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Abstract

For a connected graph G we denote by d(G, k) the number of vertex pairs at
distance k. The Hosoya polynomial of G is H(G, x) =

∑
k>0

d(G, k)xk. In this paper,

we give analytical formulae for calculating this polynomial of zig-zag open-ended
nanotubes, and show it is unimodal. Furthermore, the Wiener index, derived from
the first derivative of the Hosoya polynomial in x = 1, and the hyper-Wiener index,
from a half of the second derivative of the Hosoya polynomial multiplied by x in
x = 1, can be calculated.

1 Introduction

Single-walled nanotubes (briefly denoted SWNTs), one-dimensional carbon allotropes

with remarkable mechanical properties, were discovered by two groups (i.e., Iijima’s group

[14] and Bethune’s group [2] from IBM) independently. They have intensive theoretical

and experimental researches [4, 5, 19, 24]. For zig-zag open-ended nanotubes, a partic-

ular class of SWNTs, John and Diudea [15] have given explicit formulae of their Wiener

indices.
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The Wiener index of a connected graph G, introduced originally for alkanes by H.

Wiener [23] and denoted by W (G), is defined as the sum of distances between all pairs of

vertices in G [13],

W (G) =
∑

{u,v}⊆V (G)

dG(u, v),

where dG(u, v) is the distance (i.e. the number of edges in a shortest path) between a pair

of vertices u and v of G. The hyper-Wiener index is proposed by Randić [20] for trees

and extended by Klein et al. [17] as

WW (G) =
1

2

∑

{u,v}⊆V (G)

dG(u, v) +
1

2

∑

{u,v}⊆V (G)

d2
G(u, v).

If we denote by d(G, k) the number of vertex pairs of G at distance k, then the Wiener

and hyper-Wiener indices of G can also be expressed as [28]:

W (G) =
∑

k>0

kd(G, k), (1)

WW (G) =
1

2

∑

k>0

k(k + 1)d(G, k). (2)

Note that d(G, 0) is the number of vertices of G and d(G, 1) is the number of edges of G.

The Wiener index is one of the oldest graph-based structure descriptors and extensively

studies since the middle of 1970s. For the researches on the Wiener index we can refer to

two special issues [9, 10] and references therein, whereas chemical applications and the

computation of the hyper-Wiener index are referred to [1, 18, 20].

The following polynomial associated with a connected graph G

H(G, x) =
∑

k>0

d(G, k)xk

was introduced by Hosoya [12] and was called the Wiener polynomial because (by Eq.

(1)) the Wiener index W (G) is equal to the first derivative of the polynomial in x = 1:

W (G) =
dH(G, x)

dx

∣∣∣
x=1

. (3)

Recently this polynomial was called Hosoya polynomial in the literature in honor of

Hosoya. Similar to Eq. (3), from Eq. (2), the following relation holds:

WW (G) =
1

2

d2(xH(G, x))

dx2

∣∣∣
x=1

. (4)

The Hosoya polynomial has many applications. Firstly, analogous to Eq. (3), we

can consider higher derivatives of the Hosoya polynomial in x = 1(In Ref. [6] they are
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Fig. 1. A zig-zag open-ended nanotube T (p, q) with p = 5, q = 5 and its two vertices v0

and w0. Note that the vertices with the same label are identified.

called “extended Wiener indices”), which may have some chemical applicability [6, 16].

Secondly, the Hosoya polynomial contains more information about distance in a graph

than any of the hitherto proposed distance-based topological indices, not only these, but

some celebrated topological indices of a graph often can be obtained directly from its

Hosoya polynomial, such as the Wiener index and the hyper-Wiener index. In view of

these it is imaginable that the Hosoya polynomial and the quantities derived from it will

play a significant role in QSAR/QSPR studies. Therefore, abundant literature appeared

on this topic for the theoretical consideration [7, 8] and computation [3, 11, 22, 25, 26].

In this paper, we focus on zig-zag open-ended nanotubes, proposing a recursive method

for calculating the Hosoya polynomial H in the corresponding graph. By means of this

method, explicit expressions for H are obtained (e.g. Theorem 3.1). Furthermore, we

show that the coefficients of H are unimodal. Finally, according to relations (3) and

(4) we give closed formulae for the Wiener index and the hyper-Wiener index of zig-zag

open-ended nanotubes.

