
Wiener index of two special trees

R.Balakrishnan

Srinivasa Ramanujan Centre

SASTRA Campus

Kumbakonam-621001, India

email : mathbala@satyam.net.in

K.Viswanathan Iyer∗

Dept.of Computer Science and Engg.

National Institute of Technology

Trichy-620015, India

email : kvi@nitt.edu

K.T.Raghavendra

Dept.of Computer Science and Engg.

National Institute of Technology

Trichy-620015, India

email : raghavendra.kt@gmail.com

(Received July 3, 2006)

Abstract

Given a simple connected undirected graph G = (V, E), the Wiener index of G is defined
to be 1

2

∑
u,v∈V d(u, v), where d(u, v) is the distance between the vertives u and v in G. In

this note, we obtain closed form expressions for the Wiener indices of (a) the complete binary
tree of a given depth, and (b) the class of trees (i.e., molecular graphs) derived by maximum
substitutions of normal alkyl groups on a normal alkane of a fixed diameter.

1 Introduction

Let G=(V (G), E(G)) be a simple finite connected undirected graph. The Wiener

index (or Wiener number) W (G) of G is defined as

W (G) =
1
2

∑
u,v∈V (G)

d (u, v) ,

where the summation is over all possible pairs u,v and d (u, v) is the distance between
the vertices u and v in G (we define d(u, u) = 0 for all u ∈ V (G)). The quantity W (G) is
named after the chemist Harold Wiener who seems to have first studied the correlation
between W (G) and physico-chemical properties of paraffins (hydrocarbons) where G is
taken to be the molecular graph of the corresponding chemical compound[1]. In recent
times, W (G) has been shown to be a successful topological index of molecular graphs
(see for example, [2]) and it has found useful applications in Chemistry in the design of
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molecules with desired properties. The graphical invariant W (G) is also known by other
names like transmission,total status and sum of all distances ( see [3], for example).
In graph-based models of different types of networks in Computer Science, the related
quantity W (G)/

(|V (G)|
2

)
is of interest, since it is a measure of the average distance

traversed by the messages in the network. For a survey of various known results of
Wiener index for different classes of trees, reference [4] can be consulted.

In this paper, we derive expressions for W (G) when G is a complete binary tree and
when G is a special class of tree (molecular graph) derived by maximum substitutions
of (normal) alkyl groups on a normal alkane of a given diameter. The present work is of
similar type to the work reported in [5] wherein an expression for the Wiener number
of dendrimers is obtained.

2 Wiener index of a complete binary tree

In this section we find an explicit expression for the Wiener index of a nontrivial
complete binary tree. A binary tree is defined on a finite set of vertices that either, (a)
contains no vertices, or (b) is composed of three disjoint sets of vertices: a root vertex,
a binary tree called its left subtree and a binary tree called its right subtree (see [6] for
more details). We define the root r to be at depth 0. The vertices connected directly
to the root are at depth 1. In general, a vertex is at depth k + 1 if it is a child of a
vertex at depth k. A complete binary tree of height k, denoted by Tk, is one that has
vertices upto depth k and has the maximum possible number of vertices at each depth.
The total number nTk

of vertices in Tk can be seen to be given by

nTk
= 2k+1 − 1. (1)

For a vertex u of a graph G, we define d+(u,G) as

d+(u,G) =
∑
v∈G

d (u, v) .

We thus have,

d+(r, Tk) =
k∑

i=0

i 2i

= 2 + (k − 1)2k+1. (2)

We begin with the following well-known result (see [4]) which we state without proof.

Lemma 1: Let T be a tree obtained from arbitrary trees Ta and Tb of orders n1 and
n2 respectively and let u ∈ V (Ta) and v ∈ V (Tb). Then

(a) If u and v are fused together i.e., identified to be single vertex u (see Fig. 1(a) ),
then

W (T ) = W (Ta) + W (Tb) + (n1 − 1)d+(u, Tb) + (n2 − 1)d+(u, Ta). (3)

(b) If u and v are linked by an edge (see Fig. 1(b)), then

W (T ) = W (Ta) + W (Tb) + n1d
+(v, Tb) + n2d

+(u, Ta) + n1n2. (4)
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Figure 1: A tree T : u is a cut-vertex in (a) and uv is a cut-edge in (b)

root r

u v

Tk−1 Tk−1

Tk

b

b b

depth 0

depth 1

depth k

Figure 2: A complete binary tree Tk with two subtrees Tk−1

Remark : It may be noted that lemma 1 holds good even when Ta and Tb are connected
graphs.

