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Abstract

The Merrifield-Simmons index ¢ = o(G) and the Hosoya index z = z(G)
of a (molecular) graph G are defined as the total number of the independent
vertexsets and the total number of the independent edgesets of the graph G,
respectively. Let 7, 4 denote the set of trees on n vertices and diameter d.
Li, Zhao and Gutman [MATCH Commun. Math. Comput. Chem. 54(2005)
389-402] have determined the unique tree in .7, 4 with maximal o-value. Pan,
Xu, Yang and Zhou [MATCH Commun. Math. Comput. Chem., to appear]
have recently determined the unique tree in .7}, 4 with minimal z-value. In this
paper, the first L%j +1 Merrifield-Simmons indices and the last L%J +1 Hosoya

indices of trees in the set 7, ¢ (3 < d < n —4) are characterized.

1. Introduction

Given a molecular graph G, the Merrifield-Simmons indexr 0 = o(G) and the

Hosoya index z = z(G) are defined as the number of subsets of V(G) in which no
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two vertices are adjacent and the number of subsets of F(G) in which no edges
are incident, respectively, i.e., in graph-theoretical terminology, the total number of
the independent vertexsets of the graph and the total number of the independent

edgesets of the graph G.
The Hosoya index of a graph was introduced by Hosoya in 1971 [9] and was applied

to correlations with boiling points, entropies, calculated bond orders, as well as for
coding of chemical structures ([16, 18]). In [16], Merrifield and Simmons developed a
topological approach to structural chemistry. The cardinality of the topological space
in their theory turns out to be equal to o(G) of the respective molecular graph G. In
[6], Gutman first uses “Merrifield-Simmons index” to name the quantity. Since then,
many authors have investigated the Hosoya index and Merrifield-Simmons index
(e.g., see [2]-[8], [11], [14], [17], [19)-[23]). An important direction is to determine
the graphs with maximal or minimal Merrifield-Simmons indices (or Hosoya indices,
resp.) in a given class of graphs. It has been shown in [7, 12] that the path P, has
the minimal Merrifield-Simmons index (or the maximal Hosoys index, resp.) and the
star S, has the maximal Merrifield-Simmons index (or the minimal Hosoys index,
resp.). Li, Zhao and Gutman [14] have recently determined the unique tree in 7}, 4
with maximal Merrifield-Simmons index. Pan, Xu, Yang and Zhou [17] have recently

determined the unique tree in .7, 4 with minimal Hosoya index.

In this paper, we will give the first ng + 1 Merrifield-Simmons indices and the
last L‘%j + 1 Hosoya indices of trees in the set 7,4 (3 < d < n — 3), respectively.
Moreover, for d = n — 2, the first [4] Merrifield-Simmons indices and the last 4]

Hosoya indices of trees in the set 7, 4 are also given, respectively.

In order to discuss our results, we first introduced some terminologies and nota-
tions of graphs. For other undefined notations, the reader is referred to [1]. We only
consider finite, undirected and simple graphs. For a vertex x of a graph G, we denote
the neighborhood and the degree of by Ng(z) and dg(x), respectively. A pendant
vertex is a vertex of degree 1. Denote N¢g[z] = Ng(z) U {z}. For two vertices z and
y (z # y), the distance between 2 and y is the number of edges in a shortest path
joining = and y. The diameter of a graph, denoted by diam(G), is the maximum
distance between any two vertices of G. We will use G — x or G — zy to denote the
graph that arises from G by deleting the vertex € V(G) or the edge zy € E(G).
Similarly, G + zy is a graph that arises from G by adding an edge zy ¢ E(G), where
z, y € V(G).
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A tree is a connected acyclic graph. Let T be a tree of order n with diameter
d. If d =2, then T = K,,_1, a path of order n; and if d = n — 1, then T = P,,
a star of order n. Therefore, in the following, we assume that 3 < d < n — 2. Let
Ina =T :T is a tree with order n and diameter d, 3 < d <n — 2}.

