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Abstract 
 

The Wiener index is a graphical invariant that has found extensive application in chemistry.  
It is defined as W(G) = 1/2∑{x,y}⊆V(G)d(x,y), where V(G) is the set of all vertices of G and 
for x,y ∈ V(G), d(x,y) denotes the length of a minimal path between x and y. In this paper 
an algorithm for computing the distance matrix of a TUC4C8(R) nanotorus T = T[m,n] is 
given. Using this matrix, the following expression for the Wiener index of T is obtained, 

W(T) = 

2nm 2 2(6n 3nm m 4) n m
6

2mn 2 2(6m 3mn n 4) m n
6


 + + − ≤




+ + − <


. 

 

1. Introduction 

Let G = (V,E) be a connected, simple, undirected graph of order n; for each pair u; v of 

vertices of G, the distance d(u,v) is defined to be the number of edges in a shortest path 

from u to v. In 1947 Harold Wiener1 introduced the quantity W(G) as the sum of 

distances between all pairs of vertices in the molecular graph G of an alkane, with the 

evident aim to provide a measure of the compactness of the respective hydrocarbon 

molecule. About 1948, Wiener published a whole series of papers showing that there 

are excellent correlations between W = W(G) and a variety of physico−chemical 

properties of organic compounds. Next Hosoya2 named such graph invariants, 

topological index. In fact, topological indices are numerical descriptors that are derived 
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from molecular graphs of chemical compounds. Such indices based on the distances in a 

graph are widely used for establishing relationships between the structure of molecules 

and their physico-chemical properties. We encourage the reader to consult the special 

issues of MATCH Communication in Mathematics and in Computer Chemistry3, 

Discrete Applied Mathematics4 and Refs. [5−7],  for information on results on the 

Wiener index, the chemical meaning of the index and its history.  

 In a series of papers, Diudea and co-authors8-13 studied the structure and 

topological indices of some chemical graphs related to nanostructures. In particular, the 

Wiener indices of some nanotubes are computed. The present authors14,15 computed the 

Wiener index of polyhex and TUC4C8(R) nanotori. We Proved that: 
 
Theorem 1 ([14]). Suppose T = T[p,q] is a polyhex nanotorus. Then  we have: 

W(T)  = 

2
2 2

2
2 2

pq (6p q 4) q p
24

p q (3q 3pq p 4) q p
24


+ − <


 + + − ≥

. 

Theorem 2 ([15]). Suppose T = T[p,q] is a TUC4C8(R) nanotorus. Then  we have: 

( ) ( )

( ) ( )

( )

2
1

2
2

2
3

(2m / 3) m 1 mn m 3n k if m n

W(T) (2n / 3) n 1 mn 3m n k if m n

(n / 3) 14n k if m n
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
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 and, 

“|” denotes the divisibility relation. 
 

 In Refs. [16−19] another topological index of nanotorus, PI index, are also 

computed. We encourage the reader to consult these papers for background material as 

well as basic computational techniques.  

 The goal of this paper is to continue this program to compute the Wiener index 

of a TUC4C8(S) nanotorus. To do this, we assume that T = T[m,n] denotes an arbitrary 

TUC4C8(S) nanotorus in terms of its circumference (m) and its length (n), see Figure 1. 

The main result of this paper is as follows: 
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Theorem. The Wiener index of a TUC4C8(S) nanotorus, Figure 1, is as follows: 

W(T) = 

2nm 2 2(6m 3nm n 4) n m
6

2mn 2 2(6n 3mn m 4) m n
6


 + + − ≤




+ + − <

. 

 

 

 

 

 
(a) (b) 

Figure 1. An TUC4C8(S) Torus (a) Side view (b) Top view. 
 

 Throughout this paper our notation is standard and taken mainly from [20,21].  
 

2. Main Result 
 

In this section we derive an exact formula for the Wiener index of a T(m,n) = TUC4C8(S) 

nanotorus, in which m and n are two times of the number octagons in every row and 

column, respectively, Figure 2.   

 
Figure 2. Fragment of TUC4C8(S) Nanotorus with m = n =3. 
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 To compute the Wiener index of T = T[m,n], we first calculate the molecular 

symmetry group of T. Let D2n be the dihedral group of order 2n, n ≥ 3. This group can 

be presented by D2n = 〈 x , y  | xn = y2 = 1, y-1xy = x-1〉. 
 
Lemma 1. The rotation group of  T[m,n] is isomorphic to Dn. 
 