Theorem 1: The Wiener index of a complete binary tree of height k is given by

W (Tk) = (k + 4)2k+1 + (k − 2)22(k+1).

Proof: The proof is based on an application of lemma 1. Let Tk be the complete binary
tree of height k whose root is r. Let u,v be the children of r – that is, u and v are
the roots of Tk−1. Then Tk can be formed using two subtrees Tk−1 as shown in
Fig. 2. We first identify Tk as a tree of the type as shown in Fig. 1(a). We take Ta

to be Tk−1 ∪ (edge(ur)) and Tb to be Tk−1 ∪ (edge(vr)) so that r is a cut-vertex of
Tk with Ta ∩ Tb = {r}. Then invoking (3) we have

W (Tk) = 2W (Ta) +
(
2k+1 − 2

)
d+(u, Ta). (5)

(Note: we have applied (1) and we have taken Tb to be Ta as they are isomorphic).
By invoking (4), it follows that

W (Ta) = W (Tk−1) + (k − 1)2k + 1. (6)

Also by using (2) it follows that

d+(u, Ta) = (k − 1)2k + 1. (7)

Substituting (6) and (7) in (5) we finally get

W (Tk) = 2W (Tk−1) + 22k+1 (k − 1) + 2k+1.

Solution to the above recurrence relation yields W (Tk) as desired.
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We use the expression for W (Tk) given in Theorem 1 to compute the actual values
of W (Tk) for k = 1, . . . , 8 – this is given in Table 1.

k 1 2 3 4 5 6 7 8
W (Tk) 4 48 368 2304 12864 66816 330496 1579008

Table 1: Wiener index of Tk for k = 1, . . . , 8.

3 Wiener index of the trees A2k+1 and A2k

We define a class of trees A2k+1 with a parameter k (where k is a positive integer) that
corresponds to the molecular graphs of alkanes with diameter 2k where every H-atom
is substituted by normal alkyl groups (having the longest possible path). In Fig. 3 the
graphs A3, A5 and A7 are depicted. We can define the tree A2k+1 with diameter 2k as
follows:

(a) A3 is the tree given in Fig. 3 (a)

(b) A2k+1 is obtained from A2k−1 in the following manner:
Add three pendant vertices (two ‘vertical’ and one ‘horizontal’) to the left most and
the right most pendant vertices of A2k−1 ; next, add a pendant vertex (‘vertically’)
to every other pendant vertex of A2k−1 .

(a) (b) (c)

(d) (e) (f)

Figure 3: The trees A3, A5, A7, A2, A4 and A6.

It is easy to see that A2k+1 has (a) 2k(k + 1) + 1 vertices (b) 4k pendant vertices, and
(c) 2k − 1 vertices of degree 4.
In a manner analogous to the above, we define the class of trees A2k(k ≥ 1) with
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diameter 2k − 1 starting with A2 shown in Fig. 3 (d). We note that A2k has (a) 2k2

vertices (b) 2(2k − 1) pendant vertices and (c) 2k − 2 vertices of degree 4.
In this section, we obtain the Wiener index of the trees A2k+1 and A2k . We begin with
following lemmas.

Lemma 2: Let Pn denote a path on n (≥ 2)vertices. Then W (Pn) =
(
n+1

3

)
.

Proof: Follows from a simple counting (see also [4]).

Lemma 3: Let Bn be the nth Bernoulli number ( see [7] ) and let r and k be positive
integers. Then the sum of the rth powers of the first k natural numbers is given by

k∑
m−1

mr =
r+1∑
j−1

(
r + 1

j

)
Br+1−j

(r + 1)
(k + 1)j .

Proof : For a proof see [8].

Remark. An application of lemma 3 calls for the values of Bernuolli numbers. For
example the sum S4(k) of the fourth powers of the first k natural numbers can be
seen to be given by

S4(k) = B4(k + 1) + 2B3(k + 1)2 + 2B2(k + 1)3 + B1(k + 1)4 + (k + 1)5.

Noting that B0 = 1
5 , B1 = −1

2 , B2 = 1
6 , B3 = 0, B4 = − 1

30 , it follows that

S4 (k) =
1
30

k (k + 1) (2k + 1)
(
3k2 + 3k + 1

)
.

Lemma 4: Let vk denote the middle vertex of P2k+1 and let w denote a pendant vertex
of Pk+1 . Then

d+ (vk, P2k+1) = k (k + 1) , and

d+ (w,Pk+1) =
k (k + 1)

2
.

Proof: Again, follows from a simple counting.

