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Wiener index of two special trees
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Abstract

Given a simple connected undirected graph G = (V, E), the Wiener index of G is defined
to be %Eu,vEV d(u, v), where d(u,v) is the distance between the vertives v and v in G. In
this note, we obtain closed form expressions for the Wiener indices of (a) the complete binary
tree of a given depth, and (b) the class of trees (i.e., molecular graphs) derived by maximum
substitutions of normal alkyl groups on a normal alkane of a fixed diameter.

1 Introduction

Let G=(V(G), E(G)) be a simple finite connected undirected graph. The Wiener
index (or Wiener number) W(G) of G is defined as

W(G):% Y dwv),

u,weV (G)

where the summation is over all possible pairs u,v and d (u,v) is the distance between
the vertices u and v in G (we define d(u,u) = 0 for all u € V(G)). The quantity W (G) is
named after the chemist Harold Wiener who seems to have first studied the correlation
between W (G) and physico-chemical properties of paraffins (hydrocarbons) where G is
taken to be the molecular graph of the corresponding chemical compound[1]. In recent
times, (@) has been shown to be a successful topological index of molecular graphs
(see for example, [2]) and it has found useful applications in Chemistry in the design of
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molecules with desired properties. The graphical invariant W (G) is also known by other
names like transmission,total status and sum of all distances ( see [3], for example).
In graph-based models of different types of networks in Computer Science, the related
quantity W(G)/ (IVSG)‘) is of interest, since it is a measure of the average distance
traversed by the messages in the network. For a survey of various known results of
Wiener index for different classes of trees, reference [4] can be consulted.

In this paper, we derive expressions for W(G) when G is a complete binary tree and
when G is a special class of tree (molecular graph) derived by maximum substitutions
of (normal) alkyl groups on a normal alkane of a given diameter. The present work is of
similar type to the work reported in [5] wherein an expression for the Wiener number
of dendrimers is obtained.

Wiener index of a complete binary tree

In this section we find an explicit expression for the Wiener index of a nontrivial
complete binary tree. A binary tree is defined on a finite set of vertices that either, (a)
contains no vertices, or (b) is composed of three disjoint sets of vertices: a root vertex,
a binary tree called its left subtree and a binary tree called its right subtree (see [6] for
more details). We define the root r to be at depth 0. The vertices connected directly
to the root are at depth 1. In general, a vertex is at depth k + 1 if it is a child of a
vertex at depth k. A complete binary tree of height k, denoted by T}, is one that has
vertices upto depth &k and has the maximum possible number of vertices at each depth.
The total number ny, of vertices in T}, can be seen to be given by

ng, = 28— 1. 1)

For a vertex u of a graph G, we define d*(u, G) as

dt(u,G) = Zd(u,v).

veG

We thus have,

k
dt(r,Ty) =Y i
=0
=24 (k—1)2FL, 2)

We begin with the following well-known result (see [4]) which we state without proof.

Lemma 1: Let T be a tree obtained from arbitrary trees T, and Tj of orders n; and
ng respectively and let v € V(T,) and v € V(T3). Then

(a) If w and v are fused together i.e., identified to be single vertex u (see Fig. 1(a) ),
then

W(T) = W(T,) + W(T}) + (n1 — Dd* (u, Tp) + (ng — 1)d* (u, Ty). 3)
(b) If w and v are linked by an edge (see Fig. 1(b)), then

W(T) = W(T,) + W(T) + nid* (v, Tp) + nad* (u, T,) + nina. (4)
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(a) (b)

Figure 1: A tree T : u is a cut-vertex in (a) and uv is a cut-edge in (b)

root r

depth 0

depth 1

depth k
Figure 2: A complete binary tree T with two subtrees T}

Remark : It may be noted that lemma 1 holds good even when 7}, and T}, are connected

graphs.