2 Some Lemmas about distance in tubules

A zig-zag open-ended nanotube (or tubule) is a finite section of a polyhex cylinder, de-

scribed by two parameters p and q, denoted as T (p, q) [15], and drawn in the plane

(equipped with the regular hexagonal lattice L) using the representation of the cylinder

by a rectangular R with the vertical boundary identification (see Fig. 1): The bottom

side L3 and the top side L4 are all perpendicular to the vertical edge-direction of L such

that L3 connects the centers of two hexagons of L and passes through p edges, while

L4 connects the centers of either two hexagons or two vertical edges such that there are

q vertices on a vertical side L1 (or L2). Then, identify points of opposite positions on

vertical sides L1 and L2. Note that T (p, q) are bipartite, its vertices can be colored such
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that every vertical edge connects a white top vertex with a black bottom vertex. For

convenience, we denote by layer 0, 1, · · · , q − 1 horizontal zig-zag lines in T (p, q) from

bottom to top, respectively. In fact, for every k, the layer k corresponds to a cycle of

length 2p, denoted by Ck = v0,kv1,k · · · v2p−1,kv0,k. Two specific vertices, v0 and w0 of layer

0, one vertex being white and the other black, are shown in Fig. 1.

Let G1 be a connected subgraph of a graph G. Then dG1(u, v) > dG(u, v) for any pair

of vertices u and v of the graph. G1 is a convex subgraph of G if any shortest path of G

joining two vertices of G1 is already in G1. Hence if G1 is convex, dG1(u, v) = dG(u, v).

Lemma 2.1 ([27]). For any integer r with 1 6 r 6 q − 1, T (p, r) is convex in T (p, q).

For convenience, for nonnegative integers m, n and s, we define 3 sequences as follows:

m,↗, n := (m,m + 1, · · · , n); (m 6 n)

m,↘, n := (m,m− 1, · · · , n); (m > n)

m, ! 2s, n :=

2s terms︷ ︸︸ ︷
m,n, m, n, · · · ,m, n; (m 6= n)

For a vertex v of T (p, q), we denote by ST (p,q)(k; v) the cyclic permutation of the

sequence
(
dT (p,q)(vi,k, v)

)
06i62p−1

.

Lemma 2.2 ([27]).

ST (p,q)(k; v0) =

{
(2k,↗, p + k,↘, 2k, ! 2k, 2k + 1), 0 6 k < p− 1;
(2k, ! 2p, 2k + 1), p− 1 6 k 6 q − 1.

(5)

By Lemma 2.1 and the structure of T (p, q),

T (p, q − 1) can be considered as a convex subgraph of T (p, q)

induced by layers 1, 2, · · · , q − 1.
(∗)

By (∗) and Lemma 2.2, we have

Lemma 2.3.

ST (p,q)(k; w0) =





(0,↗, p,↘, 1), k = 0;
(2k − 1,↗, p + k,↘, 2k − 1,! 2k − 2, 2k), 0 < k < p;
(2k − 1,! 2p, 2k), p 6 k 6 q − 1.

3 Main results

In this section, we give our main results—Theorems 3.1 and 3.5. In the first theorem we

present the explicit expression for the Hosoya polynomial of T (p, q). The proof of the

theorem will be given in the next section. The second result shows that the polynomial

is unimodal.
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Theorem 3.1. (1) If q 6 p
2
,

H(T (p, q), x) = 2pq + p

2q−1∑
i=1

(−i2 + 3qi)xi + 2pq2

p−1∑
i=2q

xi + pq(2q − 1)xp + 2p

p+q−1∑
i=p+1

(p + q − i)2xi.

(6)

(2) If p
2

< q 6 p,

H(T (p, q), x) = 2pq + p

p−1∑
i=1

(−i2 + 3qi)xi + p(3pq − p2 − q)xp

+ p

2q−1∑
i=p+1

(2p2 + 4pq + i2 − 4pi− qi)xi + 2p

p+q−1∑
i=2q

(p + q − i)2xi. (7)

(3). If q > p + 1,

H(T (p, q), x) = 2pq + p

p−1∑
i=1

(−i2 + 3qi)xi + p(3pq − p2 − q)xp

+ p

2p−1∑
i=p+1

(2p2 + 4pq + i2 − 4pi− qi)xi + p2

2q−1∑
i=2p

(2q − i)xi. (8)

Corollary 3.2.

(i) H(T (1, q), x) = H(P2q, x) =

2q−1∑
i=0

(2q − i)xi.

(ii) H(T (p, 1), x) = H(C2p, x) = 2p

p−1∑
i=0

xi + pxp.

Taking the derivatives of the Eqs. (6)-(8) and setting x = 1 it results in the Wiener

index of T (p, q) according to Eq. (3), which are consistent with Eqs. (9) and (10) of [15].

Corollary 3.3 ([15]). In the case of short tubes, i.e. 0 < q 6 p,

W (T (p, q)) =
pq

6
[6p2q + (4p + q)(q2 − 1)].

