
EQUIENERGETIC BIPARTITE GRAPHS

Yaoping Houa and Lixin Xub

aDepartment of Mathematics, Hunan Normal University, Changsha,
Hunan 410081, China

email: yphou@hunnu.edu.cn

bDepartment of Mathematics, Shaoyang University,
Shaoyang, Hunan, China

(Received September 19, 2006)

Abstract

The energy of a graph is the sum of the absolute values of its eigenvalues. Two graphs

are said to be equienergetic if their energies are equal. We show how infinitely many

pairs of equienergetic bipartite graphs can be constructed, such that these bipartite

graphs are connected, possess equal number of vertices, equal number of edges, and

are not cospectral.
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INTRODUCTION

The concept of graph energy was introduced by Gutman long times ago. Recently

this concept started to attract considerable attention of mathematicians involved in

the study of graph spectral theory; for recent mathematical works on the energy of

graphs see [2,3,5,7–10,13–15] and the references of quoted therein.

Using the notation and terminology of the paper [10], we denote by λ1, λ2, . . . , λn

the eigenvalues of a graph G and by n the number of its vertices. The energy of the

graph G is then defined as E(G) = |λ1| + |λ2| + · · · + |λn| . Two graphs G1 and G2

are said to be equienergetic if E(G1) = E(G2) .

Let L2(G) denote the second iterated line graph of the graph G . In the papers

[10, 11, 12] the following theorem has been proved.

Theorem 1. Let G1 and G2 be two regular graphs, both on n vertices, both of

degree r ≥ 3 . Then

(1). L2(G1) and L2(G2) are equienergetic, and E(L2(G1)) = E(L2(G2)) = 2nr(r−2) .

(2). L2(G1) and L2(G2) are equienergetic, and E(L2(G1)) = E(L2(G2)) = (nr −
4)(2r − 3)− 2 , where G denotes the complement of the graph G .

Theorem 1 gives a systematic method for constructing pairs of equienergetic

graphs. On the other hand, until now no systematic method for constructing pairs of

equienergetic bipartite graphs was reported. Here we are now able to offer one, that

is similar to Theorem 1.

For studying networks, N. Alon [1] introduced the extended double cover of a

graph to obtain expanders from magnifier. This motivated our interest in studying

the energies of the extended double graphs.

Let G be a simple graph with vertex set V = {v1, v2, . . . , vn} . The extended

double cover of G , denote by G∗ is the bipartite graph with bipartition (X, Y ) where

X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} , in which xi and yj are adjacent if and

only if i = j or vi and vj are adjacent in G . It is easy to see that G∗ is connected if

and only if G is connected and G∗ is regular of degree r +1 if and only if G is regular

of degree r .

- 364 -



The following is the main result of this note.

Theorem 2. Let G1 and G2 be two regular graphs, both on n vertices, both of

degree r ≥ 3 . Then

(1). (L2(G1))
∗ and (L2(G2))

∗ are equienergetic bipartite graphs, and E((L2(G1))
∗) =

E((L2(G2))
∗) = nr(3r − 5) .

(2). (L2(G1))
∗ and (L2(G2))

∗ are equienergetic bipartite graphs, and E((L2(G1))
∗) =

E((L2(G2))
∗) = (5nr − 16)(r − 2) + nr − 8 .

(3). (L2(G1))∗ and (L2(G2))∗ are equienergetic graphs, and E((L2(G1))∗) =

E((L2(G2))∗) = (2nr − 4)(2r − 3)− 2 .

PROOF OF THEOREM 2

In order to prove Theorem 2, we first give the relation between the eigenvalues of

a graph G and its extended double cover G∗ .

Lemma 3. Let λ1, λ2, . . . , λn be the eigenvalues of the graph G . Then the eigen-

values of G∗ are ±(λ1 + 1),±(λ2 + 1), . . . ,±(λn + 1) .

Proof. Let the adjacency matrix of G be A . Then G∗ has adjacency matrix(
0 A + I

A + I 0

)
, where I is the unit matrix. Suppose that λ is an eigenvalue of G

and x is an eigenvector corresponding to λ , that is, Ax = λx . Then we have

(
0 A + I

A + I 0

) (
x
x

)
= (λ + 1)

(
x
x

)

(
0 A + I

A + I 0

) (
x
−x

)
= −(λ + 1)

(
x
−x

)
.

Thus G∗ has two eigenvalues ±(λ+1) corresponding to the eigenvalue λ of G . Hence

the lemma follows. 2

Proof of Theorem 2. From [11] we know that if G is a regular graph of order n

and degree r , then L2(G) is a regular graph of order nr(r − 1)/2 and degree 4r − 6 .

If λ1, λ2, . . . , λn are the eigenvalues of G, then the spectrum of L2(G) consists of the
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numbers
λi + 3r − 6 i = 1, 2, . . . , n

2r − 6 n(r − 2)/2 times

−2 nr(r − 2)/2 times





(1)

Combining Lemma 3 and (1), we obtain that the eigenvalues of (L2(G))∗ are:

±(λi + 3r − 5) i = 1, 2, . . . , n

±(2r − 5) n(r − 2)/2 times

±1 nr(r − 2)/2 times





(2)

Recall that all eigenvalues of a regular graph of degree r lie in the interval [−r, +r] .