2. Preliminaries

We first give some lemmas that will be used in the proof of our results.
Lemma 2.1 (see [7]). Let G be a graph and uv be an edge of G. Then
(i) 0(G)=0(G—uw) =0 (G~ (Ne[u]UNg[v]));
(i)  2(G) =2(G —w)+ z(G — {u,v}).
Lemma 2.2 (see [7]). Let v be a vertex of G. Then
(i)  o(G)=0(G—v)+0c(G— Ng[v]);
(it) 2(G)==z(G—-v)+ > 2(G—{uv}).

uENG(v)
From Lemma 2.2, if v is a vertex of G, then o(G) > o(G — v). Moreover, if G is
a graph with at least one edge, then 2(G) > 2(G —v).

Lemma 2.3 (see [7]). If G1, Ga,- -+, G, are the components of a graph G, then

(1) o(G)=1I;_10(Gy);

(i) 2(G) = [[20 #(Gy).
Lemma 2.4. Let G be a graph and v,u € V(G). Suppose that Gs; be a graph
obtained from G by attaching s, t pendant vertices to v,u, respectively. Then either

0(Gstit—i) > 0(Gsy) (or 2(Geyip—i) < 2(Gsy), resp.) forl1<i<t
or 0(Gszitri) > 0(Gsy) (01 2(Go—ipri) < 2(Gsy), resp.) for1<i<s.
Proof. If uv ¢ E(G), then by Lemma 2.2 and Lemma 2.3, we have

0(Gsp) = 0(Gsp—v)+o0 (Gs,t — NGM[’UD
= 0(Gsy—v—u)+0(Gsy —v— Ng,,—o[ul)
+o (G — Ng,.[v] — u) + o (Gs,t — Ng,.[v] — NG‘«,rNcs,t[’v] [u])
= 2°"6(G —v—u) +2°0 (G — v — Ngu])
+2'0 (G —u — Ng[v]) + 0 (G — Nglv] — Ng[u]),



-374-

Z(Gs,t) = Z(Gs,t - U) + Z Z(Gsyt -V — U,)

v'eNg, , (v)

= 2(Gsp—v—u)+ Z Z 2(Gsp—v—u—2v —u)

’U/GNGSJ(U) ”"/ENGS,t—u—v’(“)

+ Z 2(Gsy—v—u—2)+ Z 2(Gsp —v—u—1u)

U/ENGS,t(U) "’ENGS.t—u(“)
= (I+s+t+st)z2(G—v—u)+ (1+1) Z 2(G—v—u—1")
v'ENg(v)
+(1+5s) Z 2(G—v—u—1)
wWENG_,(u)

+ Z Z 2(G—v—u—1v—).

v'ENg(v) WENG_y(u)

If uv € E(G), then, by Lemma 2.2 and Lemma 2.3, we have

o(Gsi) = oGy —v) +0(Gsy = Na,,[v])
= 0(Gsy —v—u)+0(Gsy —v— Ng, ,—o[u]) + 0(Gs s — Neg, ,[v])
= 25M5(G — v —u) + 2°0(G — v — Nglu]) + 2'0(G — u — Ng[v]),
2(Gsy) = 2(Gop—v)+ Z 2(Gsp — v — 1)

UIGNGs,f, (v)

= 22(Gep—v—u)+ Z Z 2Gsy—v—u—v =)

v'€Ng, , (v)—u u’ENG‘M_U_U/ (u)

+ Z 2(Gsy—v—u—2)+ Z 2(Gsp—v—u—1)

v'ENGS,t(v)—u u’eNGS’rv(u)
= 24s+t+st)z(G—v—u)+(1+1) Z 2(G—v—u—1)
v'€Ng(v)—u

+(1+s) Z 2(G—v—u—1)

W ENG—y(u)

+ Z Z 2(G—v—u—1v —1u).

