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Abstract

For a connected graph G we denote by d(G, k) the number of vertex pairs at

distance k. The Hosoya polynomial of G is H(G,z) = 3 d(G, k)z*. In this paper,
k>0

we give analytical formulae for calculating this polynomial of zig-zag open-ended
nanotubes, and show it is unimodal. Furthermore, the Wiener index, derived from
the first derivative of the Hosoya polynomial in z = 1, and the hyper-Wiener index,
from a half of the second derivative of the Hosoya polynomial multiplied by z in
x = 1, can be calculated.

1 Introduction

Single-walled nanotubes (briefly denoted SWNTs), one-dimensional carbon allotropes
with remarkable mechanical properties, were discovered by two groups (i.e., lijima’s group
[14] and Bethune’s group [2] from IBM) independently. They have intensive theoretical
and experimental researches [4, 5, 19, 24]. For zig-zag open-ended nanotubes, a partic-
ular class of SWNTSs, John and Diudea [15] have given explicit formulae of their Wiener

indices.

*This work is supported by NSFC (10471058) and TRAPOYT.



The Wiener index of a connected graph G, introduced originally for alkanes by H.
Wiener [23] and denoted by W (G), is defined as the sum of distances between all pairs of
vertices in G [13],

W@ = Y dauv),

{uv}CVv(G)
where dg(u, v) is the distance (i.e. the number of edges in a shortest path) between a pair
of vertices u and v of G. The hyper-Wiener indez is proposed by Randié¢ [20] for trees
and extended by Klein et al. [17] as

1 1 )
WW(G) = 5 > de(uv) + 5 > dg(u,v).
{u,v}CV(G) {uv}CV(G)
If we denote by d(G, k) the number of vertex pairs of G at distance k, then the Wiener

and hyper-Wiener indices of G can also be expressed as [28]:

W(G) = kd(G, k), (1)

k>0

WW(G) = % > k(k+ 1)d(G, k). (2)

k>0

Note that d(G, 0) is the number of vertices of G and d(G, 1) is the number of edges of G.
The Wiener index is one of the oldest graph-based structure descriptors and extensively

studies since the middle of 1970s. For the researches on the Wiener index we can refer to

two special issues [9, 10] and references therein, whereas chemical applications and the

computation of the hyper-Wiener index are referred to [1, 18, 20].

The following polynomial associated with a connected graph G
H(G,z) =Y d(G, k)z"
k>0
was introduced by Hosoya [12] and was called the Wiener polynomial because (by Eq.
(1)) the Wiener index W(G) is equal to the first derivative of the polynomial in x = 1:

WE) = ngli,x)

®3)

;r:l'
Recently this polynomial was called Hosoya polynomial in the literature in honor of
Hosoya. Similar to Eq. (3), from Eq. (2), the following relation holds:

_ ldz(xH(G,z))

WW(G) 3 02

(4)

z:l‘
The Hosoya polynomial has many applications. Firstly, analogous to Eq. (3), we

can consider higher derivatives of the Hosoya polynomial in z = 1(In Ref. [6] they are
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Fig. 1. A zig-zag open-ended nanotube T'(p,q) with p = 5,¢ = 5 and its two vertices v
and wy. Note that the vertices with the same label are identified.

called “extended Wiener indices”), which may have some chemical applicability [6, 16].
Secondly, the Hosoya polynomial contains more information about distance in a graph
than any of the hitherto proposed distance-based topological indices, not only these, but
some celebrated topological indices of a graph often can be obtained directly from its
Hosoya polynomial, such as the Wiener index and the hyper-Wiener index. In view of
these it is imaginable that the Hosoya polynomial and the quantities derived from it will
play a significant role in QSAR/QSPR studies. Therefore, abundant literature appeared
on this topic for the theoretical consideration [7, 8] and computation [3, 11, 22, 25, 26].
In this paper, we focus on zig-zag open-ended nanotubes, proposing a recursive method
for calculating the Hosoya polynomial H in the corresponding graph. By means of this
method, explicit expressions for H are obtained (e.g. Theorem 3.1). Furthermore, we
show that the coefficients of H are unimodal. Finally, according to relations (3) and
(4) we give closed formulae for the Wiener index and the hyper-Wiener index of zig-zag

open-ended nanotubes.