Proof. Suppose V1, V2, …, Vn/2 are octagons of the first column of 2-dimensional lattice 

of T and σ = (1,2,…,n/2). Then σ determines a permutation of the molecular symmetry 

group G of T. Moreover, the reflection about the horizontal plane will be another 

element ϕ of the group G. Now it is easy to see that the group G is generated by σ and 

ϕ. This group satisfies the relations σn = e, ϕ2 = e and σ-1ϕσ = σ-1 and so it is a dihedral 

group of order n, as desired.                                                                                            ▇ 
 

From now on, we suppose Xm,n = [xi,j] in which xi,j is the sum of distances 

between vertices of (i,j)th oblique edge of the 2-dimensional lattice of T from the base 

vertex b, Figure 2. Obviously, x1,1 = 1. Since Sb = ∑i,j xi,j, we must find an algorithm for 

computing Xm,n. 
 

Lemma 2. If m > n/2 then xi,j = xm−i+1,j + 2.  

Proof. The proof is straightforward.                                                                               ▇ 
 

 In the following theorem we compute the Wiener index of T[n,n].  

 
Theorem. If T =  T[m,n] is a TUC4C8(S) nanotorus then the Wiener index of T is as 

follows: 

W(T) = 

2nm 2 2(6m 3nm n 4) n m6
2mn 2 2(6n 3mn m 4) m n6









+ + − ≤

+ + − <
. 

 

Proof. We first notice that the graph T = T[m,n] has exactly 2mn vertices. To compute 

the Wiener index of this graph, we first consider a base vertex b for the 2-dimensional 

lattice of T, Figure 2, and compute Sb = ∑x∈V(G)d(x,b). It is clear that the value of Sb is 

independent from the base vertex b. Therefore W(T) = mnSb and so it is enough to 

compute Sb. To do this, we define a matrix Xm,n = [xi,j] in which xi,j is the sum of  
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distances between vertices of (i,j)th
 oblique edge of the 2-dimensional lattice of T from 

the base vertex b. Obviously, x1,1 = 1. Since Sb = ∑i,jxi,j, we must find an algorithm for 

computing Xm,n. We first consider the case that m = n. Obviously, the 2−dimensional 

lattice of T[n−2,n−2] is a part of the 2−dimensional lattice of T[n,n]. So we can proceed 

with induction on n. Suppose Xn,n = [xi,j] and Xn−2,n−2 = [ai,j]. To calculate the values of 

the matrix Xn,n in the (n/2)th
 and (1+n/2)th

 rows, as well as (1+n/2)th
 and (2+n/2)th

 column 

of the matrix Xn,n, we use the 2-dimensional lattice of T. We have: 

( )

( )
n n n1, j , j 1, j
2 2 2

n2 n j 3 j 1
2x ; x x 2,
n2 2n j 1 j 1
2

+ +

 + − ≤ += = −
 − + > +


 

( )

( )
n n ni, 1 i, 2 i, 1
2 2 2

n2 n i 3 i 1
2x ; x x 2.
n2 2n i 1 i 1
2

+ + +

 + − ≤ += = −
 − + > +


 

 For other entries of Xn,n, we have: 

i, j i, j 2

i, j i, j

i 2, j i 2, j 2

n n n na i 1 , j a i 1 , j 2
2 2 2 2x ; x .
n n n na i 1 , j a i 1 , j 2
2 2 2 2

−

− − −

 ≤ − ≤ ≤ − > +  = = 
 > + ≤ > + > +
  

 

Therefore, Xn,n and Xn−2,n−2 are essentially different only in the two rows and 

columns, as above. If V is the (n/2)−th row of the matrix Xn,n then by symmetries of a 

nanotorus and above equations, V + [2 2 … 2] is the (n/2+1)−th row of this matrix, as 

well as if W is the (1+n/2)th column of Xn,n then W − [2 2 … 2]t is its (1+n/2)th
 column. 

Thus we can find a recurrence relation for definition of Xn,n. By solving this simple 

equation, we have W(T[n,n]) = n3/3(5n2−2). 

We now assume that n ≠ m, say n < m. In this case by computing Xm,m as above, 

and omitting some of the columns of this matrix, we can calculate Xm,n. In other words, 

Xm,n contains the first and last (n/2+1) and (n/2−1) columns of the matrix Xm,m. Suppose 

Xm,m = [aij] and Xm,n = [xij] then we have: 

i, j

i, j

i,m n j

na j 1
2x
na j 1
2− +

 ≤ += 
 > +


. 
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Suppose SI is the sum of omitted entries. Then using a simple calculation one 

can see that SI = (m−n)/12(7m2 + 4mn + n2 – 4). Therefore, W(T[m,n]) = W(T[m,m]) − 

mnSI = (m2n/6)(6m2 + 3nm + n2 − 4). 