v'ENG(v)—uw ENG_,(u)
Therefore
QU(Gs,t) - U(Gsﬂ',tﬂ') - U(Gs—i,tJri)
(271 =22 —1) [2°70(G — v — Nglu]) + 27" - (G — u — Ng[v])] <0,
22(Gst) — 2(Goyip—i) — 2(Gs_ipgi) = 2i22(G —v—u)>0.
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Thus, if 0(Gst) — 0(Gs—irri) = 0 (or 2(Gst) — 2(Gs—irri) < 0, resp.), then
U(Gs,t) - U(Gs+i,t—i) < _[U(Gs,t) - U(Gs—i,t+i)] S 0

(or z(Gst) — 2(Gsqit—i) > —[2(Gst) — 2(Gs—irsi)] > 0, resp.). Hence the lemma
holds. [

Let Hy, Hj be two connected graphs with V(H;) NV (Hsz) = {v}. Let HivH;
be a graph defined by V(G) = V(H,) UV (H,), V(H,) NV (Hy) = {v} and E(G) =
E(H,) U E(Hy).

Lemma 2.5. Let H be a connected graph and T) be a tree of order I with V(H)N
V(T;) = {v}. Then

o(HvT)) < o(HvKy—1) (or z(HVT}) > 2(HvKy 1), resp.)

and equality holds if and only if HvT; = HvK;, 1, where v is identified with the
center of the star Ky;—1 in HuKy;_;.

Proof. Note that o(T}) < o(Ky-1), o(T1 —v) < 0(K14-1 —v), o(H —v) >
o(H — Ng[v]) and 2(1}) > 2(K;,-1). By Lemmas 2.2 and 2.3, we have

o(HvT)) = o(H —v)o(Ti —v) + o(H = Ny[v])o(T; — Ny, [v])
— o(H = v)o(Ti—v) +o(H - NHM)[U(Tz) —o(Ti— )
= o(H = Ng[v))o(T) + [o(H —v) —o(H = Nu[v])]o(T; —v)
< o(H — Nyg[v))o(K14-1) + [0(H —v) —o(H — Ngv])]o(K1,-1 — v)
= O'(H’UKll 1)7
2(HvT) = z2(H —v)z(T; —v) + Z 2(H —v—w)z(T))
weNp (v)
+ Z 2(T; — v —u)
uENT, (v)
= z(H—-v)z(T; —v) + Z z2(H —v —w)z(Ty)
wEN (v)

+2(H —0)[2(T}) — 2(T: — v)]
= 2(H-v)z(T)+ Y 2(H—-v—w)T)
wENg (v)

> 2(H=v)z(Kyo)+ Y 2(H—v—w)z(Ki)

weNg (v)

= Z(HUKl’l,l).
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Therefore the lemma holds. [
3. Main Results

In this section, we will give the first [ 2] 4+ 1 Merrifield-Simmons indices and the
last | ] 4 1 Hosoya indices of trees in the set 7,4 (3 < d < n — 3).

In order to formulate our results, we need to define some trees (see Figure 1) as
follows.

Let Ty, a(p1, - - -y pa—1) be atree of order n created from a path Pyiq = vovy . .. V4—10q
by attaching p; pendant vertices to v;, 1 <i < d— 1, respectively, where n = d+1+
S, pi >0, i=1,2,---,d—1. Denote W, 45 = Tp4(0,---,0,n —d —1,0,---,0)

~—

i—1

and Tn’d’i’j = ZLvd(O’ N 07 n—d-— 27 07 n 707 17 07 co 70) Then Wn,dfi = Wnd,dfi and
‘ . 1 . V' 1 ’ 3
i— j—i—
Tn,d,i,j = Lndd—id—j-