2 Some Lemmas about distance in tubules

A zig-zag open-ended nanotube (or tubule) is a finite section of a polyhex cylinder, de-
scribed by two parameters p and ¢, denoted as T'(p,q) [15], and drawn in the plane
(equipped with the regular hexagonal lattice L) using the representation of the cylinder
by a rectangular R with the vertical boundary identification (see Fig. 1): The bottom
side Lz and the top side L4 are all perpendicular to the vertical edge-direction of L such
that L3 connects the centers of two hexagons of L and passes through p edges, while
L4 connects the centers of either two hexagons or two vertical edges such that there are
q vertices on a vertical side Ly (or Ly). Then, identify points of opposite positions on

vertical sides Ly and Ly. Note that T'(p, q) are bipartite, its vertices can be colored such
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that every vertical edge connects a white top vertex with a black bottom vertex. For
convenience, we denote by layer 0,1,---,¢ — 1 horizontal zig-zag lines in T'(p,q) from
bottom to top, respectively. In fact, for every k, the layer k corresponds to a cycle of
length 2p, denoted by Cj, = vg gv1 k- - - Vap—1,£V0,k- TWo specific vertices, vy and wy of layer
0, one vertex being white and the other black, are shown in Fig. 1.

Let G; be a connected subgraph of a graph G. Then dg, (u, v) > dg(u,v) for any pair
of vertices u and v of the graph. G; is a convez subgraph of G if any shortest path of G

joining two vertices of Gy is already in G;. Hence if G is convex, dg, (u,v) = dg(u,v).

Lemma 2.1 ([27]). For any integer r with 1 < r < q—1, T(p,r) is convezx in T (p,q).

For convenience, for nonnegative integers m, n and s, we define 3 sequences as follows:

m, /,n:=(m,m+1--- n); (m<n)

m,\,n = (mm-—1--- n); (m >=n)
2s terms

m, e~ 28, m =T, n,m,n, - ,m,n; (m #n)

For a vertex v of T(p,q), we denote by Spq(k;v) the cyclic permutation of the
sequence (dr(p.q)(Vik, U))Ogigzn—l'
Lemma 2.2 ([27]).

Spom (i) = {2/ D RN 2k oo 282K 1), Ok <p— %)
Teol% 0= (2k, e 2p, 2k + 1) p—1<k<qg—1

By Lemma 2.1 and the structure of T'(p, q),
T(p,q—1) can be considered as a convex subgraph of T(p, q)
induced by layers 1,2,--- ,q — 1.
By () and Lemma 2.2, we have

Lemma 2.3.

(0,7, p, N\, 1), k=0
Strp)(k;wo) = 2k =1, /7, p 4k, N\, 2k — 1, e 2k — 2,2k), 0 <k <p;

3 Main results

In this section, we give our main results—Theorems 3.1 and 3.5. In the first theorem we
present the explicit expression for the Hosoya polynomial of T'(p,q). The proof of the
theorem will be given in the next section. The second result shows that the polynomial

is unimodal.
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Theorem 3.1. (1) If ¢ <&,

2q—1 p—1 pt+q—1

H(T(p,q),z) =2pq+p Z(f’i2 + 3qi)z’ + 2pq® Z o' 4 pg(2g — 1)aP +2p Z (p+q—i).
i=1 i=2q i=p+1
(6)
(2) If 5 <q<p,
p—1
H(T(p,q), %) = 2pq +p »_ (=" + 3qi)a’ + p(3pq — p* — q)a*
i=1
2q—1 ptg—1
+p Z (20 + 4pq + i* — 4pi — qi)x’ + 2p Z (p+q—9)%" (7)
i=p+1 i=2q
(3). Ifg=p+1,
p—1
H(T(p,q),x) = 2pq +p y_ (=i + 3qi)a" + p(3pg — p* — q)”
i=1
2p—1 2q—1
+p Z (2p® + dpq + i — 4dpi — qi)z’ + p? Z (2q — i)z’ (8)
i=p+1 i=2p
Corollary 3.2.
2g—1
(i) H(T(1,q),x) = H(Py,x) = Y (20— i)a’.
i=0
p—1
(it) H(T(p,1),z) = H(Cyp,x) = 2p »_ 2" + pa’.
i=0

Taking the derivatives of the Eqgs. (6)-(8) and setting z = 1 it results in the Wiener
index of T'(p, q) according to Eq. (3), which are consistent with Eqgs. (9) and (10) of [15].

