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Abstract

The energy E of any n-vertex regular graph G of degree r , r > 0 , is greater than or equal
to n . Equality holds if and only if every component of G is isomorphic to the complete
bipartite graph Kr,r . If G is triangle– and quadrangle–free, then E ≥ nr/

√
2r − 1 . In

particular, for any fullerene and nanotube with n carbon atoms, 1.34n ≤ E ≤ 1.73n .
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INTRODUCTION

Let G be a graph on n vertices, and let λ1, λ2, . . . , λn be its eigenvalues [1]. The

energy of G is defined as [2]

E = E(G) =
n∑

i=1

|λi| . (1)

Numerous results on graph energy are known; for details see the book [3], the re-

cent reviews [4, 5], the recent papers [6–8], and the references cited therein. Curiously,

however, almost no results concerning the energy of regular graphs were reported so

far.1

In what follows we are concerned with regular graphs. Let G be such a graph, n

the number of its vertices and r its degree (i. e., the degree of each of its vertices).

Then G possesses m = 1
2
nr edges. If r = 0 , then all eigenvalues of G are equal to

zero and, consequently, E(G) = 0 . Therefore, in what follows, we assume that r > 0 .

An upper bound for the energy of a regular graph is readily deduced from the

McClelland inequality [12], i. e., from E ≤ √
2mn , namely:

E(G) ≤ n
√

r .

A somewhat better upper bound is obtained by applying the Koolen–Moulton in-

equality [13, 14], i. e., E ≤ (2m/n) +
√

(n− 1)(2m− 4m2/n2) , namely:

E(G) ≤ r +
√

(n− 1)(2m− r2) .

We now deduce a simple, yet best possible, lower bound for the energy of regular

graphs, in terms of the parameters n and r .

A LOWER BOUND FOR THE ENERGY OF REGULAR GRAPHS

If λ1, λ2, . . . , λn are the eigenvalues of the graph G , denote by Mk its k-th spectral

moment,

Mk = Mk(G) =
n∑

i=1

(λi)
k

1Exceptionally, a spectral property of the iterated line graphs of regular graphs was established
[9], by means of which pairs of non-cospectral equienergetic regular graphs could be constructed
[9–11]. In [9] it was shown that if G is an n-vertex regular graph of degree r , r ≥ 3 , then the energy
of its second iterated line graph (which is also a regular graph) depends only on the parameters n
and r .
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and recall [1] that Mk(G) is equal to the number of self–returning walks of length k

in G . In what follows we shall need the well known relation, M2 = 2m , which in the

case of regular graphs reduces to

M2(G) = nr (2)

as well as:

Lemma 1. Let G be a regular graph on n vertices, of degree r , r ≥ 0 . Then

M4(G) ≤ n r3 . (3)

Equality in (3) is attained if and only if every component of G is isomorphic to the

complete bipartite graph Kr,r .

Proof. In the general case, a self–returning walk of length k , starting at some vertex

v0 goes through some vertices va , vb , and vc (in that order), and then ends at the

vertex v0 . There are three types of such self–returning walks:

1: v0, va, v0, vc, v0 , where va and vc are either distinct or identical vertices;

2: v0, va, vb, va, v0 , where vb is different from v0 ;

3: v0, va, vb, vc, v0 , where the four vertices v0, va, vb, vc are mutually distinct, i. e.,

they form a quadrangle.

If G is a regular graph of degree r , then for a given vertex v0 there are r2 walks of

type 1. To see this, note that it is possible to go from v0 to one of its first neighbors

(denoted by va) in r different ways. The next step (from va to v0) is unique. The third

step (from vertex v0 to one of its first neighbors, denoted by vc) can again be done in

r different ways, whereas the fourth step (from vc to v0) is again unique. Therefore

there are r × 1× r × 1 = r2 self–returning walks of type 1.

In an analogous manner one verifies that there are r(r − 1) walks of type 2. This

time for the first and second steps there are r and r − 1 possibilities, respectively,

whereas the third and fourth steps are unique.

The number of self–returning walks of type 3 depends both on the actual structure

of the graph G and on the choice of the starting vertex v0 . It is possible to go from
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v0 to va in r different ways and from va to vb in r− 1 different ways. If v0 and vb are

not adjacent, then it is possible to go from vb to vc also in r− 1 different ways, which

yields a total of r × (r − 1) × (r − 1) = r(r − 1)2 ways. If, however, v0 and vb are

adjacent, which means that the vertices v0, va, vb form a triangle, then the number of

walks v0, va, vb, vc is smaller than r(r − 1)2 .

Now, in order to be able to go from vc to v0 (thus closing a quadrangle) these two

vertices need to be adjacent. Thus, whenever there is a pair of nonadjacent vertices

(v0, vc) , the number of walks of type 3 will be less than r(r − 1)2 . In the absence of

triangles, if v0 and vc are not adjacent, then the distance between them is 3.

