 4q - 2p + 3 to 4p; i.e., there are 2p edges in [X, Y] when t = p + 1.

So, n(e) = 2(p + (p - 1)) + 2p = 6p - 2.

Using Lemmas 1,2 and 13, we can give a formula for calculating PI index of $G = T_{p,q}[C_4, C_8]$.

Theorem 3. The PI index of $G = T_{p,q}[C_4, C_8]$ is

$$PI(G) = \begin{cases} 144p^2q^2 - 16p^2q - 40pq^2 + 8pq, & \text{if } q \le p; \\ 144p^2q^2 - 40p^2q - 16pq^2 + 8pq, & \text{if } q \ge p+1. \end{cases}$$

Proof. Let E_1 , E_2 and E_3 be the sets of horizontal edges, vertical edges and oblique edges, respectively. Then we have |E(G)| = 12pq, and $|E_1(G)| = |E_2(G)| = E_3(G)| = 4pq$. By Lemmas 1,2 and 13, we have that

$$PI(G) = |E(G)|^2 - \sum_{e \in E(G)} n(e)$$

= $144p^2q^2 - \sum_{e \in E_1} n(e) - \sum_{e \in E_2} n(e) - \sum_{e \in E_3} n(e)$
=
$$\begin{cases} 144p^2q^2 - 16p^2q - 40pq^2 + 8pq, & \text{if } q \le p; \\ 144p^2q^2 - 40p^2q - 16pq^2 + 8pq, & \text{if } q \ge p+1. \end{cases}$$

References

- H. WIENER, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69, (1947), 17-20.
- [2] N. TRINAJSTIĆ, Chemical Graph Theory (2nd revised ed.), CRC Press, Boca Raton, FL, 1992.
- [3] I. GUTMAN, A formula for the Wiener number of trees and its extension to graphs containing cycles, *Graph Theory Notes New York 27*, (1994), 9-15.
- [4] P. V. KHADIKAR, N. V. DESHPANDE, P. P. KALE, A. DOBRYNIN, I. GUTMAN AND G. DÖMÖTÖR, The Szeged index and an analogy with the Wiener index, J. Chem. Inform. Comput. Sci. 35, (1995), 547-550.
- [5] P. V. KHADIKAR, P. P. KALE, N. V. DESHPANDE, S. KARMARKAR AND V. K. AGRAWAL, Novel PI indices of hexagonal chains, J. Math. Chem. 29, (2001), 143-150.
- [6] P. V. KHADIKAR, S. KARMARKAR AND V. K. AGRAWAL, A novel PI index and its applications to QSRP/QSAR studies, J. Chem. Inf. Comput. Sci. 41, (2001), 934-949.
- [7] M. V. DIUDEA, I. SILAGEHI-DUMITRESCU, B. PARV, Toranes versus torenes, MATCH Commun. Math. Comput. Chem., 44, (2001), 117-133.
- [8] M. V. DIUDEA, I. SILAGEHI-DUMITRESCU, B. PARV, Toroidal fullerenes from square tiled tori, *Internet Electron. J. Mol. Des.*, 1, (2002), 10-22.
- [9] H. Y. DENG, Extremal catacondensed hexagonal systems with respect to the PI index, MATCH Commun. Math. Comput. Chem., 55, (2006), 453-460.

- [10] H. Y. DENG, The PI index of TUVC₆[2p; q], MATCH Commun. Math. Comput. Chem., 55, (2006), 461-476.
- [11] A. R. ASHRAFI AND A. LOGHMAN, PI index of zig-zag polyhex nanotubes, MATCH Commun. Math. Comput. Chem., 55, (2006), 447-452.