While in the case of long tubes, i.e. p 6 q,

W (T (p, q)) =
p2

6
[p2(4q − p) + q(8q2 − 6) + p].

Analogously, according to Eq. (4) we obtain the hyper-Wiener index of T (p, q).
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Corollary 3.4. In the case of short tubes, i.e. 0 < q 6 p,

WW (T (p, q)) =
pq

12
[2pq(2p+1)(p+1)+2pq(q+1)2−(2p+1)2+(2pq−1)2+q(q2−1)(2q+1)];

While in the case of long tubes, i.e. p 6 q,

WW (T (p, q)) =
p2

12
[−p(p2 − 1)(2p + 1) + 2q(p2 − 1)(3p + 2) + 2q(q + 1)(4q2 − 1)].

We say a sequence (ai)i>0 is unimodal if, for some index k,

a0 6 a1 6 · · · 6 ak > ak+1 > ak+2 > · · · .

Unimodal sequences appear in many areas of mathematics. For a survey, see Stanley’s

article [21].

Theorem 3.5. The coefficients of H(T (p, q), x) are unimodal.

Proof. Let a0 = 2pq, ai = p(−i2 + 3qi) for i > 1. Then the sequence (ai)i>0 is unimodal.

It is obvious that the sequences
(
p(2p2+4pq+i2−4pi−qi)

)
p+16i62p

,
(
2p(p+q−i)2

)
16i6p+q−1

and
(
p2(2q− i)

)
2p6i62q−1

are all monotone decreasing. In the following we distinguish two

cases.

Case 1. q 6 p
2
. Since we have the following relation:

p(−(2q)2 + 3q · 2q) = 2pq2 > pq(2q − 1) > 2p(p + q − (p + 1))2,

the assertion holds.

Case 2. q > p
2
. Since

p(−p2 + 3qp) > p(3pq − p2 − q) > p
(
2p2 + 4pq + (p + 1)2 − 4p(p + 1)− q(p + 1)

)
,

p
(
2p2 + 4pq + (2q)2 − 4p(2q)− q(2q)

)
= 2p(p + q − 2q)2

and

p
(
2p2 + 4pq + (2p)2 − 4p(2p)− q(2p)

)
= p2(2q − 2p),

the assertion holds according to Eqs. (7) and (8). ¤

Fig. 2 illustrates the transformation of the coefficients of H(T (p, q), x).
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)(a )(b )(c

Fig. 2. The coefficients of H(T (p, q), x) for three cases: (a) p = 29, q = 12; (b) p = 35, q =
23 and (c) p = 26, q = 32.

4 Proof of Theorem 3.1

In this section, we prove Theorem 3.1, i.e. calculate H(T (p, q), x). For convenience, we

denote by H(p, q, x) the Hosoya polynomial of T (p, q). We first consider the corresponding

difference polynomial :

∆H(p, q, x) := H(p, q, x)−H(p, q − 1, x).

For convenience we set ∆H(p, 1, x) = H(p, 1, x).

Lemma 4.1.

H(p, q, x) =

q∑
j=1

∆H(p, j, x).

From the above lemma, our aim is changed into calculating ∆H(p, q, x). By (∗), if

∆H(p, q, x) =
∑
k>0

akx
k, then ak is the number of vertex pairs {w, v} of T (p, q) lying at

distance k such that either w or v belongs to layer 0. By the structure of T (p, q), the

status of all p white vertices in layer 0 are equivalent, as well all p black vertices in layer

0. So, if we define

di(v) = |{u ∈ T (p, q)|dT (p,q)(v, u) = i}|

for nonnegative integer i and a vertex v, then we get (Note that v0 and u0 are a white

vertex and a black one in layer 0 respectively.)

Lemma 4.2.

∆H(p, q, x) = p
∑
i>0

(
di(v0) + di(w0)

)
xi −H(C2p, x) + 2p.

In the following we discuss the value of di(v0). Note first that if layer k has a contri-

bution to di(v0), by Lemma 2.2, then k must satisfy:

- 449 -



(i) if k < p− 1, then 2k 6 i 6 p + k , i.e.

k < p− 1 and i− p 6 k 6 i

2
, (9)

and layer k has the contribution 1, i−1
2

+ 2 and i
2

+ 1 to di(v0) when k = i− p, i−1
2

and i
2

respectively, otherwise 2 to di(v0), or

(ii) if k > p− 1, then 2k 6 i 6 2k + 1, i.e.

k > p− 1 and
i− 1

2
6 k 6 i

2
, (10)

and layer k has contribution p to di(v0).