Lemma 5: Let G3 be the tree shown in Fig. 4 (a). We construct the tree G2k+1 (with
parameter k) in the following manner. In G2k−1 , let uk−1 denote the vertex of
degree 3 on the longest path. Add an edge uk−1vk, connecting G2k−1 and a path
P2k+1 , where vk is the middle vertex of P2k+1 . In Fig. 4 (b) and in Fig. 4 (c), we
depict G5 and G7 respectively (note that the vertex vk becomes the vertex uk of
G2k+1). Then

Dk = d+ (uk, G2k+1) =
k (k + 1) (4k + 5)

6
.

- 389 -



(a) (b) (c)

Figure 4: The trees G3, G5 and G7.

Proof: Using simple counting, we get the following equations:

D1 = 3

D2 = D1 + 22 + 2
2∑

i=1

i

D3 = D2,+32 + 2
3∑

i=1

i

...

Dk = Dk−1 + k2 + 2
k∑

i=1

i

By direct summation of the above equations we get d+ (uk, G2k+1) as desired.

Lemma 6 : Let G2k+1 be as defined in lemma 5. Then the Wiener index W (G2k+1)
is given by the following formula :

W (G2k+1) =
1
6

(W1 + W2 + W3 + W4) (8)

W1 =
7
15

k(k + 1)(2k + 1)(3k2 + 3k − 1)

W2 = 6 k2(k + 1)2

W3 =
13
6

k(k + 1)(2k + 1)

W4 =
3
2

k(k + 1).

Proof : Let the edge uk−1vk in definition of W (G2k+1) (see lemma 5) be identified
as the cut-edge in lemma 1 (case (b)). By an application of (4), we can write
W (G2k+1) as

W (G2k+1) = W (G2k−1) + W (P2k+1) + (2k + 1)
[

d+(uk−1, G2k−1)
]

+

k2
[
d+ (vk, P2k+1)

]
+ k2(2k + 1).
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Invoking the results of lemmas 2, 4 and 5 and simplifying, the above equation
reduces to

W (G2k+1) =W (G2k−1) +
1
6

[
14 k4 + 24 k3 + 13 k2 + 3 k

]
. (9)

In (9) above, we first successively replace k by k − 1, k − 2, . . ., 2, 1 and add all
the resulting equations to (9). We then use the fact that W (G1) = 0 and we use
the result of lemma 3. Upon subsequent simplification we get W (G2k+1) as desired.

Theorem 2: The Wiener index W (A2k+1) of the tree A2k+1 is given as under:

W (A2k+1) = c1 k5 + c2 k4 + c3 k3 + c4 k2 + c5 k,

where c1 =
34
15

, c2 =
16
3

, c3 =
16
3

, c4 =
8
3

and c5 =
2
5
.

Proof : We first we identify the graph A2k+1 as a graph consisting of two connected
subgraphs Ta = G2k+1, Tb = G2k−1 with cut-edge uv where u and v are the
vertices of degree 3 on the longest path in G2k+1 and G2k−1 respectively (we thus
identify A2k+1 to be a graph of the type as shown in Fig.1(b)). Applying lemma 1
(case (b)) and using the fact that n1 = (k + 1)2 and n2 = k2 we get

W (A2k+1) = W (G2k+1) + W (G2k−1) + (k + 1)2 d+ (v,G2k−1)+

k2 d+ (u,G2k+1) + k2 (k + 1)2 .

Using the result of lemma 5, we get

W (A2k+1) = W (G2k+1) + W (G2k−1) + (k + 1)2
[(k − 1) (k) (4k + 1)]

6

+ k2 [k (k + 1) (4k + 5)]
6

+ k2 (k + 1)2 .

We next invoke lemma 6 (for getting the expressions for W (G2k+1) and W (G2k−1))
and simplify the resultant expression to get W (A2k+1) as stated in the theorem.

In a manner similar to the above proof, i.e., by fitting A2k to be a type of the
graph as in Fig. 1(b) (wherein we take both Ta and Tb to be G2k−1) we can derive the
expression for W (A2k) as follows:

W (A2k) = c
′

1 k5 + c
′

2 k4 + c
′

3 k3 + c
′

4 k2 + c
′

5 k,

where c
′

1 =
34
15

, c
′

2 = −
1
3

, c
′

3 = −
4
3

, c
′

4 =
1
3

and c
′

5 =
1
15

.

By using the above expressions for W (A2k+1) and W (A2k), we find that the Wiener
indices of A2, A3, A4, A5, A6 to be respectively 1, 16, 58, 212, and 491.
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