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Abstract

The Wiener index W is the sum of distances between all pairs of
vertices of a connected graph. An order relation of trees is obtained
with regard to the Wiener index. Based on this order relation, we
determine the trees on n ≥ 9 vertices with the first to seventeenth
greatest Wiener indices, and they are chemical trees.

1 Introduction

The Wiener index is a graph invariant based on distances in a graph. It is
denoted by W (G) and defined as the sum of distances between all pairs of
vertices in a connected graph G:

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) (1)

where V (G) is the vertex set of G and dG(u, v) denotes the distance between
the vertices u, v ∈ V (G).
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The Wiener index is much studied in the chemical literature, since Harold
Wiener [1], in 1947, was the first to consider it. Wiener’s original definition
was slightly different, yet equivalent to (1). The definition of the Wiener
index, such as in Eq. (1), was first given by Hosoya [2].

Starting from the middle of the 1970s, the Wiener index gained much
popularity and, since then, new results related to it are constantly being
reported. For a review, historical details and further bibliography on the
chemical applications of the Wiener index see [5,6,7,11,12,13]. Results on the
Wiener index of trees and hexagonal systems were summarized in [3,4,8,9,10].
Specifically, the trees with maximum or minimum Wiener index were deter-
mined. Of course, ordering trees by their Wiener indices is interesting and
valuable. Gutman et al. [16] gave a partial order among the starlike trees
and the trees with the first up to fifteenth smallest Wiener indices among
trees of order n are determined by Guo and Dong [14]. In this paper we
obtain some order relations for trees, using the formula for calculating the
Wiener index based on branching vertices, and determine the trees of order
n with the first to seventeenth greatest Wiener indices, all of these trees are
chemical trees.

There are many methods for computing the Wiener index of a tree. The
following Lemma 1 gives a formula discovered by Doyle and Graver [15],
which is suitable for calculating the Wiener index of trees with few branching
points.

Recall that a vertex u of a tree T is said to be a branching point of T
if dT (u) ≥ 3. Furthermore, u is said to be a out-branching point if at most
one of the components of T − u is not a path; otherwise, u is a in-branching
point of T .

Note that any tree which is not a path has a out-branching point.

Lemma 1.([15]) Let T be a tree of order n, u1, u2, · · · , uk be all the
branching points of T , dT (ui) = mi (i = 1, 2, . . . , k), Ti1, Ti2, . . . , Timi

be the
components of T − ui, and n(Tij) = nij (j = 1, 2, · · · ,mi; i = 1, 2, . . . , k).
Then

W (T ) = C3
n+1 −

k∑

i=1

∑

1≤p<q<r≤mi

nip niq nir (2)

where ni1 + ni2 + · · ·+ nimi
= n− 1,i = 1, 2, . . . , k and C3

n+1 =

(
n + 1

3

)
.

2 Comparison of the Wiener indices of star-

like trees of order n

Let T (n; n1, n2, . . . , nm) denote the starlike tree of order n obtaining by in-
serting n1 − 1, n2 − 1, . . . , nm − 1 vertices into m edges of the star Sm+1 of
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order m + 1 respectively, where n1 + n2 + · · ·+ nm = n− 1.
Note that any tree with only one branching point is a starlike tree, and

the starlike tree T (n; n1, n2, . . . , nm) has a branching point with degree m.
By Eq. (2) of Lemma 1, we have

W (T (n; n1, n2, . . . , nm)) = C3
n+1 −

∑
1≤i<j<k≤m

ninjnk

= C3
n+1 − f(n1, n2, . . . , nm)

(3)

Here, the function f(x1, x2, . . . , xn) is defined as follows:

f(x1, x2, . . . , xn) =
∑

1≤i<j<k≤n

xi xj xk

where x1, x2, . . . , xn are non-negative integers, n ≥ 3.
Note that f(x1, x2, . . . , xn) is symmetric, i.e.,

f(x1, x2, . . . , xn) = f(xi1 , xi2 , . . . , xin)

for any permutation xi1 , xi2 , . . . , xin of x1, x2, . . . , xn.