Let Xya: (2 < i < d—2) be a graph obtained from W,,_; 4; by attaching a pendant
vertex to one pendant vertex of W,_; 4, except for vo,v4. Then X, 4, = X, g.a—i-
Let Y, 4: (2 <1i < d—2) be a graph obtained from W44, by attaching n—d—2
pendant vertices to one pendant vertex of Wyys 4, except for vy, vg. Then Y, 4; =
Yo dd—i-
Denote 70 = {Wha; : 1 <i<d—1}, Iy = {Xnai © 2 <0< d—2},
la=Waai » 2<i<d—=2}and F); = {Thas; : 1<i<j<d—1}

n —d—2 n—d-—1
—
M S N
Uo Uj Ud 1 Vg Vg U1 Vj Vdg—1 Vq
Thdij Wi .
n—d—2
A n—d—3
X
Vo U1 Vj Vd—1 Vd Vo V1 V5 Vd—1 Vd
Yo Xndi
Figure 1

Let F}, be the nth Fibonacci number, i.e., Fy = F =1, F, =F, 1+ F, o, n>2.
Note that o(P,) = Fny1, 2(P,) = F.
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By Lemmas 2.1-2.3, we have the following results.

Lemma 3.1. Let W, 44, Xy a4, Ynai be the graphs shown in Figure 1. Then

(i) 0(Whai) = Fapz + (2" = 1) Fipq Fy_is and 2(Wha;) = Fapr + (n—d —
1)EiFy i, where 1 <i<d-1;

(i1) 0(Xpai) = 2F g2+ (3- 27703 —2)Fyy 1 Fy i1 and 2(Xnai) = 2Fa1 + (2n —
2d — 5)F;Fy_;, where 2 <i <d—2;

(i4i) 0 (Ypai) = 2" 2 Fy 0+ Fi Fy i1 and 2(Yogi) = (n—d—1)Fyp + FFy
where 2 <i<d—2;

() 0(Thaii41) = 2" 2 Fi Famivot2FFy i, 2(Thai041) = FiFa i1+ Fy_i1[(n—
d—1)F;+ Fi1], 0(Thaiive) = 2" 2 Fin(Famivo + Fasi) + FiFa—i1, 2(Thaiive) =
(Fyei + Faio){(n —d = 1)F, + Foq] + FiFyy, 0(Thaey) = 202 (Fymisn +
Fi_iFy_ji1) + Fi(Fami + Fj_im1Fa_jir) and 2(Thaij) = [(n—d—1)F; + Foq|(Faei +
Fi_i1Fy ) + Fi(Fa—ioa + Fj_y_oFy_j) for j —i > 3. In particular, o(T,413) =
9-2"%+5, 2(Thans) =4n— 13, 0(Tha1,4-1) = 2" (Fy+ 2F_0) + Fyoq + 2Fy_3
and z(Tha14-1) = (n—d+2)Fy_o+ (2n —2d — 1)Fy_3 for d > 5.

Lemma 3.2. Let W, 4, X4, Yna: be the graphs shown in Figure 1. Then

(1) cWhai) > 0(Xnai) and z2(Wy a,) < 2(Xnai) for2<i<d—2and3<d<
n—3;

(1t) 0(Xna;) > 0(Ynai) and 2(Xpa:) < 2(Ynai) for2<i<d—2and4 <d <
n—3.

Proof. Note that Fy,o = F;11Fy_ ;41 + FiFy—;. By Lemma 3.1, we have

o(Wyai) = 0(Xnai) = P+ D)F1Fyii1 — Fueo
= 2V E L Fy i — FiF >0,
2(Whai) — 2(Xnai) = —Fan—(n—d—4)FF;; <0,
0(Xnai) —0(Vnai) = 2" = 1)BFi1Fi i1 — 2Fy0)
= (2" = 1) (Fip1Fyoirn — 2FFyy)
= (2" 1) 2F,_ Fy i1 — FioFy i 5) >0,
2(Xndai) — 2(Ynai) = —(n—d—=3)Fy1 + (2n—2d — 6)F, Fy_;
= (” —d- 3) (E—QFd—i—Q - E—le—i—l) <0.

Thus the lemma holds. u
Theorem 3.3. (i) c(Wy31) > 0(Ths1,2) and z(Wys1) < 2(Th31,2) forn > 5;
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(ZZ) U(Wn,4,1) > O'(Tny4ylyg) > O'(WnAyg) and Z(Wn_’471) < Z(Tn74’173) < Z(Wn742) fOT‘

n>"T.