Corollary 3.3 ([15]). In the case of short tubes, i.e. 0 < ¢ < p,

W(T(p.a)) = Bll6p*a + (4p + a)(a” — 1))

While in the case of long tubes, i.e. p < q,

W(T(p,q)) = %ﬁ[}ﬂ@ —p) +q(8¢° — 6) + p].

Analogously, according to Eq. (4) we obtain the hyper-Wiener index of T'(p, q).



Corollary 3.4. In the case of short tubes, i.e. 0 < g < p,
pq
WW(T(p,q) = 15 [2pa(2p+1) (+1)+2p9(a+1)° = (2p+1)*+(2pg—1)*+a(’ ~ 1) (24+1)];

While in the case of long tubes, i.e. p < q,

WW(T(p,q)) = ﬁHJ(]JZ —1D(2p+1) +2q(p° — 1)Bp +2) + 2¢(q¢ + 1)(4¢> — 1)].

12
We say a sequence (a;);>o is unimodal if, for some index k,

ag L ay K- <A 2 Apy 2 Qg2 = 0

Unimodal sequences appear in many areas of mathematics. For a survey, see Stanley’s

article [21].
Theorem 3.5. The coefficients of H(T(p,q),x) are unimodal.

Proof. Let ag = 2pq, a; = p(—i* + 3qi) for i > 1. Then the sequence (a;);>o is unimodal.
It is obvious that the sequences (p(2p2+4pq+i2—4pi—qi))p+1@<2p, (2p(p+q_i)2)1<i§p+qfl
and (p?(2¢—1)) ap<i<aq_1 A€ all monotone decreasing. In the following we distinguish two

cases.

Case 1. ¢ < §. Since we have the following relation:
p(=(20)* + 34 - 2q) = 2pg® > pa(2q — 1) > 2p(p + ¢ — (p + 1)),
the assertion holds.

Case 2. ¢ > 5. Since

p(—=p” + 3qp) > p(3pq — p* — q) > p(20° + 4pq + (p+1)° —4p(p +1) — q(p + 1)),

(29" + 4pq + (20)* — 4p(2q) — a(29)) = 2p(p + g — 29)°
and
p(20” + 4pq + (2p)* — 4p(2p) — q(2p)) = p*(2q — 2p),
the assertion holds according to Egs. (7) and (8). O

Fig. 2 illustrates the transformation of the coefficients of H(T(p, q), x).
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Fig. 2. The coefficients of H(T(p,q), x) for three cases: (a) p =29,q =12; (b) p=35,q =
23 and (c) p = 26,q = 32.

4 Proof of Theorem 3.1

In this section, we prove Theorem 3.1, i.e. calculate H(T(p,q),z). For convenience, we
denote by H(p, g, z) the Hosoya polynomial of T'(p, ¢). We first consider the corresponding

difference polynomial:
AH(]hqr‘(I;) = H(p7(I7‘(I;) - H(p/q - 1/7")
For convenience we set AH(p,1,z) = H(p, 1, z).

Lemma 4.1. .

H(p.q.x) = Y AH(p, j. ).

j=1

From the above lemma, our aim is changed into calculating AH (p, q,x). By (%), if
AH(p,q,x) = Z apz®, then a; is the number of vertex pairs {w, v} of T(p,q) lying at
distance k such thdt either w or v belongs to layer 0. By the structure of T'(p,q), the
status of all p white vertices in layer 0 are equivalent, as well all p black vertices in layer

0. So, if we define
di(v) = {u € T(p, ldrp.g) (v, u) = 1}
for nonnegative integer 7 and a vertex v, then we get (Note that vg and uy are a white

vertex and a black one in layer 0 respectively.)