We distinguish the following cases in discussing the value of di(v0) (Note that k 6 q−1).

Case 1. 0 6 i < p.

Subcase 1.1. i is odd. By relations (9) and (10), 0 6 k 6 i−1
2

(< p− 1).

Subsubcase 1.1.1. i 6 2q − 1. Then i−1
2

6 q − 1. By (i),

di(v0) =

i−1
2
−1∑

k=0

2 +
(i− 1

2
+ 2

)
=

3i + 1

2
.

Subsubcase 1.1.2. i > 2q + 1. Then i−1
2

> q − 1. By (i),

di(v0) =

q−1∑

k=0

2 = 2q.

Subcase 1.2. i is even. By analogy to Subcase 1.1, we have

di(v0) =

{
3i
2

+ 1, i 6 2q − 2;
2q, i > 2q.

Similar to Case 1, we have

Case 2. p 6 i 6 2(p− 1).

di(v0) =





2p− d i
2
e, i 6 2q − 1;

2(p + q − i)− 1, 2q 6 i 6 p + q − 1;
0, p + q 6 i.

Case 3. 2p− 1 6 i.

di(v0) =

{
p, i 6 2q − 1;
0, i > 2q.

Tidy up the above discussions, we obtain
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Lemma 4.3. (1) If q 6 p
2
,

di(v0) =





b3
2
ic+ 1, 0 6 i 6 2q − 1;

2q, 2q 6 i 6 p− 1;
2(p + q − i)− 1, p 6 i 6 p + q − 1;
0, p + q 6 i.

(2) If p
2

< q 6 p,

di(v0) =





b3
2
ic+ 1, 0 6 i 6 p− 1;

2p− d i
2
e, p 6 i 6 2q − 1;

2(p + q − i)− 1, 2q 6 i 6 p + q − 1;
0, p + q 6 i.

(3) If p + 1 6 q,

di(v0) =





b3
2
ic+ 1, 0 6 i 6 p− 1;

2p− d i
2
e, p 6 i 6 2p− 1;

p, 2p 6 i 6 2q − 1;
0, 2q 6 i.

By Lemma 2.3, similar to the discussion of di(v0), we obtain

Lemma 4.4. (1) If q 6 p
2
,

di(w0) =





d3
2
ie+ 1, 0 6 i 6 2q − 2;

2q, 2q − 1 6 i 6 p− 1;
2(p + q − i)− 1, p 6 i 6 p + q − 1;
0, p + q 6 i.

(2) If p
2

< q 6 p,

di(w0) =





d3
2
ie+ 1, 0 6 i 6 p− 1;

2p− b i
2
c, p 6 i 6 2q − 2;

2(p + q − i)− 1, 2q − 1 6 i 6 p + q − 1;
0, p + q 6 i.

(3) If p + 1 6 q,

di(w0) =





d3
2
ie+ 1, 0 6 i 6 p− 1;

2p− b i
2
c, p 6 i 6 2p− 1;

p, 2p 6 i 6 2q − 2;
0, 2q − 1 6 i.

By the previous three lemmas, we obtain (Note that H(C2p, x) = 2p
p−1∑
i=0

xi + pxp)

Lemma 4.5. (1) If q 6 p
2
,

∆H(p, q, x) = 2p + 3p

2q−2∑
i=1

ixi + p(5q − 3)x2q−1 + 2p

p−1∑
i=2q

(2q − 1)xi + p(4q − 3)xp

+ 2p

p+q−1∑
i=p+1

(2p + 2q − 2i− 1)xi.
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(2) If p
2

< q 6 p,

∆H(p, q, x) = 2p + 3p

p−1∑
i=1

ixi + p(3p− 1)xp + p

2q−2∑
i=p+1

(4p− i)xi + p(4p− 3q + 1)x2q−1

+ 2p

p+q−1∑
i=2q

(2p + 2q − 2i− 1)xi;

(3) If p + 1 6 q,

∆H(p, q, x) = 2p + 3p

p−1∑
i=1

ixi + p(3p− 1)xp + p

2p−1∑
i=p+1

(4p− i)xi + 2p2

2q−2∑
i=2p

xi + p2x2q−1.

Proof of Theorem 3.1. According to Lemma 4.5 we distinguish here three cases.