Therefore, we obtain λi +3r−5 ≥ 0 . From (2) we can express the energy of (L2(G))∗

as:

E((L2(G))∗) = 2

[
n∑

i=1

(λi + 3r − 5) + (2r − 5)n(r − 2)/2 + nr(r − 2)/2

]

= nr(3r − 5) (recall that
n∑

i=1
λi = 0) .

If G is regular of order n and degree r , then its complement G is a regular graph

of order n and degree n− r− 1 . The spectrum of G consists of the numbers (see [4]):

n− r − 1

−λi − 1 i = 2, 3, . . . , n



 (3)

Combining (1) and (3), we obtain that the eigenvalues of L2(G) are:

nr(r − 1)/2− 4r + 5

−λi − 3r + 5 i = 2, 3, . . . , n

−2r + 5 n(r − 2)/2 times

1 nr(r − 2)/2 times





(4)

Combining Lemma 3 and (4), we obtain that the eigenvalues (L2(G))∗ are:

±(nr(r − 1)/2− 4r + 6)

±(−λi − 3r + 6) i = 2, 3, . . . , n

±(−2r + 6) n(r − 2)/2 times

±2 nr(r − 2)/2 times





(5)
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From (5) we can express the energy of L2(G))∗ as:

E(L2(G))∗) = 2[nr(r − 1)/2− 4r + 6 +
n∑

i=2

(λi + 3r − 6)

+(2r − 6)n(r − 2)/2 + 2× nr(r − 2)/2]

= (5nr − 16)(r − 2) + nr − 8

Combining Lemma 3 and (5), we obtain that the eigenvalues of the of (L2(G))∗

are:
nr(r − 1)− 4r − 5− 1

−(4r − 5)− 1

±(−λi − 3r + 5)− 1 i = 2, 3, . . . , n

±(2r − 5)− 1 n(r − 2)/2 times

±1− 1 nr(r − 2)/2 times





(6)

From (6) we can express the energy of (L2(G))∗ as:

E((L2(G))∗) = 2[nr(r − 1)/2− 4r + 4 + 4r − 4 +
n∑

i=2

(λi + 3r − 6)

+ (2r − 6)n(r − 2)/2 + nr(r − 2)/2× 2]

= (2nr − 4)(2r − 3)− 2 .

Hence Theorem 2 follows. 2

DISCUSSION

In full analogy with the corollaries of Theorem 1 (stated in [10] and [12]), we now

have:

Corollary 2.1. Let G1 and G2 be two regular graphs, both on n vertices, both of

degree r ≥ 3 . Then for any k ≥ 2 , the following pairs of graphs are equienergetic:

(1) (Lk(G1))
∗ and (Lk(G2))

∗ ;

(2) (Lk(G1))
∗ and (Lk(G2))

∗ ;

(3) (Lk(G1))∗ and (Lk(G2))∗ .

- 367 -



Corollary 2.2. Let G1 and G2 be two connected and non-cospectral regular graphs,

both on n vertices, both of degree r ≥ 3 . Then for any k ≥ 2 , both (Lk(G1))
∗

and (Lk(G2))
∗ are regular, bipartite, connected, non-cospectral, and equienergetic.

Furthermore, (Lk(G1))
∗ and (Lk(G2))

∗ possess the same number of vertices, and the

same number of edges.

Within Theorem 2 we obtained the expression (in terms of n and r) for the

energy of the extended double cover of the second iterated line graph of a regular

graph. Analogous (yet much less simple) expressions could be calculated also for

E((Lk(G))∗) , k ≥ 2 , i. e., the energy of the extended double cover of the k-th

iterated line graph, k ≥ 2 , of a regular graph on n vertices and of degree r ≥ 3 is

also fully determined by the parameters n and r .

A graph G on n vertex is called hyperenergetic if E(G) > 2n − 2 . In [6] it was

shown that if G has more than 2n−1 edges then all its iterated line graphs Lk(G) are

hyperenergetic. From the expressions for the energies of the graphs L2(G) , L2(G) ,

(L2(G))∗ , (L2(G))∗ , (L2(G))∗ , it is not difficult to see that these all are hyperenergetic

for r ≥ 3 and n ≥ 5 .

Similar to the extended double cover of a graph, we may define the extended

m-cover of a graph as follows:

Let G be a simple graph with vertex set V = {v1, v2, . . . , vn} . The extended

m-cover (m ≥ 2) of G , denote by G(m) , is the m-partite graph with m-partition

(X1, X2, . . . , Xm) where X1 = {x(1)
1 , x

(1)
2 , . . . , x(1)

n } , X2 = {x(2)
1 , x

(2)
2 , . . . , x(2)

n } , . . . ,

Xm = {x(m)
1 , x

(m)
2 , . . . , x(m)

n } , in which xk
i and x`

j are adjacent if and only if i = j

or vi and vj are adjacent in G (for any k 6= `) . It is not difficult to prove that if

the characteristic polynomial (of the adjacency matrix) of G is φ(G, x) , then the

characteristic polynomial (of the adjacency matrix) of G(m) is

φ(G(m), x) = φm−1(G,−x− 1)φ
(
G,

x

m− 1
− 1

)
.

In other words, if the eigenvalues of G are λ1, λ2, . . . , λn , then the eigenvalues of G(m)

are (m−1)(λi+1) and −(λi+1) (m−1 times), i = 1, 2, . . . , n . From this fact, we can

show that if G is an r-regular graph with n vertices, then the energy of (L2(G))(m) is

[mnr(3r − 5)]/2 , which is independent of the structure of the graph G .
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