Lemma 4.2.

AH(p,q,x) =p Y (di(vo) + di(wo))x" — H(Cop, ) + 2p.

20

In the following we discuss the value of d;(vy). Note first that if layer & has a contri-

bution to d;(vp), by Lemma 2.2, then k must satisfy:



- 450 -

)ifk<p—1,then2k<i<p+k,ie

k<p71andifp§k<%, 9)

and layer k& has the contribution 1, % + 2 and % + 1 to d;(vo) when k =i — p, % and %
respectively, otherwise 2 to d;(vg), or

(ii) if k > p—1, then 2k <@ <2k + 1, d.e.

1 )
k}p—landl—gkéﬁ, (10)
2 2
and layer & has contribution p to d;(vp).
We distinguish the following cases in discussing the value of d;(vy) (Note that k < g—1).

Case 1. 0 < i < p.

Subcase 1.1. 1 is odd. By relations (9) and (10), 0 < k < ‘F(<p—1).
Subsubcase 1.1.1. i < 2q — 1. Then % <¢q—1. By (i),
=i 3i+1
i— i
dm@:;;mwQ +2)=——.

Subsubcase 1.1.2. i > 2q + 1. Then =t > ¢ — 1. By (i),

q—1

di(vo) =) 2 =2q.

k=0
Subcase 1.2. i is even. By analogy to Subcase 1.1, we have
T+1, <2 -2
(0, = 2 ’ ’
di(vo) { 2q, i>2q.
Similar to Case 1, we have

Case 2. p <i<2(p—1).

2p - [5], i<2q-1;
di(vo) =< 2(p+q—i)—1, 2¢<i<p+q-—1;
0, ptq<i.

Case 3. 2p — 1 < i.

p, 1<2¢—1;
Mm:{&i}%

Tidy up the above discussions, we obtain
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Lemma 4.3. (1) If ¢ < 8,

13i) +1, 0<i<2—1;

2q, 2g<i<p—1;
di(’UU): . .

2p+q—1)—1, p<i<p+q-1;

0, pt+g<i

(2)If§<q<p,
[3] +1, 0<ig<p—1
— 47, <i< 29—

difw) =4 P-Tal o pSi<2l

2p+q—i)—1, 2g<i<p+q—1

0, pt+q<i

(3) Ifp+1<q, [
3] +1, 0<i<p-1;

2 =[], p<i<2—1;

di(vﬂ): ,p [2—‘ ]29,\< \<]2) —1:
D, Pt 4q )
0, 2q < i.

By Lemma 2.3, similar to the discussion of d;(vg), we obtain

Lemma 4.4. (1) If ¢ <&,

[3i] +1, 0<i<2¢ -2
, _ ) 2q 2-1<i<p—1;
E0) =0 2t q—i)-1, p<i<pra-1
0, p+qg<i.
(2) If 5 <q<p,
[3i]+1, 0<i<p-—-1
_ ) w15l p<i<2-2;
di(wo) = 2p+q—i) =1, 2¢-1<i<p+qg—1;
(3) Ifp+1<q,
[3]+1, 0<i<p—1;
= d 2Ll p<i<-
dilwo) =\ 2 <i<2-2
0, 2 —1<i.
p=1
By the previous three lemmas, we obtain (Note that H(Cop,z) =2p Y z* + paP)
=0
Lemma 4.5. (1) If ¢ <&,
2q—2 p—1
AH(p,q,x) =2p+3p Y iz’ +p(5g —3)2* " +2p Y (2 — 1)a’ + p(dg — 3)a”
i=1 i=2q
pta—1

+2p Y (2p+2¢—2i—1)a'.

i=p+1
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(2) If§ <q<p,

p—1 2q—2
AH(p,q,x) =2p+3pY iz +p@Bp—1)a”+p Y (4p— i)z’ +p(dp — 3 + 1)z
=1 i=p+1
pHa—1 »
+2p ) (2p+2¢—2i — 1)
i=2q
(3) Ifp+1<q
p—1 2p—1 2q—2
AH(p,q, )—2p+3p22x +p@Bp -1 +p Z (4p — )2 +2p22x + pPa?r Tt
i=1 i=p+1 i=2p

Proof of Theorem 3.1. According to Lemma 4.5 we distinguish here three cases.