Case 1. q 6 p
2
,

H(p, q, x) =

q∑
j=1

∆H(p, j, x)

= 2pq + 3p

q∑
j=1

2j−2∑
i=1

ixi + p

q∑
j=1

(5j − 3)x2j−1 + 2p

q∑
j=1

p−1∑
i=2j

(2j − 1)xi

+ p

q∑
j=1

(4j − 3)xp + 2p

q∑
j=1

p+j−1∑
i=p+1

(2p + 2j − 2i− 1)xi

= 2pq + 3p

2q−2∑
i=1

(q − d i

2
e)ixi + p

2q−1∑
i=1

i odd

(
5

2
i− 1

2
)xi + 2p

( 2q−1∑
i=1

(b i

2
c)2xi +

p−1∑
i=2q

q2xi
)

+ pq(2q − 1)xp + 2p

p+q−1∑
i=p+1

(p + q − i)2xi

= 2pq + p

2q−1∑
i=1

(−i2 + 3qi)xi + 2pq2

p−1∑
i=2q

xi + pq(2q − 1)xp + 2p

p+q−1∑
i=p+1

(p + q − i)2xi.

Case 2. p
2

< q 6 p. We distinguish two subcases to discuss according to the parity of

p. Firstly, if p is even,

H(p, q, x) =

q∑
j=1

∆H(p, j, x)

=

p
2∑

j=1

∆H(p, j, x) +

q∑

j= p
2
+1

∆H(p, j, x)
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= H(p,
p

2
, x) + 2p(q − p

2
) + 3p

q∑

j= p
2
+1

p−1∑
i=1

ixi + p(3p− 1)(q − p

2
)xp + p

q∑

j= p
2
+1

2j−2∑
i=p+1

(4p− i)xi

+ p

q∑

j= p
2
+1

(4p− 3j + 1)x2j−1 + 2p

q∑

j= p
2
+1

p+j−1∑
i=2j

(2p + 2j − 2i− 1)xi

=
(
p2 + p

p−1∑
i=1

(−i2 +
3pi

2
)xi + (

p3

2
− p2

2
)xp + 2p

3
2
p−1∑

p+1

(
3

2
p− i)2xi

)
+ 2p(q − p

2
)

+ 3p(q − p

2
)

p−1∑
i=1

ixi + p(3p− 1)(q − p

2
)xp + p

2q−2∑
i=p+1

(q − d i

2
e)(4p− i)xi

+ p

2q−1∑
i=p+1

i odd

(4p− 3

2
i− 1

2
)xi + 2p

(
3
2
p−1∑

i=p+1

(q − p

2
)(

5

2
p + q − 2i)xi +

p+q−1∑

i= 3
2
p

(q + p− i)2xi

−
2q∑

i=p+1

(q − b i

2
c)(2p + q + b i

2
c − 2i)xi

)

= 2pq + p

p−1∑
i=1

(−i2 + 3qi)xi + p(3pq − p2 − q)xp + 2p

3
2
p−1∑

i=p+1

(q + p− i)2xi

+ 2p

p+q−1∑

i= 3
2
p

(q + p− i)2xi + p

2q∑
i=p+1

(i− q)(2q − i)xi

= 2pq + p

p−1∑
i=1

(−i2 + 3qi)xi + p(3pq − p2 − q)xp

+ p

2q−1∑
i=p+1

(2p2 + 4pq + i2 − 4pi− qi)xi + 2p

p+q−1∑
i=2q

(q + p− i)2xi.

Second, if p is odd, we can obtain the same result as above.

Case 3. p + 1 6 q,

H(p, q, x) =

q∑
j=1

∆H(p, j, x)

=

p∑
j=1

∆H(p, j, x) +

q∑
j=p+1

∆H(p, j, x)

= H(p, p, x) + 2p(q − p) + 3p

q∑
j=p+1

p−1∑
i=1

ixi + p(3p− 1)(q − p)xp

+ p

q∑
j=p+1

2p−1∑
i=p+1

(4p− i)xi + 2p2

q∑
j=p+1

2j−2∑
i=2p

xi + p2

q∑
j=p+1

x2j−1

- 453 -



=
(
2p2 + p

p−1∑
i=1

(−i2 + 3pi)xi + p2(2p− 1)xp + p

2p−1∑
i=p+1

(6p2 + i2 − 5pi)xi
)

+ 2p(q − p) + 3p(q − p)

p−1∑
i=1

ixi + p(3p− 1)(q − p)xp + p(q − p)

2p−1∑
i=p+1

(4p− i)xi

+ 2p2

2q−2∑
i=2p

(q − d i

2
e)xi + p2

2q−1∑
i=2p+1

i odd

xi

= 2pq + p

p−1∑
i=1

(−i2 + 3qi)xi + p(3pq − p2 − q)xp + p

2p−1∑
i=p+1

(2p2 + 4pq + i2 − 4pi− qi)xi

+ p2

2q−1∑
i=2p

(2q − i)xi.

¤
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