Lemma 2. If xi ≥ xj ≥ 1, 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j. Then

f(x1, . . . , xi, . . . , xj, . . . , xn) > f(x1, . . . , xi + 1, . . . , xj − 1, . . . , xn).

Proof. Without loss of the generality, suppose that i = 1 and j = n.

f(x1, x2, . . . , xn)− f(x1 + 1, x2, . . . , xn − 1)

=
∑

1≤i<j<k≤n
xixjxk − ∑

1<i<j<k<n
xixjxk − ∑

1<j<k<n
(x1 + 1)xjxk

− ∑
1<i<j<n

xixj(xn − 1)− ∑
1<j<n

(x1 + 1)xj(xn − 1)

= − ∑
1<j<k<n

xjxk +
∑

1<i<j<n
xixj +

∑
1<j<n

(x1xn − (x1 + 1)(xn − 1))xj

= (x1 + 1− xn)
∑

1<j<n
xj > 0.

So, f(x1, x2, . . . , xn) > f(x1 + 1, x2, . . . , xn − 1).

From Lemma 2 and Eq. (3), the following result is immediate.

Theorem 3. If n1 ≥ n2 ≥ · · · ≥ nm ≥ 1, then
(i) W (T (n; n1 + 1, n2, . . . , nm − 1) > W (T (n; n1, n2, . . . , nm);
(ii) W (T (n; . . . , ni + 1, . . . , nj − 1, . . .) > W (T (n; . . . , ni, . . . , nj, . . .).
And, the tree with maximum Wiener index among the starlike trees with

order n and a branching point of degree m is T (n; n−m, 1, . . . , 1); the tree
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with maximum Wiener index among the starlike trees of order n is T (n; n−
3, 1, 1).

We write T1 º T2 (T1 Â T2) if W (T1) ≥ W (T2) (W (T1) > W (T2)) for two
trees T1 and T2. Using Theorem 3, some relations for ordering the starlike
trees of order n and a branching point of degree m are obtained as follows:

(i) m = 3.
T (n; n−3, 1, 1) Â T (n; n−4, 2, 1) Â T (n; n−5, 3, 1) Â T (n; n−6, 4, 1) Â

T (n; n − 5, 2, 2) Â T (n; n − 7, 5, 1) Â T (n; n − 8, 6, 1) Â T (n; n − 6, 3, 2) Â
T (n; n− 9, 7, 1) Â T (n; n− 10, 8, 1) Â T (n; n− 7, 4, 2) Â T (n; n− 11, 9, 1) Â
T (n; n− 7, 3, 3) Â T (n; n− 12, 10, 1) Â T (n; n− 8, 5, 2) Â · · · .

(ii) m = 4.
T (n; n − 4, 1, 1, 1) Â T (n; n − 5, 2, 1, 1) Â T (n; n − 6, 3, 1, 1) Â T (n; n −

6, 2, 2, 1) Â T (n; n−7, 4, 1, 1) Â T (n; n−7, 3, 2, 1) Â T (n; n−7, 2, 2, 2) Â · · · .
(iii) m = 5.
T (n; n − 5, 1, 1, 1, 1) Â T (n; n − 6, 2, 1, 1, 1) Â T (n; n − 7, 3, 1, 1, 1) Â

T (n; n− 7, 2, 2, 1, 1) Â · · · .