Case 1. ¢ < %

)

q

H(p.q.x) = Y AH(p, j.x)

j=1
q 2j-2 q p-1
= 2pq+3pz Z i’ +pz 227! +2pz Z(Zj — 1)t
J=1 i=1 j=11i=2j
q ptj—1
+pz (45 — 3)a? +2pz Z (2p+2j —2i — 1)a°
j=1 i=p+1
22 2-1 5 1 21 .
*qu+3p2q—(]wc +pz z—fx+2p<z +Zq )
i odd =
ptg—1
+pg2g—1)a”+2p Y (p+gq—i)x
i=p+1
2q—-1 p—1 ptq—1
=2pg+p Y (=% +3qi)a’ +2p¢* Y @' +pa(2g — 2P +2p Y (p+q— i)
i=1 i=2q i=p+l

Case 2. § < q < p. We distinguish two subcases to discuss according to the parity of

p. Firstly, if p is even,

H(p,q;x ZAH P,

:iAH(pJ,x)Jr > AH(p,j.x)
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q p-1 q 2j-2

_ P P i P ,
= H(p, 5. %) +2p(q = 5) +3p Z > i +p(Bp—1)(g = 5)a" +p Z D =i
j=E+1 i=1 j=B4+1i=p+1
q ptj-1
+p Z p—3j+1)2™ " +2p > > (2p+2j—2i— )2’
j=%+1 j=8+1 i=2j
! 3pi 3 ! P
:(p2+p2(*i2+7)$1+(5**$p+2pz +2P(Q*§)
3 ptl
p p—1 » 2q—2 i
+3plg = 35) D' +pBp = D(a = 52" +p 3 (g = [51)(Ap - i)’
i=1 i=p+1
2¢-1 3 1 Sr-1 p. 5 ptg—1
+p Y = i- et 2( Y (- H)Gp+a— 202"+ Z (q+p—i)s
i=p+1 i=p+1 17217
i odd
2 i i
=2 a—5hE@p+a+ 5] -20x)
i=p+1
p—1 sp-1
=2pq+pY (=i +3qi)a" +p(3pg —p* — )" +2p Y (q+p—i)x
i=1 i=p+1
ptq—1 ) 2q )
+2p Y (g+p—i) ' +p Y (i—q)(2q— i)’
i:%p i=p+1
p—1

=2pq+py_(=i* +3qi)’ + p(3pqg — p* — q)a?

i=1

2q—1 p+q—1
+p Z (2p® + 4pq + i* — 4pi — qi)x' + 2p Z (q+p—1i)
i=p+1 i=2q

Second, if p is odd, we can obtain the same result as above.

Case 8. p+1<q

M=

H(p,q,2) =) AH(p,j,x)
j=1
P
=Y AH(pjx Z AH(p,j,x
J=1 Jj=p+1

q
=H(p.p,x)+2p(q—p +3pZZm +p(3p —1)(q — p)a?
j=p+1 i=1
q 2p—1 q 2j-2

+pz z 4p — i)’ L 2p? Z Zx +p? Zx

Jj=p+1li=p+1 j=p+1i=2p Jj=p+1



-1 2p—1
= (2p° +pp2(—i2 + 3pi)a’ + p*(2p — 1)aP +p IZ: (6p® + i* — 5pi)a’)
i=1 i=p+1
-1 2p—1
+2p(g—p) +3pg—p) Y _ix* + pBp— 1)(g—p)a” +plg—p) D (4p — )2’
2q-2 p - 21 o
27 Y (g [3De' 407 D o
i=2p i=2p+1
i odd
p—1 2p—1
=2pq+p Y (=i +3¢i)a’ +p(B3pg — p* — )2 +p Y (20" + dpg +i° — dpi — qi)a’
2(171271 -
+p° > (2 — i)',
i=2p
O
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