Theorem 1: The Wiener index of a complete binary tree of height k is given by

W(Ty) = (k + 4)28 + (k — 2)220+1),

Proof: The proof is based on an application of lemma 1. Let T}, be the complete binary

tree of height k& whose root is 7. Let u,v be the children of r — that is, v and v are
the roots of Tp_1. Then T} can be formed using two subtrees Tj_; as shown in
Fig. 2. We first identify T}, as a tree of the type as shown in Fig. 1(a). We take T,
to be Tj—1 U (edge(ur)) and Tj to be Ty_1 U (edge(vr)) so that r is a cut-vertex of
Ty, with T, N T, = {r}. Then invoking (3) we have

W(T}) = 2W(T,) + (2’9“ _ 2) d*(u, T). (5)

(Note: we have applied (1) and we have taken T}, to be T, as they are isomorphic).
By invoking (4), it follows that

W(T,) = W(Ti_1) + (k—1)2F +1. (6)
Also by using (2) it follows that
d*(u, T,) = (k — 1)2% + 1. M)
Substituting (6) and (7) in (5) we finally get
W (Ti,) = 2W (Ti—1) + 2294 (k — 1) + 2540,

Solution to the above recurrence relation yields W (7}) as desired. O
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We use the expression for W(T}) given in Theorem 1 to compute the actual values
of W(T}) for k =1,...,8 — this is given in Table 1.

k 1] 2 3 4 5 6 7 8
W(Ty) | 4| 48 | 368 | 2304 | 12864 | 66816 | 330496 | 1579008

Table 1: Wiener index of T, for k=1,...,8.

3 Wiener index of the trees Ay, 1 and Ay

We define a class of trees Ag,1 with a parameter k (where k is a positive integer) that
corresponds to the molecular graphs of alkanes with diameter 2k where every H-atom
is substituted by normal alkyl groups (having the longest possible path). In Fig. 3 the
graphs As, As and A7 are depicted. We can define the tree Agy 1 with diameter 2k as
follows:

(a) Ajs is the tree given in Fig. 3 (a)

(b) Ag41 is obtained from Agg_; in the following manner:
Add three pendant vertices (two ‘vertical” and one ‘horizontal’) to the left most and
the right most pendant vertices of Agx_1 ; next, add a pendant vertex (‘vertically’)
to every other pendant vertex of Agp_1 .

—
5
=
—
=z
=
—
o
N

R

(d) (e) (f
Figure 3: The trees A3, As, A7, Ay, A4 and Ag.

N

It is easy to see that Agy+1 has (a) 2k(k + 1) 4+ 1 vertices (b) 4k pendant vertices, and
(c) 2k — 1 vertices of degree 4.
In a manner analogous to the above, we define the class of trees Ag(k > 1) with
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diameter 2k — 1 starting with Ay shown in Fig. 3 (d). We note that Ay has (a) 2k?
vertices (b) 2(2k — 1) pendant vertices and (¢) 2k — 2 vertices of degree 4.

In this section, we obtain the Wiener index of the trees Agy1 and Ay, . We begin with
following lemmas.

Lemma 2: Let P, denote a path on n (> 2)vertices. Then W (P,) = ("Tl)

Proof: Follows from a simple counting (see also [4]).

Lemma 3: Let B, be the n'* Bernoulli number (see [7] ) and let 7 and & be positive
integers. Then the sum of the r** powers of the first & natural numbers is given by

i o :Ti <r+1> 1(9;:11; (k+1) .

m—1 j—1 J

Proof : For a proof see [8].

Remark. An application of lemma 3 calls for the values of Bernuolli numbers. For
example the sum Sy(k) of the fourth powers of the first k& natural numbers can be
seen to be given by

Su(k) = Ba(k + 1) + 2B3(k +1)? + 2Ba(k + 1)*> + By (k + 1)* + (k 4+ 1)5.

Noting that By = %, By = —l, By =

2 , B3 =0, By = —5, it follows that

=

S4(k):3—10k(k+1)(2k+1) (3k% +3k +1).

Lemma 4: Let vj, denote the middle vertex of Py and let w denote a pendant vertex
of Pyy1 . Then

d* (g, Poe1) = k(k+1) , and

k(k+1)

d (w, Pygy) = 2

Proof: Again, follows from a simple counting.