And
W (T (n; n− 4, 1, 1, 1)) = C3

n+1 − 3n + 11
W (T (n; n− 5, 2, 1, 1)) = C3

n+1 − 5n + 23
W (T (n; n− 6, 3, 1, 1)) = C3

n+1 − 7n + 32
W (T (n; n− 6, 2, 2, 1)) = C3

n+1 − 8n + 36
W (T (n; n− 7, 4, 1, 1)) = C3

n+1 − 9n + 59
W (T (n; n− 7, 3, 2, 1)) = C3

n+1 − 11n + 71
W (T (n; n− 7, 2, 2, 2)) = C3

n+1 − 12n + 76
W (T (n; n− 5, 1, 1, 1, 1)) = C3

n+1 − 6n + 26
W (T (n; n− 6, 2, 1, 1, 1)) = C3

n+1 − 9n + 47
W (T (n; n− 7, 3, 1, 1, 1)) = C3

n+1 − 12n + 74
W (T (n; n− 7, 2, 2, 1, 1)) = C3

n+1 − 13n + 79
W (T (n; n− 6, 1, 1, 1, 1, 1)) = C3

n+1 − 10n + 50
W (T (n; n− 7, 2, 1, 1, 1, 1)) = C3

n+1 − 14n + 82.

Then, the ordering of the starlike trees of order n is:

T (n; n− 3, 1, 1) Â T (n; n− 4, 2, 1) Â T (n; n− 5, 3, 1) Â T (n; n− 4, 1, 1, 1)
Â T (n; n− 6, 4, 1) Â T (n; n− 5, 2, 2) Â T (n; n− 7, 5, 1) Â T (n; n− 5, 2, 1, 1)
Â T (n; n− 8, 6, 1) Â T (n; n− 6, 3, 2) º T (n; n− 5, 1, 1, 1, 1) Â T (n; n− 9, 7, 1)
Â T (n; n− 6, 3, 1, 1) Â T (n; n− 10, 8, 1) Â T (n; n− 7, 4, 2) Â T (n; n− 6, 2, 2, 1)
Â T (n; n− 11, 9, 1) Â T (n; n− 7, 3, 3) Â T (n; n− 7, 4, 1, 1) Â T (n; n− 6, 2, 1, 1, 1)
Â T (n; n− 12, 10, 1) Â T (n; n− 8, 5, 2) · · · .

(4)
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3 Trees of order n with the first to seven-

teenth greatest Wiener indices

For convenience, we introduce a transfer operation: T → TA → TB → TC , as
shown in Figure 1, where T is a tree of order n, u is an out-branching point
of T , dT (u) = m, and all the components T1, T2, . . . , Tm of T − u except T1

are paths.

....... ..
..
..
..

..........
.

..........

T1

T2

T3

Tm

u
T1 u

T TA

....... .......

T1

TB

...........T1

TC

Figure 1.

.......

Lemma 4. Let u be an out-branching point of a tree of order n, dT (u) =
m, and let all components T1, T2, . . . , Tm of T − u except T1 be paths. Then

W (T ) ≤ W (TA) ≤ W (TB) < W (TC)

and W (T ) = W (TA) (or W (TB)) if and only if T = TA (or TB).
Proof. Let u1, u2, . . . , uk and u be all the branching points. Then

u1, u2, . . . , uk are in T1 since T2, . . . , Tm are paths. Suppose that dT (ui) = mi

and Ti1, Ti2, . . . , Timi
are all the components of T − ui, n(Tij) = nij, j =

1, 2, . . . , mi, i = 1, 2, . . . , k; n(Tt) = nt, t = 1, 2, . . . , m.
By Lemma 1, we have that

W (T ) = C3
n+1 −

k∑
i=1

∑
1≤p<q<r≤mi

nipniqnir − ∑
1≤i<j<k≤m

ninjnk

= W0 − f(n1, n2, . . . , nm)

where W0 = C3
n+1 −

k∑
i=1

∑
1≤p<q<r≤mi

nipniqnir.

Without loss of generality, we can assume that n2 ≥ n3 ≥ · · · ≥ nm ≥ 1.
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From Lemma 2, we have

f(n1, n2, n3, . . . , nm−1, nm) > f(n1, n2 + 1, n3, . . . , nm−1, nm − 1) > · · ·
> f(n1, n2 + nm − 1, n3, . . . , nm−1, 1) > f(n1, n2 + nm, n3, . . . , nm−1, 0) > · · ·
> f(n1, n2 + n3 + . . . + nm − 1, 1, 0, . . . , 0).