Proof. (i) follows by Lemma 2.4.

(ii) Note that

U(Wn,4,l) - U(Tn,4,1,3)
U(Tn,4,1,3) - U(Wn,4,2)
Z(Wn,4,1) - Z(Tn,4,1,3)
2(Tha3) — 2(Wia2)

and hence the results holds.

= (5-2"%43)—(9-2" 7 +5)=2""-2>0,
(9-2"°4+5)—(9-2"° +4)=1>0;

= 3n—-T—(4n—-13)=6—n <0,

4n —13 — (4n —12) = -1 <0,

Lemma 3.4. Suppose that 5 < d <n—3. Then

(1) o(Tha1,a-1) > 0(Xpas) and 2(Thg1,a-1) < 2(Xnas);

(i) c(Wha2) > 0(Thanda—1) and z(Wpa2) < 2(Th.a1,d-1)-

Proof. Note that Fy o = F;11Fy_i41 + FiFy—;. By Lemma 3.1, we have

0(Tharda-1) — 0(Xnas) =

o(Wha2) —0(Tharaa) =

2(Thana-1) — 2(Xnas) =

Z(Wn,d,Q) - z(jjn,d,l,dfl) =

Thus the lemma holds.

Lemma 3.5 [15, 13].
0<r<3.

B4y 4 8Fy 5 — 15F; o) 4+ Fyq +2F; 3 — 6F;_3
2V A 5+ Fyo) + Fyg —2F; 3 > 0,
2N BF . — Fy—2F;0) + 2Fy 5 — Fy_y — 2F;
2" Ry s+ Fyoq — 2Fy5 > 0,

(n—d+2)F;_ o+ (2n—2d —1)Fy_3

—3(2n — 2d — 5)Fy_g — 2Fyyy

(n—d—4)(Fy_y — (3n — 3d — 6)Fy_s) < 0,
Fioy+2(n—d —1)Fy_s

—(n—d+2)F; 95— (2n—2d—1)F; 3
m—d—=1)F4y—(n—d—2)F;3<0.

Let n = 4s + r, where n, s and r are integers with

(i) For r € {0,1}, we have

FBF, > IBhE, o> FiF, 4> > Fhylhey, > Fos 1 Fogyrqn

> Py 3o ipys > > F3F, 3> F1F,_q;
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(it) For r € {2,3}, we have

RF, > BhyF, o> FF, 4> > F0h, > 1 Fogr
> By 1 Fosipp1 > > F3F, 3> FiF, .

By Lemmas 3.1 and 3.5, we have
Lemma 3.6. Let d = 4k + r, where k and r are integers with 0 < r < 3.
(i) For r € {0,1}, we have

o(Whas) > c(Whas) > -+ > c(Whaok—1) > 0(Whaor)

U(Wn,d,l) (

o(Whagk—2) >+ > (W 42);
(
W,

>
>

2(Wha1) < z(Whas) < 2(Whas) < -+ < z2(Wpgoe-1) < 2(Wpa2k)
<

2(Whaoe—2) < -+ < 2(Wha2);

(i) Forr € {2,3}, we have

o(Wha1) > o(Whas) >0(Whas) >+ > 0(Whaom—1) > 0(Wha2k—2)
> o(Whaok—a) > - > 0c(Wya2):

2(Wha1) < 2(Waas) < 2(Wnas) <+ < 2(Wagzn-1) < 2(Wnaok-2)
< 2(Wiage-1) <+ < 2(Wiap).

Note that the analogous inequalities hold for X, 4; and Y}, 4;, and hence o(T") <
0(Xna3) (or 2(T) > 2(X,43), resp.) for T' € % s and o(T') < o(Y,,43) (or 2(T) >
2(Yna3), resp.) for '€ T .