Lemma 5: Let G3 be the tree shown in Fig. 4 (a). We construct the tree Gog41 (with
parameter k) in the following manner. In Gog_1 , let ui_; denote the vertex of
degree 3 on the longest path. Add an edge up_1vg, connecting Gor_1 and a path
Pyi11 , where vy, is the middle vertex of Py41 . In Fig. 4 (b) and in Fig. 4 (c), we
depict G5 and G7 respectively (note that the vertex v, becomes the vertex uy of
Gok+1). Then

k(k+1)4k +5
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Figure 4: The trees G3, G5 and G7.

Proof: Using simple counting, we get the following equations:

D1:3
2
Dy=Dy+2°+2) i

i=1

3
Dy = Do, +3>+2 Y i
=1

k
Dy = Dy_4 +k2+22i
i=1

By direct summation of the above equations we get d* (ug, Gog+1) as desired.

Lemma 6 : Let Gogyy be as defined in lemma 5. Then the Wiener index W (Gaog+1)
is given by the following formula :

1
w (G2k+1) = E (W1 + Wy + W3 + W4) (8)

Wy = % E(k +1)(2k + 1)(3k% + 3k — 1)

Wy = 6 k*(k +1)?
13
Wy = o k(k +1)(2k +1)
3
Wy = 3 k(k+1).
Proof : Let the edge ug_jvx in definition of W (Gog11) (see lemma 5) be identified

as the cut-edge in lemma 1 (case (b)). By an application of (4), we can write
w (G2k+1) as

W (Gos1) = W (Goko1) + W (Paps1) + (2 +1) [ d (wp—1, Gap—1)] +
K2 [dF (g, Pog)] + K2(2k +1).



-391-

Invoking the results of lemmas 2, 4 and 5 and simplifying, the above equation
reduces to

W (Gapg1) =W (Gop—1) + % [145* + 24K + 13K + 3 K]. (9)

In (9) above, we first successively replace k by k — 1, k — 2, ..., 2, 1 and add all
the resulting equations to (9). We then use the fact that W (G;) = 0 and we use
the result of lemma 3. Upon subsequent simplification we get W (Gag+1) as desired.

Theorem 2: The Wiener index W (Agiy1) of the tree Aoy is given as under:

w (A2k+1) =C K +c2 K +c3 K +cq k2 +c5 k,
34 16 16

3 d 2
—, C= c3 = cp= and c5=_.
5’ @23 @®=3, a4=g3g 5= ¢

where ¢ =

Proof : We first we identify the graph Asi41 as a graph consisting of two connected

subgraphs T, = Gopt1, Tp = Gor—1 with cut-edge uv where u and v are the

vertices of degree 3 on the longest path in Gagt1 and Ga—1 respectively (we thus

identify Asg41 to be a graph of the type as shown in Fig.1(b)). Applying lemma 1
(case (b)) and using the fact that ny = (k + 1)? and ns = k? we get

W (Agis1) = W (Gorr1) + W (Gapo1) + (k+1)*dT (v, Gopr) +
K A (u, Gog 1) + K (k+1)%.
Using the result of lemma 5, we get
2 [(k—1) (k) (4k +1)]
6

L pelke 1)6(4k+ 5)]

We next invoke lemma 6 (for getting the expressions for W (Gopy1) and W (Gag—1))
and simplify the resultant expression to get W (Agg41) as stated in the theorem.
|

In a manner similar to the above proof, i.e., by fitting As; to be a type of the

graph as in Fig. 1(b) (wherein we take both T, and T}, to be Gai_1) we can derive the
expression for W(Asyy) as follows:

W (Ag) = ¢ K® + ey k* + ey k° + ¢y k2 + e K,

W (Aogy1) = W (Gagy1) + W (Gog—1) + (B +1)

+ B (k+1)2.

34 , 1 , 4]
= Coy = — — Co = —— Cqyp — — an Cy — —.
157 2 3 37 473 > 15

/
where ¢

By using the above expressions for W(Agg11) and W (Ag), we find that the Wiener
indices of Ag, A3, A4, As, Ag to be respectively 1, 16, 58, 212, and 491.
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