We now assume that m < n, Xn,n = [aij] and Xm,n = [xij]. Then Xm,n can be 

constructed from Xn,n by considering the first and last m/2−th rows and so, 

i, j

i, j

n m i, j

ma i
2x
ma i
2− +

 ≤= 
 >


. 

If SII denotes the sum of omitted entries then a simple calculation shows that SII 

= (m − n)/12(7m2 + 4mn + n2 − 4). Therefore, W(T[m,n]) = W(T[n,n]) – mnSII = 

(m2n/6)(6m2 + 3nm + n2 − 4). This Completes the proof.                                              ▇ 
 

We now present another method to compute the matrix Xn,n = [xij], n is even. 

Define two n/2 × n matrices A = [aij] and B = [bij], a11 = 1, as follows: 

( )
( ) ( )1, j

4 j 5 2 j n 2 1
a

4 n j 5 j n 2 1
− ≤ ≤ +=  − + > +

; ai,j = ai−1,j + 2 ∀i > 1 

( )

( )
n , j
2

n2 n j 5 j 1
2b
n2 2n j 1 j 1
2

 + − ≤ += 
 − − > +


; i, j i 1, jb b 4+= −  ∀i < n 

Using similar argument as Theorem, we can prove in the first n/2 rows of the 

matrix Xn,n, xij = Max{aij,bij}. Moreover, if i > n/2 then i, j n i 1, jx x 2.− += +  In what 

follows, we calculate X18,18 from X16,16 by our theorem, as follows: 

16,16

1 3 7 11 15 19 23 27 31 29 25 21 17 13 9 5
5 7 9 13 17 21 25 29 33 31 27 23 19 15 11 7
9 11 13 15 19 23 27 31 35 33 29 25 21 17 13 11
13 15 17 19 21 25 29 33 37 35 31 27 23 19 17 15
17 19 21 23 25 27 31 35 39 37 33 29 25 23 21 19
21 23 25 27 29 31 33 37 41 39 35 31 29 27 25 23
25 27 29 31 33 3

X =

5 37 39 43 41 37 35 33 31 29 27
29 31 33 35 37 39 41 43 45 43 41 39 37 35 33 31
31 33 35 37 39 41 43 45 47 45 43 41 39 37 35 33
27 29 31 33 35 37 39 41 45 43 39 37 35 33 31 29
23 25 27 29 31 33 35 39 43 41 37 33 31 29 27 25
19 21 23 25 27 29 33 37 41 39 35 31 27 25 23 21
15 17 19 21 23 27 31 35 39 37 33 29 25 21 19 17
11 13 15 17 21 25 29 33 37 35 31 27 23 19 15 13
7 9 11 15 19 23 27 31 35 33 29 25 21 17 13 9
3 5 9 13 17 21 25 29 33 31 27 23 19 15 11 7

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 

- 408 -



18,18

1 3 7 11 15 19 23 27 33 29 25 21 17 13 9 5
5 7 9 13 17 21 25 29 35 31 27 23 19 15 11 7
9 11 13 15 19 23 27 31 37 33 29 25 21 17 13 11
13 15 17 19 21 25 29 33 39 35 31 27 23 19 17 15
17 19 21 23 25 27 31 35 41 37 33 29 25 23 21 19
21

31 35
33 37
35 39
3

23 25 27 29 31 33 3

7 41
39 43
41 47 3

X

5 43

=

43 47
45 49

33 35 37 39 41 43 45 47 49 51 49 47 45 43 41 39 37 35
35 3

9 35 31 29 27 25 23
25 27 29 31 33 35 37 39 45 41 37 35 33 31 29

7 39 41 43 45 47 49 51 53 51 49 47 45 43 41 39 37

27
29 31 33 35 37 39 41 43 47 43 41 39 37 35 33 31

31 33 35 37 39 41 43 45 49 45 43 41 39 37 35 33
27 2

47 51
9 31 33 35 37 39 41 47 43 39 37 35 33 31 29

23 25 27 29 31 33 35 39 45 41 37 33 31 29 27 25
19 21 23 25 27 29 33 37 43 39 35 31 27 25 23 21
15 17 19 21 23 27 31 35 41 37 33 29 25 21 19 17
11 13 15 17 21 25 29 33 39 35 31 27 23 19 15 13
7 9 11 15 19

4

2

5 49
43 47
41 45
39 43
37 41
353 27 31 37 33 239 9 25 21 17 13 9

3 5 9 13 17 21 25 29 35 31 27 23 19 133 37 5 11 7

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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