Corollary 3.7. The first | 4] Merrifield-Simmons indices (or the last | 4] Hosoya
indices, resp.) of trees in the set Tpq withd =n—2=4k+r, 0 <r < 3 are as
follows:

What, Waag, - Waazk-1, Wador, Wadok—2, - - - s Wyao, when r € {0,1};
Wn,d,17 Wn,d,?n R Wn,d,?k—la Wn,d,Zk—?: Wn,d,?k—47 R Wn,d,?: when r € {27 3}

Note that .7, ,_» contains no other trees than the above listed.

Lemma 3.8. LBtTGyﬂd\{Tndld 1} 5<d<n-—3. Then

o(T) < 0(Tha1,a-1) (or 2(T) > 2(Tha1,4-1), TeSP.).
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Proof. First we show that
0(Thaza—1) > 0(Tnai;) (or 2(Thasa-1) < 2(Thdy;), resp.)

for1<i<j<d-2.
If j —i > 3, then

0(Thaia—1) — 0 (Tnaiz)

= 2n7d725+1(Fd4+1 + FyFy i) — 2nid72Fz‘+1(Fd—i+1 + Fj_iFy_j1)
+Fi(Fy_i +2Fg_i2) — Fi(Fy_i + Fj_i 1 Fy_j11)

= 2n7d72Fi+1(F2Fd—i—1 —FiiFyj) + Fi(FoFy o — Fji 1 Fy_j11) >0,
2(Thaida—1) — 2(Tndiz)

= [(n—d-1)F+ F|(Fa—i + Famieo — Famy — Fj—i—1Fy_j)
+F(Fyoin+ Faios — Faoio1 — Fj_ioFyj)

= [(n—d-1)F+ F1|(FiFy_i—s — Fj_i_1Fa_j) + F{(F\Fy_i—s — Fj_;_oFy_j)
0;

it j =7+ 1, then

U(Tn,d,i,d—l) - U(Tn,d,i,iJrl)
= 2P F (Fyminr + 2Fi01) — 2 Fiy (Famig + Fai)
+E(Fyi +2F0) — 2K Fy;
= 2" (2F 1 — Fy) + Fi(2F 0 — Fu_y)
= 2" F G Fy s — FiFy 5> 0,
Z(Tn,d,i,d—l) - Z(Tn,d,i,i+1)
= [(n—d=—1)F+ F1)(Fy—i + Faio — Fyip1) + FiF i3
= —[(n—d—=2)F+ F,_1|Fy_i—3 < 0;

if j =7+ 2, then

O_(Tn,d,i,d—l) - U(Tn,d,i,i+2) = E(Fd—i + F2Fd—i—2) —FiFy i =FFy_ 4 >0,
2(Thaia-1) — 2(Thauive) = Fi(Famim1 + Fyims — Fyy) = —FiFy_;-4 < 0.

Next we show that
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0(Thana-1) > 0(Thaia-1) and 2(Tha1,4-1) < 2(Thdaid-1)
for 2 <17 <d— 2. Note that

0(Thana1) —0(Thaid)

= o(Wh141) + Foo(Wh—sa-21) — 0(Wy_1,4:) — Foo(Wy_3.4-2,)

= [o(Wh-141) — o(Waho1,44)] + Falo(Wh—s4-21) — 0(Wh_34-2,)] > 0,
2(Thard-1) — 2(Thdid-1)

= Z(Wn—l,d,l) + Z(ans,dfll) - Z(anljd,i) - Z(W'ﬂffi,dfli)

= [(Wa-141) = 2(Waora0)] + [2(Waza-21) — 2(Wa-34-24)] <0,

and hence the lemma holds. ]

Lemma 3.9. Let T € F, 4\ (7,3 U{Th41a-1}) with5 < d <n—3. Then
o(T) < o(Tha1,a-1) (or 2(T) > 2(Th41.4-1), TeSP.).

Proof. Let Py1 = vovy...v4-104 be a path of length d of T with d(vy) =
d(vg) = 1. Let Vg = {v; : d(v;) > 3,1 <i<d—1}. Sincen >d+3, Vg # 0. We
consider two cases.