Bearing the above in mind, we conclude that r2 + r(r− 1) + r(r− 1)2 is an upper

bound for the number of self–returning walks of length 4, starting as some vertex v0

of a regular graph of degree r . Therefore,

M4(G) ≤ n
[
r2 + r(r − 1) + r(r − 1)2

]

which directly leads to (3).

Equality in (3) will be attained if in the graph G there are no triangles and no

two vertices are at distance greater than two. It is immediate to see that complete

bipartite graphs are the only connected graphs having these properties. Of these only

Kr,r is regular od degree r . Lemma 1 follows. 2

Corollary 2. If G is same as in Lemma 1, but triangle– and quadrangle–free, then

M4(G) = n [r2 + r(r − 1)] .

Theorem 3. Let G be a regular graph on n vertices, of degree r , r > 0 . Then

E(G) ≥ n . (4)

Equality in (4) is attained if and only if every component of G is isomorphic to the

complete bipartite graph Kr,r .

Proof. Our starting point is the inequality

E ≥ (M2)
2

√
M2 M4

(5)
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that has been deduced in [6], used in [7], and discussed in detail in [8]. Evidently, the

inequality (5) remains valid if the term M4 is replaced by its upper bound. Using the

upper bound (3) and taking into account (2), we immediately arrive at (4).

¿From Lemma 1 we see that equality in (4) may happen at most for the graphs

whose all components are Kr,r . Because the only two non-zero eigenvalues of Kr,r are

r and −r [1], we see that E(Kr,r) = 2r , which is just equal to the number of vertices

of Kr,r .

Therefore, for the graphs whose all components are isomorphic to Kr,r equality in

(4) indeed happens. 2

Corollary 4. If G is same as in Theorem 3, but triangle– and quadrangle–free, then

E(G) ≥ nr√
2r − 1

.

A LOWER BOUND FOR THE ENERGY OF SEMIREGULAR

BIPARTITE GRAPHS

Let G be a semiregular bipartite graph, consisting of na vertices of one color (say

white), all having degree ra , and nb vertices of the other color (say black), all having

degree rb . Note that such graph has 1
2

(na ra + nb rb) edges, and therefore

M2(G) = na ra + nb rb .

By means of a reasoning fully analogous to that used in the proof of Lemma 1, we

conclude that the number of self–returning walks of length 4, starting and ending at

some white vertex of G is greater than or equal to (ra)
2+ra (rb−1)+ra (rb−1)(ra−1) .

The same estimate for a black vertex is (rb)
2+rb (ra−1)+rb (ra−1)(rb−1) . Therefore,

M4(G) ≤ na

[
(ra)

2 + ra (rb − 1) + ra (rb − 1)(ra − 1)
]

+ nb

[
(rb)

2 + rb (ra − 1) + rb (ra − 1)(rb − 1)
]

= (na ra + nb rb) ra rb .

When the above relations for M2 and M4 are substituted back into (5), we arrive

at:
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Theorem 5. Let G be a semiregular graph with parameters as specified above. Then

E(G) ≥ na

√
ra

rb

+ nb

√
rb

ra

. (6)

Equality in (6) is attained if and only if every component of G is isomorphic to the

complete bipartite graph Kra,rb
.

APPLICATION TO FULLERENES AND NANOTUBES

Fullerenes and nanotubes are represented by graphs that are regular of degree

3. Species of this kind usually do not contain triangles and quadrangles [15–17].

Therefore, Corollaries 2 and 4 applicable and we get:

Theorem 6. The energy E of the molecular graph of a fullerene or a nanotube with

n carbon atoms is bounded as:

3√
5

n < E <
√

3 n . (7)

or, what is the same, 1.34 n ≤ E ≤ 1.73 n .

We see that the energy varies within a remarkable narrow interval, especially if

one bears in mind that the bounds (7) are not the best possible.

Strictly speaking, the quantity E in formula (7) needs not necessarily coincide

with the HMO total π-electron energy of the fullerenes and/or nanotubes. Namely,

the quantity E , as defined via Eq. (1), coincides with the HMO total π-electron

energy provided that all bonding MOs are occupied and all antibonding MOs are

empty [3, 5]. Because of the presence of five-membered rings (especially in fullerenes)

this condition may be, and usually is, violated, so that a few bonding MOs remain

empty. Even in such cases, the difference between E and HMO total π-electron energy

is insignificant, compared to the other drastic approximations committed within the

HMO approach. Anyway, in our opinion the main chemical implication of Theorem

6 is that the gross part of the total π-electron energy of fullerenes and nanotubes

is determined solely by their carbon–atom content and depends very little on other

structural features.
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