So, W (T ) ≤ W (TA) with the equality if and only if T = TA since W (TA) =
W0 − f(n1, n2 + n3 + · · ·+ nm − 1, 1, 0, . . . , 0).

Also, W (TA) ≤ W (TB) with equality if and only if TB = TA since
W (TA) = W0−n1(n2+n3+· · ·+nm−1) = W0−n1(n−2−n1) ≤ W0−(n−3).

Finally, W (TB) < W0 = W (TC).

Remark. From Lemma 4, the Wiener index increases after the transfer
operations: T → TA → TB → TC . Repeating the above operations, any tree
T with an out-branching point must be changed into a tree TB in which any
out-branching point u has degree 3 and the components of TB − u, except
one, have only one vertex; Also, T can be changed into a tree TC with fewer
branching points than T . So the path Pn has the greatest Wiener index
among the trees of order n.

If a tree has exactly two branching points, then both branching points
must be out-branching points. From Lemma 4 the following result is imme-
diate.

Theorem 5. Let T be a tree of order n with exactly two branching
points, then W (T ) ≤ W (T (n; 1, 1; 1, 1) with equality if and only if T =
T (n; 1, 1; 1, 1), where T (n; 1, 1; 1, 1) is shown in Figure 2.

Now, we consider the ordering of trees with exactly two branching points.
Let T be a tree of order n with exactly two branching points u1 and u2,
dT (u1) = r, dT (u2) = t. The orders of r − 1 components, which are paths,
of T − u1 are p1, . . . , pr−1, the order of the component which is not a path
of T − u1 is pr = n− (p1 + · · ·+ pr−1)− 1. The orders of t− 1 components,
which are paths, of T −u2 are q1, . . . , qt−1, the order of the component which
is not a path of T − u2 is qt = n − (q1 + · · · + qt−1) − 1. We denote this
tree by T (n; p1, . . . , pr−1; q1, . . . , qt−1), where r ≤ t, p1 ≥ p2 ≥ · · · ≥ pr−1 and
q1 ≥ q2 ≥ · · · ≥ qt−1. By Lemma 1, we have

W (T (n; p1, . . . , pr−1; q1, . . . , qt−1)) = C3
n+1−

∑

1≤i<j<k≤r

pipjpk−
∑

1≤i<j<k≤t

qiqjqk

= C3
n+1 − f(p1, p2, . . . , pr)− f(q1, q2, . . . , qt). (5)
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Figure 2.

If p1+· · ·+pr−1+q1+· · ·+qt−1 ≥ 8, then W (T (n; p1, . . . , pr−1; q1, . . . , qt−1)) ≤
W (T (n; 1, 1; 5, 1)) = C3

n+1−6n+38 by the transfer operation T → TA → TB.
For p1+· · ·+pr−1+q1+· · ·+qt−1 ≤ 7, the trees T (n; p1, . . . , pr−1; q1, . . . , qt−1)

are shown in Figure 2. From Lemma 4 and Equation (4), the ordering of these
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trees is:

T (n; 1, 1; 1, 1) Â T (n; 1, 1; 2, 1) Â T (n; 1, 1; 3, 1) Â T (n; 2, 1; 2, 1) Â
T (n; 1, 1; 1, 1, 1) Â T (n; 1, 1; 4, 1) Â T (n; 1, 1; 2, 2) º T (n; 2, 1; 3, 1) Â
T (n; 2, 1; 1, 1, 1) Â T (n; 2, 1; 2, 2) Â T (n; 1, 1; 2, 1, 1) Â T (n; 3, 1; 1, 1, 1) Â
T (n; 1, 1, 1; 1, 1, 1) Â T (n; 1, 1; 3, 2) Â T (n; 2, 1; 2, 1, 1) º T (n; 2, 2; 1, 1, 1) Â
T (n; 1, 1; 1, 1, 1, 1) Â T (n; 1, 1; 3, 1, 1) Â T (n; 2, 1; 1, 1, 1, 1) º
T (n; 1, 1, 1; 2, 1, 1) Â T (n; 1, 1; 2, 2, 1) Â T (n; 1, 1, 1; 1, 1, 1, 1) Â
T (n; 1, 1; 2, 1, 1, 1) Â T (n; 1, 1; 1, 1, 1, 1, 1) Â · · · .