Case 1. |V4| > 2.

In this case, let vy € Vg, and let T}, be a subtree of T'— E(P;;1) which containing
v;, 1 <i<d—1and |V(T),)| =pi. Let t = |{p; : p; > 0}|.

We first show that there is a tree 7" = T}, 4(p1, - - . , p4—1) such that o(T) < o(T")
(or 2(T) > =(T"), resp.) and equality holds if and only if 7 = T"'. Denote

H = P, U U Ty, |. Then T = Huv;T,. By Lemma 2.5, we have
1<k<d—1,ki

o(HvT,,) < o(HvK;p_1) (or z(HVT,,) > z(HvKip,—1), resp.). Thus o(T) <
o(Tna(ps .- pa-1)) (or o(T) < o (T a(p1, - - -, pa-1)), €SP ).

Since T & Z?d, we have t > 2. If t = 2, then T' € ;. If t > 3, then we will
show that there is a tree T? = T,, 4, ; such that o(T?) < o(T?) (or 2(T*) > 2(T?),
resp.). Let pg,pi,pm #0, 1 <k <l<m <d—1. By Lemma 2.4, we have eiher

U(Tn,d(ph w5 PRy DL 7Pd—1)) < U(Tn,d(ply <y DE +pl7 .. ~7O>' o 7pd71))

or U(Tn,d(ph v s Pky Pl 7pd—1)) < U(Tn,d(pla e 707 e 7pk+pl7 e 7pd—1))~ Thus
there is a tree T2 2 T}, 4, ; such that o(T") < o(T?) (or 2(T") > 2(T?), resp.). Hence
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by Lemma 3.8, we have o(T) < o(T?) < o(T?) < 0(Tya1.a-1) (or 2(T) > 2(T") >
2(T?%) > z2(Ty41.4-1), TESP.).

Case 2. |V =1.

In this case, we let v; € Vy and N(v;) \ {vi1,via} = {1, ..., x5} with d(z;) >
2, 1<j<r,and d(x,11) =---=d(x,) =1. Thenr>1as T ¢ ;. Let Ti(x;) be
subtrees of T' — v; which contain z;, and |V(T;(z;))| =s;+1, 1 <j<r.

Let T3 be a tree created from Tiys+1,4: by attaching s; pendant vertices to z;,
1 < j < s, respectively. Then, by Lemma 2.5, we have o(T) < o(T3) (or z(T) >
2(T?®), resp.).

By Lemma 2.4, we have either o(1T?) < 0(X,,4:) (or 2(T?) > 2(X,.4:), T€SP.) OF
o(T3) < 0(Ynai) (or 2(T%) > 2(Ynai), resp.). Thus, by Lemmas 3.2, 3.4 and 3.6,
either o(T) < o(T?) < 0(Xpai) < 0(Xpaz) < 0(Tha1a-1) (or 2(T) > 2(T3) >
2(Xnai) > 2(Xnas) > 2(Tnara-1), vesp.) or o(T) < o(T?) < 0(Yia4) < 0(Vnas) <
o(Thana) (or 2(T) > 2(T°%) > 2(Yna:) = 2(Ynas) > 2(Thana-1), resp.).

Therefore the proof of the lemma is complete. [

By Lemmas 3.2, 3.4, 3.6 and 3.9, we have the following result.

Theorem 3.10. The first | 3] +1 Merrifield-Simmons indices (or the last |$]+1
Hosoya indices, resp.) of trees in the set I, q with5 < d=4k+r <n-3, 0 <r <3

are as follows:

Whats Waas, - Waazk—1, Waaok Waaz2k—2, - - - Waa2, Tna1,a-1, when v € {0,1};
Wadai, Wnasz, -, Wadak—1, Wanaoe—2, Waazk—a, - - s Wnoao, Tnai,d-1, when
r €{2,3}.

Acknowledgments. Many thanks to the anonymous referee for his/her many
helpful comments and suggestions, which have considerably improved the presenta-
tion of the paper.
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