(6)
For the trees with at least three branching points, we have the following

two results.

Theorem 6. Let T be a tree of order n with exactly three branching
points, then W (T ) ≤ W (TE) with equality if and only if T = TE, where TE

is the tree of order n as shown in Figure 3.
Proof. Let u1, u2, u3 be the three branching points of T . Let u1 be an

in-branching point and u2, u3 be out-branching points. By Lemma 4, we have

W (T ) ≤ W (TD)

where TD is the tree of order n with three branching points as shown in
Figure 3 and u1 is its unique in-branching point.

....... .........

...........

............
...
...
..

T1 T2 Tm−2

u1

TD

.............

TE

Figure 3.

Let dTD
(u) = m, T1, T2, . . . , Tm be the components of TD − u1 and let

they be paths except T1, T2, n(Ti) = ni, i = 1, 2, . . . , m. By Lemma 1,

- 400 -



W (G1) = C3
n+1 − 2(n− 3)− ∑

1≤i<j<k≤m
ninjnk

= C3
n+1 − 2(n− 3)− f(n1, n2, . . . , nm)

≤ C3
n+1 − 2(n− 3)− f(n1, n2, n− n1 − n2 − 1, 0, . . . , 0)

= C3
n+1 − 2(n− 3)− n1n2(n− n1 − n2 − 1)

≤ C3
n+1 − 2(n− 3)− 3n2(n− 4− n2) (n2 is given and n1 ≥ 3)

≤ C3
n+1 − 2(n− 3)− 3(n− 5) (since n2 ≥ 3 and n− 4− n2 ≥ 1)

= W (TE)
So, W (T ) ≤ W (TE) and the equality holds if and only if n−n1−n2− 1 = 1
and n1 = 3(or n2 = 3), i.e, T = TE.

Theorem 7. If T is a tree of order n with k branching points, k ≥ 3,
then W (T ) ≤ W (TE).

Proof. We prove the theorem by induction on the number k of branching
points.

It is true for k = 3 from Theorem 6.
Let k ≥ 4 and T be a tree of order n with k branching points. Then

T must have an out-branching point u, and by Lemma 4, W (T ) ≤ W (TC),
where TC has k − 1 branching points. W (TC) ≤ W (TE) by the inductive
hypothesis. So, W (T ) ≤ W (TE).

Finally, we give the trees of order n with the first to seventeenth largest
Wiener indices. They all are chemical trees. Since W (TE) = C3

n+1− 5n+21,
W (T (n; n− 5, 2, 1, 1)) = C3

n+1 − 5n + 35 and W (T (n; n− 8, 6, 1)) = C3
n+1 −

6n + 48, W (T (n; 2, 1; 3, 1)) = C3
n+1 − 5n + 23 and W (T (n; 2, 1; 1, 1, 1)) =

C3
n+1 − 5n + 19, from Eqs. (4) and (6), we have the ordering of trees with n

vertices.

Theorem 8. Let n ≥ 9. Then T (n; n − 3, 1, 1) Â T (n; n − 4, 2, 1) Â
T (n; 1, 1; 1, 1) Â T (n; n − 5, 3, 1) Â T (n; n − 4, 1, 1, 1) º T (n; 1, 1; 2, 1) Â
T (n; n − 6, 4, 1) Â T (n; n − 5, 2, 2) Â T (n; 1, 1; 3, 1) Â T (n; 2, 1; 2, 1) Â
T (n; 1, 1; 1, 1, 1) Â T (n; n − 7, 5, 1) Â T (n; 1, 1; 4, 1) Â T (n; n − 5, 2, 1, 1) º
T (n; 1, 1; 2, 2) º T (n; 2, 1; 3, 1) Â TE · · ·.
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